PRINCIPAL EXTENSIONS OF RIEMANN SURFACES IN
TOPOLOGICAL ALGEBRAS AND LOCAL SPECTRA

ZOI DAOULTZI-MALAMOU

ABSTRACT. The principal extension of a Rieman surface in a topological al-
gebra, being proved to be an infinite-dimensional complex analytic manifold
modelled on the topological algebra, are considered. The spectrum of an ele-
ment of the principal extension, which is defined as a subset of the Riemann
surface, is studied as an application. The notion is extended to a subset of
the principal extension, while the principal extension of a subset of a Riemann
surface are also considered.

1. PRELIMINARIES

Let A be a commutative complete semisimple locally m-convex algebra with a
unit element e4 and

spa(z) = {A € C: z — ey is not invertile in A}

the spectrum of z € A. We suppose that sp, (z) C C is compact for every z € A and
the map z + spa(z) is upper semicontinuous. Moreover, let (X,.4) be a Riemann
surface, where A = {(U;, ¢;)} is an atlas of X and for every subset S C C let

M(S) ={z € A: spa(z) C S}.
For any 4,j € I and (U, ¢:), (U;, ¢;) € A let
bij =dj0 ;7" : g:i(UiNU;) = ¢;(Ui N U;)
and let
M(¢ij) = Fij : M(¢:(U; NU;)) — M(¢;(U; NU;)

such that

Fy(@) = 37 [ #5(0)e -0)ae
for each z € M (¢;(U; NU;)), where I is a closed regular curve with

I'CcQCC\spa(z)
and Q is an open neighbourhood of spa(z) in C such, that
spa(z) C $:;(UsNT;) C Q.
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We will say that (M (¢i(Ui)),ai) ~ (M(8;(U;)),a;), where a; € M(¢:(U; N Uj))
and a; € M(¢;(U;NU;)) if Fij(a;) = a; and cosets with respect to this equivalence
we denote by [(M (¢i(U;)),a;)]- Let

M(X) = {[(M(¢:(Us)),a:)] : a;i € M($(U;)) and i € T}.

and g; : M(¢;(U;)) = M(X) be a map defined by g;(a) = [(M (¢:(U;)),a)] for any
chart (U;, ¢;) € A and any a € M (¢;(U;)) (then g; is a 1 — 1 map) and let

M(A) = {(9:(M (6:(U:))), 97 1) : (Ui, ¢s) € A}
Then the family M (A) is a strongly analytic atlas of M(X) and (M (X), M(A)) is a
strongly analytic manifold, which are called the principal extension of the Riemann
surface (X, A) in the topological algebra A.

2. LOCAL SPECTRA

Let A be a unital commutative complete semisimple locally m-convex algebra,
(X, A) a Riemann surface and (M (X), M (A)) the principal extension of (X,.A)
in A.

Definition 1. Let A be a unital complete semisimple locally m-convez algebra, for
which spa(x) is compact for each x € A and the map = — spa(z) is upper semicon-
tinuous, (X, A) be a Riemann surface and (M (X), M(A)) the principal extension
of (X,A) in A. Let z = [(M(¢:(Uy)),a;)] € M(X), where a; € M(¢:(U;)) and
(Ui, ¢;) € A. Then the subset sp(z) = ¢; ' (spa(a;)) of X is called the spectrum of z.

To verify that sp(z) is independent of the choise of i € I, let (Uj,¢;) € A
and (M (:(U3)), a:), (M(;(U;)), a;) € z, Since (M(4:(U3)),a:) ~ (M(8;(U;)), a;),
then Fj;(a;) = a; and

sPa(a;) = spa(Fij(a:)) = ¢ij(spalas)) = (65 0 #; ") (spalas))-
Therefore ¢; ' (spa(a;)) = ¢; ' (spa(a:)). It means that the spectrum sp(z) does
not depend on i € 1.

It is easy to see that sp(z) is not empty for every z € M(X). Hence, sp(z) is a
compact subset of X.

Definition 2. The set
sp(Z) = | sp(2)
z€Z
is called the spectrum of Z C M (X) and , the set

MU)={z€ M(X):sp(z) cU}
18 called the principal extension of U C X in M (X).

Theorem 1. Let A be a wunital commutative complete semisimple locally
m-conver algebra, for which the spectrum spa(z) is compact for each x € A and
the map = — spa(z) is upper semicontinuous. Let (X, A) be a Riemann surface
and (M(X), M(A)) be the principal extension of (X, A) in A. Then for every open
subset U of X the principal extension M(U) of U is an open subset of M (X).

