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1. INTRODUCTION1

Distribution of Labor:

! Syntax investigates the recursive part-whole structure of natural language expressions.

More generally, syntax is concerned with properties of a formal system, its form.

! Natural languages semantics (NLS) studies the meaning of natural language (NL) 

expressions. In general, semantics focuses on relations of a formal system to its

interpretation, its content.

! Pragmatics is concerned with the use of expressions in context, and is in this sense a

term specific to linguistic. What are the parts of meaning of an utterance which may

possibly change depending upon the situation?

1.1. THREE OBJECTIVES OF NLS

I. Representing meaning

What is meaning? What do sentences denote (= mean)? What is meaning, and how is it represented

in the mind? Speakers e.g. understand (1), even though there is no such rule in the real world that

would regulate any game. 

(1) The three players alternate in making seven moves at a time until the game is completed. 

What do words refer to? The English existential construction, exemplified by (2)a, asserts the

existence of the DP in the coda position. Why is it then that the coda can be filled by something that

does not exist, as in (2)b?

(2) a. There is [DP coda a smallest prime number]    .
. A smallest prime number exists

b. There is [DP coda no largest prime number]

How are the meanings of the words related to the sentence meaning?

1These notes are work in progress and in part follow Heim and Kratzer (1998). Additional ideas are
adopted from Partee et. al (1990), lecture notes by Arnim von Stechow and Ede Zimmerman (see
references) and Sabine Iatridou (p.c.).



II. Excluding ill-formed strings (a side product of I): 

Insights into the principles underlying natural language semantic (NLS) make it possible to account

for the ill-formedness of the starred examples below:

! Exceptives:

(3) a. The Pope invited everyone - but not Sam
b. The Pope invited everyone except Sam

(4) a. The Pope invited someone/a cardinal - but not Sam.
b. *The Pope invited someone/a cardinal except Sam

(5) a. All natural numbers between 0 and 3 except 2 are odd.
b. *A/some/no natural number between 0 and 3 except 2 is odd.

! Aspect and temporal/durative adverbs:

(6) a. They solved the equation in an hour
b. *They solved the equation for hours
c. *They solved equations in an hour
d.  They solved equations for hours

(7) a. They discussed the treatment of the illness in an hour
b. *They discussed the treatment of the illness for an hour
c. *They discussed the treatment of illnesses in an hour
d. They discussed the treatment of illnesses for hours

! Quantifiers: 

(8) a. Every second player wins
b. Not every player wins
c. *Not every second player wins (with regular intonation, i.e. no focus on every or second)

(9) a. Sam and Sally were invited to the party
b. All participants and some guests were invited to the party
c. No participants and few of the guests were invited to the party
d. *No participants and Sam were invited to the party

III. Representing inferences

Whoever knows (10)a and (10)b also knows that (10)c is true. How are the meanings of the

individual sentences related?

(10) a. The candidate must be over 25 years old and must be Russian
b. Mary remembered that Sam was born in Stockholm
c. Sam cannot be the candidate

! While (11)b follows from (11)a,  (12)a does not entail (12)b. Why?

(11) a. The famous actor who stopped smoking was a radical Scientologist
b. The famous actor used to smoke

(12) a. Everybody who stopped smoking was a radical Scientologist
b. Everybody used to smoke
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1.2. MOTIVATING NLS

Fundamental objective of NL-semantics is to define the meaning of utterances such as (13) - (16).

(13) A representativek of every southern countyi that has ever voted for the Democrats believed
that hek has contributed to itsi/j development. (let j = the new pharmaceutical)

(14) Nothing is good enough for you

(15) Exactly half of the squares contain less than three triangles

(16) Not every boy can be above average height

More precisely, NL Semantics investigates, among others, the following questions: 

” How can the situations be best described in which a sentence can be truthfully uttered? 

In which situations exactly is (13) intuitively thought to be true, for example?

” What are the procedures that make it possible to formalize the meaning of sentences?

What is the algorithm translating e.g. (13) into the quasi-mathematical form in (17), which is

generally taken to resemble its (extensional first order) logic representation?

(17) œx[[x is a southern county v x voted for the Democrats] ÿ ›y[y is a representative v y
believes that y contributed to x’s development]]

” How does the meaning of a sentence relate to its syntactic form?

1.2.1. Syntax vs. Semantics

While it is a rather uncontroversial assumption that syntax and semantics interact (the latter

interprets e.g. specific utterances with a specific syntactic structure), it is less obvious how the two

systems contribute to the form and representation of sentences. As a preliminary observation, it can

be shown that the strong view that syntax is entirely autonomous from semantics (a hypothesis

entertained to a certain degree by Chomsky) is not likely to succeed. In particular, there are aspects

of the meaning of a sentence which are conditioned by syntax, and v.v. This can be seen by minimal

variations of (13) which lead to unacceptability.

" First, observe that form has an impact on meaning. For instance, the fact that the second quantifier

in (13) is contained in a PP, and not in a relative clause, as in (18), is relevant for obtaining the

intended interpretation, according to which representatives may vary w.r.t. counties. 

(18) *A representativek which represents every southern countyi that has ever voted for the
Democrats believed that hek has contributed to itsi development.

"  Second, properties related to the meaning component can also have an impact on the (abstract)

syntax of a sentence. In (19), the conditions on the particle ever somehow seem to be violated.

(19) *A representativek of some southern countyi that has K ever voted for the Democrats believed
that hek has contributed to itsi/j development.
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More precisely, the distribution of these so-called Negative Polarity Items (NPIs) like ever cannot

be captured in terms of syntactic properties of  the expression. It is e.g. not possible to posit a single

syntactically motivated feature for all the contexts which tolerate NPIs, as becomes obvious from

the complex patterns in (20) and (21). (other NPI’s include budge an inch, any, care to, can

stand,...):

(20) a. Sam hasn’t ever heard about it
b. Nobody has ever heard about it.
c. Everybody who has ever heard about it likes it.
d. At most two dozen people have ever heard about it.

(21) a. *Sam has ever heard about it.
b. *Everybody has ever heard about it.
c. *Somebody who has ever heard about it likes it.
d. *At least two dozen people have ever heard about it.

This indicates that NPI licensing is subject to semantic, and not syntactic, conditions. 

Moreover, semantic properties can also directly influence the (abstract) syntactic

representation of an expression. In (22), the presence of a negative NP in some way seems to block

the link between every southern county and the pronoun its. Since this link is generally thought to

be mediated by an abstract representation altering c-command relations (LF), (22) can be taken to

support the view that semantic properties also contribute to the shape of syntactic representations.

(22) *No representativek of every southern countyi believed that hek has contributed to K itsi

development.

Crucially, in both cases above the conditions responsible for unacceptability cannot be found in

syntactic properties of the sentences, but are semantic in nature: they refer to properties of the

meanings of the expression (every vs. some in (13) vs. (19) and  every vs. no in (13) vs. (22)). Thus,

these phenomena fall into the domain of study of a field of its own, i.e. NL-semantics.

1.2.2. Some further cases demanding semantic analyses

! Distribution of prenominal attributive adjectives and predicative adjectives does not follow from

syntactic restrictions:

(23) a. the young murderer
b. The murderer is young. 

(24) a. the alleged murderer
b. *The murderer is alleged.

! Cross-linguistic semantic variation: why, e.g., can the English utterance in (25) be understood as

in (27)a, while the German equivalent (26)a must be interpreted as in (27)b?  (All the examples

should be read with neutral intonation, i.e. without assigning negation a pitch accent).

(25) All that glitters isn’t gold (Lasnik 1972)
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(26) a. Sie meinte, daß alles was glänzt nicht Gold ist
b. Sie meinte, daß nicht alles was glänzt Gold ist

(27) a. ‘Not all things that glitter are things that consist of gold’
º correctly accounts for the fact that brass instruments glitter, but are not made of gold

b. ‘All things that glitter are things that do not consist of gold’
º incorrectly claims that good flutes (which are all made of gold) are not made of gold

! Classical Aristotelian and scholastic logic is mainly concerned with the shape of valid inferences. 

(28) John made a sandwich on Friday in his office (rule of Simplification)
ˆ John made a sandwich on Friday 
ˆ John made a sandwich 

NOTATIONAL CONVENTION: read ˆ as: ‘it follows from the above that...’

(29) Sam is younger than Jeff
Jeff is younger than Bart
ˆ Sam is younger than Bart

(30) No bird has a steering wheel (Syllogism - more specifically,

Every duck is a bird the one called ‘Celarent’; see below)
ˆ No duck has a steering wheel

Classical logic fails to provide solutions for many phenomena, including quantification with most

((31)),  sentences with multipe quantifiers ((32)), or the behavior of so called donkey pronouns as
in (30). 

(31) Most dogs sleep

(32) Noone liked every movie 

(33) If a man is in Megara, he is not in Athens (Chrysippus, school of Megara, 6ct. BC)

To illustrate, Aristotelian logic cannot account for the meaning of quantifiers headed by most as the

do not lend themselves to an analysis in terms of the sentential connectives v and ÷: 

(34) a. Most x [dog(x) ÷ sleep(x)]
“Most individuals are such that if they are dogs then they sleep”
ºVacuously true in situations with more non-dogs than dogs

b. Most x [dog(x) v sleep(x)]
“Most individuals are such that they are dogs and sleep”
º Trivially false in situations with more non-dogs than dogs
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2. NATURAL LANGUAGE VS. FORMAL LOGIC
(partially from Partee et al. 1990)

NL semantics differs from the semantics of formal systems such as predicate logic in substantial

ways. These differences are important in two respects: first, they indicate that NL semantics cannot

be reduced to formal logic, legitimating the study of semantics from a linguistic perspective. (This

insight has actually motivated some founders of modern logic, most notably Alfred Tarski (Polish

logician, 1902-83), to exclude NL phenomena from a formal analysis.) Second, systematic differences

between formal and NL semantics can aid in gaining a better understanding of properties of the

linguistic system. 

2.1. ILLOCUTION

Logic consists only of declaratives. Natural language also employs imperatives, questions and the

like. It is not the case that the two systems are incompatible, though. Questions in natural language

can be reconstructed as sets of propositions in second-order predicate logic:

(35) a. Which dog sleeps ?
b. {p| ›x [ƒdog„ (x)(w) v p = ƒsleep„ (x)]}

2.2. EXPLICITNESS

Natural language does not need to realize all interpreted expression overtly, it licenses ellipsis (e.g.

Gapping, Stripping, VP-ellipsis and the like; see Fox 2000; Oirsouw 1987; Pesetsky 1982; Sag 1976):

(36) a. Gapping: John likes beans, and Bill - rice (- = likes)
b. Stripping: They met somebody, but they won’t tell who - (- = they met)
c. VP-Ellipsis: They like rice, and we do -, too (- = like rice)

2.3. (LOGICAL) CONNECTIVES

Formal languages (Propositional Calculus, Predicate Calculus, ...) only employ logical connectives

(and, or, not, if...then), but not such particles as  because, while, since, after, whenever, which carry

additional information apart from their logical contribution. For instance, in one of its uses, the

connective but serves as logical conjunction (v), but marks what might be called a contrast of

expectations. That is, when two sentences are joined by but, as in The food was fresh but the bread

was old, the speaker wants to convey the information that the content of the first conjunct creates

expectations with are not met by the content of the second one.  This additional component of

meaning can be captured by a model which incorporates several different layers of meaning (such

as pragmatics along ‘logical’ semantics). 

! In addition, connectives in NL do not always have the same meaning as logical connectives. For

instance, the meaning of and seems to include a condition on temporal ordering of the conjuncts

which is absent in the classical definition of and (in propositional calculus).
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(37) a. She attracted hepatitis and spent a week in the hospital.
º  the outbreak of the illness precedes the stay at the hospital

b. She spent a week in the hospital and attracted hepatitis. 
º  the outbreak of the illness follows the stay at the hospital

1.3. AMBIGUITY

Expressions in natural language can be ambiguous, while formal languages are disambiguated. One

task of formalization simply consists in providing an unambiguous representation of whatever is the

subject matter of formalization (language, facts of physics, biology, chemistry,...).

1.3.1. Lexical Ambiguity

Synonymy: Two expressions/lexemes are synonymous if they mean the same.

Homophony: Two expressions/lexemes are homophonous if they coincidentally share the

same phonetic form (i.e. are pronounced in the same way).  

(38) a. ƒmeat„ = parts of (edible) corpse of animal
b. ƒmeet„ = encounter

NOTATIONAL CONVENTION: read ‘ƒα„’as the function returning the meaning of α.

(39) a. hare, hair
b. night, knight

(40) Greek
a. φίλαPF  = [fila], ƒφίλα„ = kiss!
b. φύλλαPF= [fila], ƒφύλλα„ = leaves (on a tree, e.g.)
c. φύλαPF = [fila], ƒφύλα„ = sexes

POLYSEMY:  An expression/lexeme displays polysemy iff its denotation consists of more

than one related meaning variants.

(41) a. Sam is healthy (i.e. Sam’s body is in good condition)
b. Sam’s diet is healthy (i.e. Sam’s diet improves the condition of his body)
c. Sam’s attitude is healthy (i.e. Sam’s way of thinking is approved by speaker) 

(42) a. Can I have the bat? 
b. Instruction to hand over the baseball bat
c. Request for a specimen of a group of animals 

(43) a. Das Schloss ist alt
b. The castle is old
c. The lock is old

(44) [katse] 
a. Greek: ƒκάτσε„ = Sit down!
b. German: ƒkatze„ = Cat
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"  Potential worry: Is bat really ambiguous, or just vague/polysemous? After all, many words refer

to a variety of things which do not superficially resemble each other (e.g., elephants are animals, but

so are certain microbes and corals). 

(45) Scenario: a world with just one elephant and one microbe 

There are just two animals on this goddamn planet! True statement 

(46) Scenario: a world with just one Vampire bat and one baseball bat 

There are just two bats on this goddamn planet! False statement

Exercises

" Are the following examples cases of homophony or polysemy or synonymy (more than one

answer may apply)? Why?

(47) a. ƒέρηµοςN„ = dessert
b. ƒέρηµοςA„ = deserted

(48) a. windows (in: ‘Open windows cause draft.’) 
b. Windows (in: ‘Open Windows, and wait for the system to start up!’)

(49) a. for you too
b. 4U2

(50) a. [weits] (in ‘Tom Waits’, [the singer])
b. [weits] (in ‘Tom waits for you’)

" If two homophonous expressions are translated into another language, the translations 

(51) a. G never
b. G sometimes
c. G always
d. G in principle can 

retain homophony. (More than one answer may apply!) 

" Same question as above for polysemy.

1.3.2. Structural Ambiguity (aka amphiboly)

By convention, there is no ambiguity in formal languages such as algebra. The expression in (52)a

can - by convention - only be interpreted as in (52)b, but not as in (52)c.

(52) a. 9 x 2 + 5 =
b. 9 x 2 + 5 = (9 x 2) + 5 =  23
c. 9 x 2 + 5 … 9 x (2 + 5) = 90
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1.3.2.1. Ambiguity in overt syntax

A surface string can be assigned more than one parse or syntactic representation (amphiboly):

(53) John saw her duck

a. [IP John [VP saw [NP her [N° duck]]]]
b. [IP John [VP saw [VP her [V° duck]]]]

(54) Save soap and waste paper

a. Save [NP soap] and [NP waste paper]
b. [IP Save soap] and [IP waste paper]

(55) AMBIGUITYDEF 

A string α is ambiguous if and only if there is a situation in which α is simultaneously

evaluated as true and as false.

Exercise

Describe the ambiguity of (56) and (57) by using criterion (55). More precisely, for each example,

provide two different situations each of which makes the sentence true in one reading only. Draw

a trees for each interpretation. 