Proof. Let z € M(U). Then z = [(M(¢i(U;)),a;)], where (U;,¢;) € A and
a;i € M(¢i(U;)). Since spa(a;) C ¢i(U;) then sp(z) = ¢;'(spa(a;) C U; and
sp(z) C U. Thus, sp(z) CUNU;or z € MUNU;) C M(U) . On the other
hand, since U N U; is open in X then M (¢;(U NU;)) is open in M(X). It is easy
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to see that g;(M(¢:(U NU;))) = M (U NU;). Since g; is a homeomorphism, then
M(U NU;) is open in M(X). Hence M(U) is open subset of M (X).

Theorem 2. Let A be a unital commutative complete semisimple locally m-convex
algebra, the spectrum spa(z) of which is compact for every z € A and the map
x > spa(x) is continuous (“strong spectral continuity”). Let (M(X), M(A)) be the
principal extension of the Riemann surface (X, A) in A. Then M(K) C M(X) is
closed for each closed subset K C X .

Proof. Let (25) be a converget net in M(K) and z = lims z5. Since z € M(X)
then z = [(M(¢(U)),a)], where (U,¢) € A and a € M(¢(U)). Now there exists a
convergent net (as) in M (¢(U)) such that lims a5 = a and 25 = [(M (¢(U)), as)] for
each . Then sp(as) C ¢(U). Since z5 € M(K) for each § then

sp(zs) = ¢~ " (spa(as)) C K.
Hence spa(as) C ¢(U N K).

On the other hand, K C X is closed. Therefore U N K is closed in U and
¢(U NK) is closed in ¢(U). As the map = — spa(z) is continuous, then

spa(as) — spa(a) and spa(a) C ¢(UNK) C ¢(K).
Consequently, z € M(K) and M(K) C M(X) is closed.

Corollary 1. Suppose that the conditions of Theorem 2 are satisfied. Let (X, .A)
and (Y, B) be Riemann surfaces such that X CY is open and closed. Then M (X) C
M(Y) is an open and closed subset.

Theorem 3. Suppose that the conditions of Theorem 2 hold true. Let (X, A) be
a non connected Riemann surface. Then the principal extension (M (X)), M(A)) of
(X, .A) is also a non connected strongly analytic manifold.

Proof. Let X; C X be such a nonempty open and closed subset that X; # X.
Then M(X;) C M(X) is also nonempty open and closed subset by Theorems 1
and 2. Since, X \ X; C X is open, then there exists a chart (U, #) of the maximal
atlas A’ of X, for which U C X \ X;. Let z = [(M(¢(U)),a)] € M(X) with
sp(z) = ¢~ '(spa(a)) C X \ X1. Then sp(z) ¢ X1, because of which z ¢ M(X;).
Thus, we have M (X;) # M(X), which proves the theorem.

Theorem 4. Let A be a unital commutative complete semisimple locally
m-convez algebra, spectrum spa(z) in which is compact for every x € A and the
map T +— spa(z) is upper semicontinuous. Let (X,A) be a Riemann surface and
(M(X), M(A)) the principal extension of (X, A) in A. Then sp(U) C Xis open for
every open U C M(X).
Proof. Let z € sp(U). Then there is a 2 € U such that z = [(M(¢;(U;)), ai)], where
z € sp(z) = ¢7 ' (spa(ai)) C Ui, a; € M(¢;(U;) and (Ui, ¢;) € A. On the other
hand,

9; (U N gi(M(¢:(U3)))) C A is open
for every chart (g;(M(¢:(U3))),9;") € M(A). It means that

spalg; " (U N gi(M(4:(Us)))) € C is open.

Since z € U and z = [(M(¢:(U;)),a:)] = gi(a;) with a; € M(¢;(U;)), then
a; € g; (U N gi(M(¢;(U3))) and

spa(a:) C spa(g; (U N gi(M($:(U)))))-

bl bbb il



PRINCIPAL EXTENSIONS OF RIEMANN SURFACES 81

Now
z € sp(z) = ¢; " (spalai) C 97" (spaly; (U N gi(M(¢:(U3))))))s
where ¢, (spa(g;" (U N g;(M(#;(U;)))))) is open in X. Since

z € ¢; " (spale; ' (U N gi(M(4:(U3))))) C sp(U)
and z is an arbitrary element of sp(U), then sp(U)is open in X .
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