(56) She's the mother of an infant daughter who works twelve hours a day. 

(57) The chicken are ready to eat.

Excursus: Garden path Sentences

So-called garden path sentences elicit especially clear evidence for the existence of syntactic

ambiguity. In garden path constructions, two factors conspire to yield the effect of anomality: First,

only parts of the sentence support two distinct parses. Second, when processing the string, there is

a preference to assign the clause the structure which in the end turns out to be unavailable. Thus,

the listener/reader has to backtrack, resulting in additional processing load:

(58) Because she jogs a mile doesn't seem difficult.

(59) The boy got fat melted.

(60) While Bill hunted the deer ran into the woods.

(61) The horse raced past the barn fell.

(62) The old man the boat.

1.3.2.2. Ambiguity at LF

In sentence (63), the subject and the object position are occupied by two QUANTIFIER PHRASES 

(‘QPs’; some critic and every movie). QPs are formed by combining what semanticists call a

common noun (CN), a category with the (syntactic) label ‘NP’, with a quantifier such as some, no,

every, most, few, less than 6,.... (63) possesses now two logically independent readings, which
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correspond to the two different orders in which the quantifiers some critic and every movie can be

construed, resulting in a so-called QUANTIFIER SCOPE AMBIGUITY:

(63) Some critic has seen every movie

a. ›x[critic(x) v œy[movie(y) ÿ  see (y)(x)]]
“There is an x such that x is a critic x and for every y, 
such that y is a movie, x saw y”

b. œy[movie(x) ÿ  ›x[critic(x) v see (y)(x)]]
“For every y such that y is a movie, there is an x such that x is a critic and x saw y”

Applying the ambiguity test in (55) reveals that there are in fact two different readings associated

with a single surface representation.

(64) Scenario which satisfies (63) in reading (63)b, but not in interpretation (63)a:

    MOVIE WAS_SEEN_BY      CRITIC

Vertigo ±    Siskel, Ebert
  South Park    ±         Siskel 
      Kill Bill ±              Ebert

Crucially, the inverted scope reading (63)b does not entail the surface scope (63)a, it is logically

independent. Thus, both interpretations are called for the representation of sentence (63). 

(65) Question:  Is it possible to construe a scenario in which (63) comes out as true in reading

(63)a only? 

Examples

Some further examples for ambiguity (at LF and/or in syntax):

(66) a. Which problem did everybody solve?
b. She doesn’t eat cheese because it smells.
c. John is looking for a house.
d. They required them to learn only Japanese.
e. All is not right with the American way (Howard Lasnik)
f. What I want to see is that this remains a country where someone can always get rich

(George W. Bush)

(67) Wir schwören nicht die Wahrheit zu sagen

a. We do not swear to say the truth º It is possible that we are telling lies
b. We swear not to say the truth º We are telling lies 

Exercises

The example below are ambiguous. Determine whether the surface interpretation entails the inverted

reading, or vice versa, or none entails the other, by completing the relational diagrams. 

Instruction for diagrams: For any two nodes a and b, connect a and b with an arrow pointing to b

if the first node is related to the second one by the intended relation R, i.e. if <a,b> 0 R.
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(68) Not every boy saw a movie

a. Boys        Movies
! " 
! " 
! " 

b. Boys        Movies
! " 
! " 
! " 

(69) Nobody liked every movie 

a. Boys        Movies
! " 
! " 
! " 

b. Boys        Movies
! " 
! " 
! " 

(70) The boys didn’t see a movie

a. Boys        Movies
! " 
! " 
! " 

b. Boys        Movies
! " 
! " 
! " 

(71) Exactly one boy didn’t go to the movies

a. Boys        Movies
! " 
! " 
! " 

b.  Boys       Movies
! " 
! " 
! " 

(72) Exactly half the boys saw some movie (Bonus)

NEXT: Question I: What is the definition of ‘meaning’? 

º introducing the concept of logical form, illustrated by inference schemes

Question II: How are natural language expressions assigned meanings? 

How do speakers assign  meanings to linguistic utterances?

Question III: How exactly do the processes of assigning meaning in natural

language differ from the ones developed for formal languages

(such as propositional logic or predicate calculus)?
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1.4. LOGICAL FORM AND INFERENCES (L  OBJECTIVE III OF NLS)

Native speakers have intuitions about the correctness of certain inferences. For instance, the

following two types of inferences below are held to be correct:

       Name       Logical Form

(73) If John is sick, he can’t go to school (Modus ponens) A ÿ B
John is sick A
ˆ John can’t go to school ˆ B

(74) If Sam is hungry, he eats (Modus tollens) A ÿ B
Sam does not eat ¬B
ˆ Sam is not hungry ˆ ¬A

Knowing only the truth or falsity of any given premises or conclusions does not enable one to

determine the validity of an inference. In order to understand the validity of an argument, it is also

necessary to grasp the logical form of the statements involved and their relation to each other. The

logical form in this philosophical sense2 can be thought of as the meaning skeleton of a sentence

which is the result of (i) substituting all contentful items for variable symbols that take their place

(A and B in the examples above) and (ii) correctly interpreting the logical relations that hold

between these symbols  in terms of so called logical constants (ÿ, w,v, ¬, among others). Take the

inference in (73). John is sick is a sentence containing a number of contentful items (at least John

and sick). A radical way to get rid of this lexical information is to substitute the whole sentence by

a variable over sentences, say A. Similarly, He can’t go to school can be symbolized as B. The if

part is traditionally (but incorrectly - see below) rendered by material implication (see GAMUT,

p.33). Thus, the NL expression in the first line of the left-hand side of (73) can be translated in the

symbolic representation ‘A ÿ B’, which will for the moment be taken to be its logical form. 

This procedure of formalizing NL into a symbolic logic makes it possible to reveal the

constant parts of meaning of expressions, i.e. those hidden meaning properties of sentences which

do not change even if one exchanges each single lexical item. Modus ponens (that’s the name

traditionally assigned to the scheme in (73)) is for instance valid (= correct) for any particular choice

of true premises for the value of the variables A and B. 

(75) If the sun shines, Mary wins a car. A ÿ B
The sun shines A
ˆ Mary wins a car ˆ B

In order to have a way to signify whether a statement is true or false, we will furthermore

use the symbols ‘T’ for true and ‘F’ for ‘false, and ‘T(A)’  and ‘F(A)’ for ‘A is true’ and ‘A is false’,

2Philosophical use of the term logical form differs substantially from the way is employed in current
linguistics. In philosophy, it denotes a disambiguated representation (usually formalized in terms of some
type of predicate logic). In linguistics, the term logical form (or LF; first suggested in Chomsky 1976 and
May 1977) is used to refer to a syntactic level of representation which connects core syntax to the
s e ma n t i c  c o mp o n e n t  ( f o l l o w i n g  C h o ms ky  1 9 7 6  a n d  M a y  1 9 7 7 ;  s e e
http://kleene.ss.uci.edu/~rmay/LogicalForm.html for some details).
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respectively. On this view, the connective if  or if.... then is treated as material implication, defined

by the truth-table3 below:

(76) p  q        p ÿ  q material implication

1. T T T 
2. T F F  
3. F T T 
4. F F T  

Note that according to the truth table (76), the whole conditional is true whenever the

antecedent is false (see rows 3 and 4; this situation is traditionally referred to as ex falsum

quodlibet/‘[infer] from the false whatever you like’). For some cases, this interpretation of NL

conditionals in terms of material implication seems to work. Assume that in a given situation, there

is a person referred to as Mary, Mary is 1,65m tall, and the sun shines in this situation. Then, (77)

is a true inference according to the truth-table. Assume, alternatively, another situation, which

minimally differs from the first one in that it rains. Again, the conditional can be uttered felicitously

(= successfully, correctly) to describe this situation, as shown by (78). Note that the fact that Mary

is 1,65 in this situation does NOT logically follow from the falseness of ‘the sun shines’. A

conditional which is evaluated as true may also be made up of a false antecedent AND a false

consequence. It is for this reason, the last line of  (78) is not prefixed by the entailment character (ˆ)

which is reserved for logical inferences only.

    Logical Form            Evaluation

(77) If the sun shines, Mary is 1,65m tall A ÿ B T(AÿB)
The sun shines A T(A)
ˆ  Mary is 1,65m tall ˆ B T(A)

(78) If the sun shines, Mary is 1,65m tall A ÿ B T(AÿB)
The sun doesn’t shine ¬A F(A)
Mary is 1,65m tall ˆ B T(A)

Moreover, in the case at hand, this independence of ex falsum quodlibet conditionals on the truth

of the consequence seems intuitively acceptable, because the weather does not have an influence

on Mary’s height. Other cases pose problems, though, which will be briefly taken up below. 

1.4.1. Classic Syllogistic Logic

The first systematic study of inferences and the logical form of sentences is due to Aristotle

(Αναλύτικα πρώτερα - Prior Analytics, part of the Organon; 4th c. BC), who considered a designated

group of inferences, the syllogisms:

(79) Every duck is a bird (Barbara) œx[Ax ÿ Bx] A
Every bird is an animal œx[Bx ÿ Cx] A
ˆ Every duck is an animal œx[Ax ÿ Cx] A

3Truth-tables were first used by Wittgenstein, in his Tractatus logico-philosophicus in 1922.
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(80) No bird is a reptile (Celarent) œx[Ax ÿ ¬Bx] E
All sea gulls are birds œx[Cxÿ Ax] A
ˆNo sea gull is a reptile œx[Cxÿ ¬Bx] E
 (follows from: All sea gulls are not a reptile)

Syllogisms are valid arguments with two premises and one conclusion. In addition, the three

statements contain only three terms4 (in the example above roughly DPs), each of which appears

twice. Consider e.g. (79). Here, the three terms are every duck, a bird and an animal, each of which

occurs two times (although sometime in a slightly different guise: cf. a bird vs. every bird; see

below). The argument in such syllogisms is valid by virtue of the fact that it would not be possible

to assert the premises and to deny the conclusion without contradicting oneself. 

! Examples of an invalid syllogism (the second involves what’s called Goldbach’s Conjecture as

the second premis):

(81) Every duck is a bird œx[Ax ÿ Bx]
(At least) one bird is called Donald ›x[Ax v Bx]

         Every duck is called Donald

(82) At least one number is an even number greater than two ›x[Ax v Bx]
Every even number greater than two is the sum of two prime numbers œx[Bxÿ Cx]
ˆEvery number is the sum of two prime numbers œx[Axÿ Cx]

The conclusion in (82) is invalidated by the existence of numbers such as 3, which cannot be

decomposed into the sum of two primes.

1.4.2. The structure of syllogisms

More precisely, in syllogistic, the subject and the predicate of the conclusion each occur in one of

the premises, together with a third term (the middle) that is found in both premises but not in the

conclusion. Take e.g. the conclusion of (79), which consists of a subject term (lets call it α) and the

predicate term (which will be referred to as β):

(83) Conclusion: [α Every duck] is [β an animal]

In this particular case, the α constituent shows up in the first premise (see (84)), while the β-portion

of the sentence functions as the predicate of the second premise ((85)). Since every premise (by

definition) contains exactly two positions for a term, there are two remaining slots, which are filled

by the middle term γ:

(84) 1st premise: [α Every duck] is [γ a bird]

(85) 2nd premise:[γ Every bird] is [β an animal]

A syllogism argues that because α and γ are related in certain ways to β (the middle) in the premises,

they are related in a certain way to one another in the conclusion. 

4Term is the Latin version of Greek όρος, meaning ‘limit’. Aristotle used the terminus for the subject and
the predicate of a syllogism. Today, term usually refers to the arguments of a predicate.
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1.4.3. Combinatorics I: Figures

Recall that there are all together four positions in the two premises, and there are two terms from

the conclusion (α and β) which have to be distributed into these slots. In principle, this generates

four different combinatorial options, traditionally referred to as figures. 

(86)    1st figure 2nd figure 3rd figure 4th figure

α γ     β   γ
γ β     α   γ
α β     α   β

That is, there are in principle four ways to relate the middle term to α and γ. 

Exercise

Fill in the remaining two figures in (86). 

1.4.4. Combinatorics II: Mode

Next, let us turn to the specific shape of the three terms. On the assumption, which is crucial for

present purposes, that α, β and γ always stand for exactly the same string in a given syllogism, it

must be concluded that they do not represent full DPs, but smaller constituents, which are proper

subparts of DPs. In the example (79), e.g., it is only the bird part which is kept constant, not the

whole DP a bird or every bird. Roughly, these portions seem to correspond to NPs. Thus, the

remaining parts must be specified: the determiners of the NPs. Traditional (so-called categorical)

syllogistic,  the study of these structures, allows for the following four options, thereby reducing

each premise and each conclusion to one of four basic forms (A and B are here variables over -

possibly identical - NPs):

(87) a. Every A is B A (Affirmo)
b. No A is a B E (nEgo)
c. Some A is a B I (affIrmo)

d. Some A is not B O (negO)

Respectively, these forms are known as A, E, I, and O propositions, after the vowels in the Latin

terms affirmo and nego.

How many possible syllogisms are there now? Since syllogisms contain three clauses, and

each clause can take one of four different forms, there are 64 (= 43) different types of syllogisms.

Moreover, given that there are four different figures, the overall number of possible syllogism

increases to 264. Out of these, only 19 are usually considered to be valid (the exact number depends

on the number of syllogisms which are hypothesized to be reducible to more basic syllogisms).

" For interesting interactive exercises and more info on syllogism have a look at 

http://www.phil.gu.se/johan/ollb/Syllog.machine.html

Question: Do the 264 syllogisms, which may vary according to figure and mode, suffice to

account for all possible inferences in NL? If not, what else is required?
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1.5. THEORIES OF MEANING

Different disciplines concentrate on different aspects of meaning, among them ethnology,

sociolinguistics, lexicography, rhetoric, semiotics, pragmatics, neuropsychology (Event Related

Potentials), formal semantics. As for linguistics, studies of meaning have followed one (or more)

of three major traditions, which focus on different aspects of linguistic meaning and which can be

roughly characterized as below:  

’ Non-psychologistic/Referential tradition

Expressions are symbols referring to (possibly abstract) objects (Frege 1892; Tarski

1935; Montague 1973). The study of meaning is the study of relations between objects
and symbols. Semantics is part of mathematics.

± The paradigm to be adopted here!

’ Psychologistic/Mentalistic theories

Expressions refer to concepts  (Fodor 1975; Jackendoff 1983). The study of meaning is
the study of how meanings are mentally represented and how they can be
manipulated. Semantics is part of cognitive psychology.

’ Pragmatic/Social theories

The meaning of expressions is the way in which they are used. (Ordinary language

school, including Austin, Searle and Grice)

1.5.1. Semantic Competence and Knowledge of Meaning

Formal semantics studies the ability to assign meanings to linguistic utterances. According to the

non-psychologistic tradition, initiated by Frege, formal semantics is not concerned with

psychological reality, and semantics can be distinguished from knowledge of semantics (Lewis 1975).

In contrast, the mentalistics, cognitive, or conceptual approaches towards semantics focus on the

way in which meanings are represented in the mind (Fillmore, Langacker, Talmy, Wierzbicka).

Drawing the parallel to syntax, Jackendoff (1996) remarks that on the former view, one would be

left with the odd result that formal semantics studies E(xternalized)-semantics, while formal syntax

studies syntactic competence or I(nternalized)-language (Chomsky 1986):

(88) a. Chomsky (1986)

E-language 
I-language ± Object of study of formal syntax

b. Jackendoff (1996)

E-semantics ± Object of study of formal semantics
I-semantics ± Object of study of Conceptual Semantics

However, it is also possible to combine the non-psychologistic approach with the psychologically

oriented perspective, resulting in a definition of semantics as the study of “mind-internal intuitions

of mind-external relations” (Partee 1998).
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1.5.2. Theories of Meaning I: Ideational Theories

On one of two competing views about the meaning of NL expressions, words denote ideas (or

concepts or thoughts or mental images). For John Locke (1632-1704), one of the main proponents,

ideas are the representations of facts and words are the signs (the names) of ideas. Since ideas are

mind-internal, they cannot be communicated, requiring words to make them public. 

FOUR PROBLEMS:

���� What are the exact semantic values? Mental images are too detailed for the meaning,

concepts are notoriously ill-defined.

���� How does e.g. the idea/concept of ‘bird’ look like? There is too much diversity in order to

define a single picture or concept that fits them all (parrot, flamingo, kiwi, ostrich,...). 

���� Problem of intersubjectivity: How can a mind-internal idea be made public?

���� What do NPs such as unicorn, Pegasus, or Sherlock Holmes, which lack a referent, denote?

Are there ideas for non-existing objects? If yes, there must be an infinite number of such ideas.

Gottfried Wilhelm Leibniz (1646-1716) held a more moderate version of an ideational

theory. Ideas and language are related, but not in a one-to-one fashion. Words can be used without

knowing their content, i.e. the idea they stand for. This cannot be explained if ideas and words are

strictly associate with each other. 

1.5.3. Theories of Meaning II: Referential Theories

In its purest form, the referential theory states that the meaning of an expressions is the (possibly

abstract) object or individual the expression stands for. On this view, the name London denotes e.g.

the capital of England. That is, content words refer to objects and individuals, or groups or

collections thereof. Plato introduced the concept of ‘forms’ for common nouns such as dog, or

abstract nouns such as justice, or exploitation. The pure referential theory runs into a number of

problems, though (for an overview see e.g. Lycan 2000; Taylor 1998; Grayling 1997). 

Following Peirce  (see also Ogden and Richards (1923)), it has become common to employ

the semiotic triangle to describe the relation between linguistics signs (e.g. the word “this dog”),

their denotation (e.g. the animal called Fred), and its intension (the concept ‘dog’). The meaning of

an expression is the relations depicted by the diagram.

(89) Sign

                     Signé (Saussure 1916)
Zeichen (Frege 1892)

6
Referent Intension (Carnap 1937)
Signifié  Signifiant

Gegenstand/Bedeutung (Frege 1892) Begriff/Sinn (Frege 1892)
Extension (Carnap 1937) Concept
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���� While referential theories of meaning work well for names and certain noun phrases (this

dog), they do not capture the meaning of most other linguistic categories such as predicates

(boredom, relatedness), prepositions (be between x and y), quantifiers (the, some, less than two,

only), and connectives (and, or, but). In fact, it is not even clear what sentences should refer to.

(Frege postulated “the True” and “the False” as referents for propositions.)

���� Structuralist subvarieties moreover suffer from the drawback that they merely describe the

relation between the ingredients; they fail to provide a precise definition of meaning.

Ideational and referential theories contrast in that they offer different solutions to the

questions of which objects represent the meaning of words. They do not necessarily differ in the

assumptions they make about what meanings should be assigned to the other basic unit, i.e.

sentences, though.  Even though there is also a variety of approaches towards sentence meanings,

these notes focus on the probably most widely accepted theory only.5 

1.6. TRUTH CONDITIONAL SEMANTICS

Although most people have never heard sentence (90), and although only a few know whether (90)

is true (in fact it is; Gingrich still holds the world record in hand shaking), native speakers of

English have clear intuitions as to the conditions under which (90) is true:

(90) On August 22 1998, Newt Gingrich shook 3,609 hands

More precisely, speakers know that the statement in (91) holds, irrespective where, when and by

whom the sentence under quotes is uttered:

(91) The sentence “On August 22 1998, Newt Gingrich shook 3,609 hands” is true if and
only if Newt Gingrich shook 3,609 hands on August 22 1998.

Following Davidson’s implementation of an idea of Tarski’s, the meaning of a sentence can be

identified with its truth conditions, i.e., the necessary and sufficient conditions for its truth:

(92) To know the meaning of a sentence is to know its truth conditions.

(93) “To understand a sentence, to know what is asserted by it, is the same as to know under what
conditions it would be true. . . . To know the truth condition of a sentence is (in most cases)
much less than to know its truth-value, but it is the necessary starting point for finding out
its truth-value.” (Rudolf Carnap, excerpted from ©Britannica 2002 article on metalogic)

(94) Einen Satz verstehen, heißt, wissen, was der Fall ist, wenn er wahr ist.
‘To understand a proposition means to know what is the case if it is true’

Wittgenstein (1922), Tractatus Logico-Philosophicus, Nr 4.024

5This simplified picture does not do justice to the multiplicity of theories of meaning, among them the
many varieties of deflational, correspondence and coherence theories.
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Semantic theories which equate meaning with truth conditions are also called alethic

(gr.αλέιθια/truth), and fall in the group of so-called correspondence theories of truth. There are

various other ways of thinking about truth, though, among them coherence theories, pragmatic

theories and deflationary theories. For introduction see e.g. Lycan 2000, Grayling 1997, Taylor 1998

and the matching entries in the online Stanford Encyclopedia of Philosophy). 

1.6.1. Object and Meta language

(95) Observation: The words ‘dinosaurs’, ‘writers’ and ‘Sven’ is used in two different

ways in the examples below:

(96) a. Dinosaurs are extinct, they died out a while ago
b. ‘Dinosaurs’ has nine letters
c. One should not use the word ‘dinosaurs’ to refer to elderly artists
d. As soon as they entered the club, they felt like dinosaurs.

(97) ‘Writers’ rhymes with ‘lighers’

(98) a. Sven has a nice name
b. ‘Sven’ is a nice name

In (96)a and (96)d, the word is used as object language, that is it refers to all the species of extinct

animals called dinosaurs. In (96)b and (96)c, the occurrence refers to the string of letters

d^i^n^o^s^a^u^r^s which constitutes the word. This is the meta language use. Tarski observed that

it is essential to distinguish two types of use of language:

Object language: The expressions that one theorizes about (henceforth bold face).

Meta language: The language used to theorize about the object language.

NOTATIONAL CONVENTION: Special typography  (italics, ...) mark meta language.

Generally, theories of meaning relate expressions of object language to an interpretation in a meta

language.

! A linguistically interesting class of meta language uses is represented by metalanguage negation.

(99)a is a consistent statement. If negation were interpreted as the regular object language

connective, (99)a could be decomposed into (99)b and (99)b - two sentences that cannot be true at

the same time:

(99) a. This joke is not old - it is very old. 
b. It is not the case that this joke is old.
c. It is not the case that this joke is very old.

Rather, negation in (99)a contributes to the sentence meaning something like the claim that the

choice of the AP old - a meta language use of the expression old - is not as appropriate as is the use

of the phrase very old.
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Example

Metalanguage is often used in legal definitions. The following section is from the Drivers Handbook

and Examination Manual for Germany, issued by the Military Police:

Traffic laws require users of public roads to conduct themselves so that no person is endangered,
injured, impeded, or unreasonably inconvenienced when the inconvenience could have been avoided
under the given circumstances.
a. “Users of public roads” refers to drivers of motor vehicles, bicyclists, pedestrians, horseback
riders, drivers of animal carts, and owners of domestic animals who allow their animals to stray onto
public roads.
b. “Unavoidable circumstances” are those over which drivers have no immediate control (for
example, unavoidable noise or exhaust fumes produced by heavy traffic).
c. “Avoidable circumstances” are those over which the driver has immediate control (for example,
squealing tires in residential areas, racing the motor, honking the horn, playing loud music).
d. “Endangering” means to place other users of the road in danger by 

(1) Failing to obey traffic signs.
(2) Failing to yield the right-of-way.
(3) Failing to warn approaching traffic that a vehicle is disabled or parked on the

highway...........
(8) Driving when fatigued, ill, or under the influence of alcohol or drugs.

e. “Injure” is to cause physical harm to other users of the road or damage property. Splashing mud
or water on pedestrians is in this category.
f. “Impede” means to fail to adjust driving speed to the flow of traffic or blocking other traffic when
parked.
g. “Inconvenience” is to make more noise than necessary (for example, honking the horn, playing
loud music, driving with a faulty exhaust system, racing the engine, letting the engine idle for more
than 30 seconds

Exercise 

Which of the sentences are false? How can they be turned into true statements? Assume that meta

language expressions are marked graphically, as stated in (98)b (from Heim & Kratzer 1998):

(100) a. Boston is a big city
b. Boston has six letters
c. Boston is the name of a city
d. Boston is the name of Boston 
e. Boston might have been called New York

1.6.2. The Vehicles of Meaning

(101) Hypothesis A: Meanings correspond to physical objects which are directly related to

sentences. Meanings are e.g. reflexes of sound waves or mental states. 

(102) Problem I: Meaning of one and the same sentence may differ, depending on the situation

and the people who use it. 

(103) a. I am cold and freezing
b. They are fantastic
c. Stop!

(104) Problem II: Sentences in different languages may express the same content.
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(105) a. I do not want to read it
b. ∆εν θέλω να το διαβάσω
c. Je ne veux pas le lire

(106) Hypothesis B: The meaning of a sentence is to be located in the idea it is associated with.

(107) Problem III: Ideas are individually internalized constructs, just like pain, hunger or

love. How can they be shared by the speakers of the language community?

How is intersubjectivity ensured?

(108) Hypothesis C: The meaning of a sentence is encoded in an abstract object, 

the proposition.

(109) Solutions to problems I-III 

I. One and the same sentence may be associated with different propositions, depending

on the situation in which the sentence is uttered (for formalization see 1.6.3. below).

II. Different sentences may express the same proposition (in one and the same language

or in different languages).

III. Propositions have ontologically autonomous status, they are abstract objects. Hence,

they can be internalized by different individuals. 

(110) Some Consequences

! Propositions, and not sentences, are true or false.

! Not sentences, but propositions enter into logical relation such as inferences (i.e.
propositions entail or contradict one another).

! Propositions are abstract (Platonic) objects, which are intersubjectively verifiable. 

! On the view propagated above, the universe is inflated in that it is full of invisible, non-
detectable platonic creatures (this view leads to Metaphysical Realism).

1.6.3. Davidsonian Semantics

The next goal consists in spelling out Davidson’s program of a Tarski semantics for natural

language (which also follows very closely Frege’s ideas, even though Davidson seem not to have

been aware of Frege’s work at the time he developed his theory). As the discussion proceeds, some

new concepts will be introduced, most of which aid in rendering the intuitions behind the Tarski-

Davidsonian semantics more clearly. To begin with, it is useful to define a number of conventions. 

NOTATIONAL CONVENTION: For any α, ƒα„ is the denotation or semantic value of α.

The interpretation function ƒ„ maps expressions of the object language (in this case English) to their

meanings, it assigns these expression a semantic value.
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NOTATIONAL CONVENTION: Read ‘iff’ as ‘if and only if’

(111) Assumption:  For any sentence φ, the truth conditions for φ are either 1 (T) or 0 (F).

" The core of Tarski’s account is contained in his Convention (T): 

(112) Tarski’s Convention (T)

For any sentence φ, φ is true in a language L if and only if p 

The t-conditions for a classic example accordingly are as follows:

(113) ‘Snow is white’ is true iff snow is white

Tarski’s actual goal was  to give a formally correct definition of what it means to be ‘true’,

i.e. the truth predicate. So he was not primarily concerned with the question of what sentences (or

propositions or formulas) mean. Moreover, he explicitly renounced the possibility of applying his

method, which was designed for formal languages, to NL, because he thought that NL were to

irregular and inconsistent. Davidson’s and other’s work in the 1960ies showed otherwise.

On Davidson’s re-interpretation of Condition (T), the t-conditions of NL-sentences can be

collected by a simple procedure: Take the object language sentence, and specify that it is true,

relative to a situation, just in case the meta language version of the sentence (which one uses to

describe the world) is true in that situation. Reference to situations is motivated by the need to 

(114)       
Truth Conditions for Sentences (Davidson)

For any sentence φ and situation s: ƒφ„ =   1 in s iff φ is true in s.
                  (left-hand side φ is object language, the rest is meta language)

According to Convention (T), every sentence has truth conditions which define the requirements

that a sentence must satisfy for being evaluated as true. That is, a theory of meaning is concerned

with the meaning of the object language expressions in a given language, and uses meta language

to describe these meanings.

Example

Applying the general format of Davidson’s version of Convention T leads to biconditionals (‘iff’,

symbol ‘:’) in which the left-hand side of the biconditional is occupied by a object language

formula, while the right hand side spells out the t-conditions in meta language. In many cases, object

and meta language coincide, as e.g. whenever people discuss properties of English by using English.

The contrast between object and metalanguage becomes more obvious once the language under

study is not English, but another language such as French:
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(115) For any s, ƒLa neige est blanche„ = 1  in s  iff snow is white in s
 ÆÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÈÉÉÉÉÉÉÉÉÉÉÉÇ                ÆÉÉÉÉÉÉÈÉÉÉÉÉÉÉÇ
             object language version of φ (not ‘ƒ’ and ‘„’!)     metalanguage description of φ

NB: Everything except for object language is metalanguage, which includes (quasi)
formal language that is used to describe the relation between the two occurrences of φ

! Note that we e.g. know now the conditions under which (90) - repeated below - is true, but

nothing has been said yet about the actual factual content of the statement. Is (90) true in the actual

world, or not? That is, a method for computing the actual truth value of sentence is still missing.

(90) For any s, ƒOn August 22 1998, Newt Gingrich shook 3,609 hands„ =  1 in s iff 
On August 22 1998, Newt Gingrich shook 3,609 hands in s

NB: The situation s is here already specified as far as the time parameter goes. This
indicates that s can in some cases also be extracted from the object language content
of the sentence.

The solution is rather simple, though (it is an instance of what will be called Function Application

below):

(116) Computing Truth Values: Truth values are the result of applying truth-conditions to

situations/worlds.

Example:

(117) 1. ƒOn August 22 1998, Newt Gingrich shook 3,609 hands„ =  1 iff 
On August 22 1998, Newt Gingrich shook 3,609 hands

2. In situation so (the actual world we live in), it is a fact that on August 22 1998, Newt
Gingrich shook 3,609 hands.
In situation s1, which corresponds to the fictitious world of the Simpsons, such an event
did not happen. 

3. Evaluated at so, the proposition is therefore true, while it is false at s1 .

How sentences express meanings, 

and how the latter relate to the world

Truth-conditions on p determine meaning of φ

< :

φ denotes proposition p applying t-conditions to situation σ

< yields truth value

A utters sentence φ :

<     φ relates to σ, and thereby

Speaker A (plus some thought/idea/intention)  to reality/world
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1.6.4. Convention T and the Liar Paradox

Tarski hypothesized that a language must not contain its own truth predicate; otherwise, anomalies

generating paradoxes such as in (118) (Liar Paradox, discussed by Eubulides of Miletus, 4th c. BC,

member of the Megarian school) cannot be avoided:

(118) a. This sentence I am uttering right now is not true.
b. Does a man who says that he is now lying, speak truly?

For Tarski, the Liar Paradox emerged because the predicate ‘is false’ (or, equivalently, ‘is not true’)

is treated as being part of the object language. But the truth predicate can only be used as a

metalanguage, in order to express that something in the object language is true. On this view, the

paradoxical sentence This sentence is false is no more a sentence of object language, than Snow is

blanche is a sentence of English. In both cases, the predicate is not part of the object language, and

the resulting sentences are therefore ill-formed:6

(119) *This sentence is false

(120) *Snow  is blanche
ÆÉÉÉÉÉÉÉÉÉÉÉÉÉÈÉÉÉÉÉÉÉÉÉÇ ÆÉÉÈÉÇ
    Object language        Not part of object language 

! Does Tarski’s restriction that no language contains its own truth predicate also extend to the

following, earlier version of the Liar Paradox? If yes, show why:

(121) All Cretans are liars (Epimenides of Crete, 7th c. BC; Ψευδόµενος)

! What about the following example. Can it be captured by the method described by Tarski?

(122) The next sentence is false. The last sentence is true.

1.7. COMPOSITIONALITY/FREGE’S PRINCIPLE

What makes the procedure of assigning meta language meanings to object language expressions in

(114) - repeated as (123) - a non-trivial statement? (123) raises at least three puzzles:

(123) For any situation s and any sentence φ: 
ƒφ„ = 1 in s iff φ in s

(124) Puzzle I: ! In general: Why are the t-conditions of a sentence not substitutable salva

veritate (i.e. if they preserve truth)? 

" Illustration: Why does Grass is green not mean Snow is white, e.g?

6Tarski’s solution represents only one of many to the Liar Paradox; see e.g. John Barwise & John
Etchemendy. 1992. The Liar.
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(125) a. Grass is green is true in s if and only if grass is green in s
b. Grass is green in the same situations in which snow is white
c. ˆ Grass is green is true in s if and only if snow is white in s

Analysis: ! In general: The t-conditions have to define the intension, not just an extension.

" Illstration: It does not hold for any situation, that Grass is green means the same

as Snow is white. In worlds without chlorophyll, e.g., the two sets of

situations are not identical.

(126) a. For any situation s and any φ, ƒφ„ = 1 in s iff φ in s
b. ƒφ„ = {s| φ in s}

       ÆÈÇ      
     {s| ....s....}  reads as: ‘set of all situations, such that φ holds in s’

NB: The issue of intensionality will be ignored in what follows.

(127) Puzzle II: ! In general: Why can the t-conditions of a sentence not be expanded to

include tautologies which are unrelated to the sentence?

" Illustration: Why does Grass is green e.g. not mean grass is green and 12/7

= 1.7143? Then, from (129)a one should be able to infer (129)b.

More generally, (129)a should entail that John knows all true

statements of mathematics and logic - not a very plausible result.

(128) a. Grass is green is true is s if and only if grass is green in s
b. Grass is green in the same situations in which grass is green and 12/7 = 1.7143
c. ˆ Grass is green is true in s if and only if grass is green in s and 12/7 = 1.7143 in s

(129) a. John knows/believes that grass is green 
b. ¬ˆ John knows/believes that grass is green and that 12/7 = 1.7143

Analysis: The content of the t-conditions must be systematically connected to the content of the

object language sentence. This can be achieved by translating sentences in a step-by-step

fashion, starting with the meaning of the words, and proceeding to the meaning of more

complex parts (for details see below). Spurious (= superfluous) conditions in the t-

conditions can then be excluded, because they do not correspond to linguistic material

in the object language.

º NB: This solution connects Puzzle II to the group of puzzles below, which are more

linguistically - as opposed to philosophically - motivated.

(130) Puzzle III: Any language contains a potentially infinite number of sentences, and any

competent speaker can interpret these sentences according to (114) (salve

restrictions on memory and computational complexity). Thus, speakers would

have to acquire a potentially infinite number of correspondence rules between

sentences and their truth conditions (which can be thought of as the situations

in which the sentence is true). 
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(131) Puzzle IV: ! In general: The interpretation procedure (114) does not assign meanings to

expressions that do not denote truth-values.

" Illustration: Names (‘Mr. President!’) or predicates (‘She knows the

difference between multifarious and manifold’) have meaning

also in isolation.

(132) Puzzle V: ! In general: Many linguistic phenomena indicate that semantics has to be

able to ‘look into’ parts of the clause. 

" Illustration: NPI-licencing and the contrast between (20)c and (21)c, repeated

below. Both clauses denote propositions. The contrast cannot be

due to contrast in force (universal vs. existential), otherwise,

(21)b should be well-formed.

(20)c Everybody who has ever heard about it likes it.

(21)c *Somebody who has ever heard about it likes it.

(21)b *Everybody has ever heard about it.

Thus, natural language semantics needs to provide an account of how the meaning of

sentences is derived from the meaning of their parts and which semantic contribution the parts of

a sentence make to the denotation of the whole clause. The requirements for a theory of meaning

in natural language are much the same as the ones which hold for algebra, which offers algorithms

for the computation of operations on numbers. To know an algebra means to know how a finite set

of operations over an alphabet (numbers) is interpreted. This includes e.g. the knowledge that the

string 2 x (3+9) is interpreted as ‘add 3 to 9 and multiply the result by 2':

(133)   Syntax                 Semantics

         x        24
3 3
2        + 2        12

3  3
      3         9 3      9

Similarly, to know semantics means to know the operations which allow to compute the meaning 

of sentences from their recursive part-whole structure provided by syntax:

(134)   Syntax                 Semantics

       IP          ?
3 3

        John        VP         John         ?
3  3

    met     Mary           ?     Mary
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Principle of Compositionality (Frege)

The meaning of an expression is a function of the meanings of the
parts of the expression and of their mode of composition.

Thus, the (modified) Convention T in (114) needs to be supplied by recursive principles which

derive the meaning of the sentence from the meaning of its parts.

It is important to observe that compositionality in natural language semantics is not

considered as an axiom, or an a priory truth, but that the principle serves as a heuristics, i.e. a

guideline in the search for empirical insights and generalizations. Compositionality in this sense can

for instance be used as a metric for evaluating different theories in that a theory which observes

compositionality is preferred over a theory with equal expressive which does not do so. 

Exercise

Which type of evidence would invalidate the assumption that meaning is computed

compositionally?

The comparison with algebra may also serve to highlight another aspect of formal

languages: Consider a natural language expression and its formalization:

(135) a. Natural language: three and nine 
b. Formal language: 3 + 9 
c. Interpretation: 12

(135)a is the output of ‘syntax’ in the linguistic sense, while (135)b can be thought of as its

formalization which represents the output of semantics. But the formalized language is subject to

syntactic restrictions of its own. For instance, in standard algebras, 3+9 is a well-formed expression,

while 39+ is not. Thus, the + operator has a syntax as well as an interpretation (semantics).

In sum, the translation procedure looks as follows: in course of the semantic computation,

natural language strings are translated into a formal language. This formal language has - just as

natural language - a syntax and a semantics, which serves as the basis for interpretation of the string

by semantic rules.

How to choose principles of composition?

Question: What form should the principles of composition take? One per construction?

We know that there is no situation whatsoever which renders the clauses in (136) true, they are

contradictions:

(136) a. The black dog slept and the black dog didn’t sleep
b. The black dog slept and the dog which is black didn’t sleep
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(136)a demonstrates that speakers are capable of assigning meanings to strings in a systematic way:

adding didn’t in the right place results in a negative statement. (136)b reveals another curious

property of language: in fixing the meaning of the subject, (136)a and (136)b employ two different

strategies (attributive AP vs. relative clause) which nonetheless yield identical meanings. That is,

the same thought can be expressed in more than one way (reverse of LF-ambiguity, where one string

is assigned two readings). It seems plausible that in (136)b,  attributive adjectives (black in black

dog) can be assigned the same meaning as relative clauses (which is black). Then, both

constructions can be analyzed by a single composition rule (‚), instead of having to employ two

different principles. Thus, the theory schematized in (137) is to be preferred over the one in (138).

(137) a. Syntax                 Semantics

A ‚ B ±     S
B   ‚ C ±     S

b. Meaning of A equals meaning of C
A combines with B in the same way as B combines with C

(138) a.   Syntax                 Semantics

A ‚ B ±     S
B    � C ±     S

b. A and C differ in meaning
A combines with B by ‚ and B combines with C by � (and ‚ …�)

Generally, a theory should be construed with the smallest number of ingredients possible. 
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2. MATH & LOGIC BACKGROUND

2.1. SETS AND RELATIONS

(1) Set: An unordered collection of elements (Cantor, Bolzano)
“Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten,

wohlunterschiedenen Objekten M unserer Anschauung oder unseres Denkens (welche

die Elemente von M genannt werden) zu einem Ganzen”

a. (Extensional) definition by listing 
Example: A = {1,2,3}

b. (Intensional) definition by (Set) abstraction 

Example: B = {n0N°| 6>n>0})

(2) Relations between sets

a. Subset 

X fY if all members of X are members of Y 
Example: A f B

b. Intersection

X 1 Y= {x|x0X and x0Y} 
Example: A 1 B = {1,2,3}

c. Set Union 

X c Y= {x|x0X or x0Y} 
Example: A c B = {1,2,3,4,5}

(3) Ordered pair: Ordered collection of two elements 
Example: <1,2> 

(4) A two-place relation is a set of ordered pairs 
Example: {<1,2>,<2,3>,<1,3>})

(5) A relation f is a function iff for any x, 
if f(x) = y and f(x) = z then y = z

(alternatively: iff for any x, y, z, if <x,y> 0f and <x,z>0f, then y = z)

(6) A function f maps members of the set of the domain D to members of the range R (“f is
from D to R”) 

a. Domain (‘Definitionsbereich’)
For any function f, the domain of f is {x|there is some y such that f(x) = y}

(alternatively: {x| there is some y such that <x,y> 0f})

b. Range/codomain (‘Wertebereich’)
For any function f, the range/codomain of f is {x|there is some y such that f(y) = x}

(alternatively: {x| there is some y such that <y,x> 0f})

Notational convention: The domain and range for which a function is defined is expressed
by the following notation: ‘f: D ÿ R’ (or ‘RD’)

(7) Function application (application of a function to its argument)
For any function f and any x in the domain of f,

f(x) :=  the y, such that <x, y> 0f (“f applies to x”, “f maps x to y” )
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(8) Conversion

 a0{x | P(x)} iff P(a)

(9) Cartesian product

DxD is the set of ordered pairs of elements of D
Example: D =  {a,b,c}

DxD =  {<a,b>,<b,c>,<a,c>,<b,a>,<c,b>,<c,a>}

(10) Powerset (‘Potenzmenge’)
V(D) is the set of all subsets of D

Example: D = {a,b}
V(D) =  {i, {a}, {b}, {a, b}}

Some formal Properties of Relations

(11) a. R is symmetric iff for every x and y: if <x,y> 0R then <y,x> 0R
b. R is asymmetric iff for every x and y: if <x,y> 0R then <y,x> ó R
c. R is antisymmetric iff for every x and y: if <x,y> 0R and <y,x>0R then x=y

Example: {<1,1> } : antisymmetric, but no asymmetric (since reflexive)

(12) a. R is reflexive iff for every x, <x,x> 0R
b. R is irreflexive iff there is no x such <x,x> 0R

Example: {<a,a>,<a,b>} : non-reflexive but not irreflexive

(13) R is transitive iff for each x,y and z: if <x,y> 0R and  <y,z> 0R then <x,z> 0R 

Examples

! Relational nouns denote relations:

(14) a. Homer is the neighbor of Flanders.
b. Neighbor-of relation N = {<Homer, Flanders>, <Flanders, Homer>}

N = {<x,y> | x is the neighbor of y}

! Symmetry properties of predicates can explain certain inferences. In all situations in which (15)a

is true, (15)b is also true and vice versa. 

(15) ƒSome Swedes are left-handed singers„ =
= ƒSome left-handed singers are Swedes„

The same does not hold for the pair under (16): it could very well be that all Swedes sing and are

left-handed, while there being French with the same qualities:

(16) ƒAll Swedes are left-handed singers„ …
… ƒAll left-handed singers are Swedes„

Native speaker know that certain inferences are licit or illicit because they know the meaning of 

determiners such as some and all, and the way they combine with the rest of the sentence. More
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generally, they know that all utterances of the form “some φ are ψ” are logically equivalent to 

“some ψ are φ”, because some is a symmetric determiner, while utterances of the form “all φ are ψ”

are not logically equivalent to  “all ψ are φ” (of course, the latter can mean the same in certain

situations; equivalence of meaning is said to be contingent in these cases).

Exercise

(i) What are the set-theoretic properties of the following relations (are they reflexive,
transitive, etc....)? 

(ii) Which of them are functions? 
(iii) Add a relation which is symmetric, reflexive and transitive.

(17) a. mother_of 
b. employer_of 
c. older_than
d. located_between_Prag_and_Brunn
e. meet

2.2. PROPOSITIONAL CALCULUS

2.2.1. Truth tables

The propositional calculus (PC; also called statement logic) is a formal language, which can be used

for representing certain aspects of natural language (NL), such as inferences which do not involve

quantifiers (every, some,....). Just like NL, the formal language PC contains operations which make

it possible to generate an infinite set of new sentences out of a (possibly) finite set of basic

expressions. And just like NL, statement logic achieves this by using recursive rules.

Turning to the details, PC consists of two parts: 

(i) a syntax which defines the set of well-formed formulas (or wff’s), and 

(ii) a semantic component which provides the interpretation of these formulas. 

Again, this is the same what we find in the analysis of NL.7

The special property of statement logic, which sets it apart from other languages - and

therefore also from NL - is that it only contains statements: There are no nouns, predicates,

adjectives or any other categories. One usually expresses this by saying that the only syntactic

category of statement logic is that of a formula - or, to be precise, a well-formed formula (wff).

Wff’s are recursively defined by the following syntactic rules:

7In logic, a calculus is a formal system that derives the logical entailments and all wffs of a language by
rules that only specify the syntax of the expressions, without reference to the meaning, the semantics, of
the symbols.
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(18) Syntax: a recursive definition of the set of all well-formed formulas

a. Basic clause: every atomic (i.e. non-composite) statement is a well-formed formula

b. Recursion clause: 

i. If φ is a wff, then so is ¬φ (negation, not φ)

ii. If φ and ψ are wff’s, then so are:

[φ v ψ] (conjunction, φ and ψ)
[φ w ψ] (disjunction, φ or ψ)
[φ ÿ ψ] (material implication, also called conditional, if φ then ψ)
[φ : ψ] (material equivalence, or biconditional, φ if and only if ψ)

These rules yield for instance wff’s like ‘[[¬p ÿ m] w ¬q] ÿ ¬[¬k w l]’. In order to understand the

meaning of these strings, the syntax has to be  supplied with a semantic component. The semantics

is standardly provided in terms of truth-tables (t-tables; the one below combines 5 t-tables into one)

(19) Semantics:

p  q ¬p p w q p v q p ÿ q p : q

T T F T T T T
L T F T F F F

F T T T F T F
F F F F T T

Read as follows: Pick one of the four rows (e.g. the second one L). Then, the value for p is as given in the
first column (in our case T), and the value for q is as in the second one of the same row (F).
Moreover, the value of a complex formula (such as e.g. p v q) can be found in the same row, below
the formula which contains the desired connective (in the case at hand v). (Note on the side that for
negation, only two values are relevant, because ¬ only combines with a single statement.)

On how to decompose and interpret complex formulas see e.g. GAMUT, p. 35ff

Exercise Inferences

(20) If the subject has not understood the instructions or has not finished reading the sentence,
then he has pressed the wrong button or has failed to answer. If he has failed to answer, then
the timer hasn’t stopped. The subject has pressed the right button, and the timer has stopped.
Therefore, the subject understood the instructions.

(from Rajesh Bhatt, University of Texas 2003, handout on inferences)

2.2.2. Differences between Connectives In PC and NL

Boolean and Non-Boolean ‘and’

! Sentential connective:

(21) Sam is driving and he is listening to the radio

! VP-connective:

(22) Sam is driving and listening to the radio
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! NP/DP connective (Non-Boolean and):

(23) Sam and Mary are driving 

(24) Sam is driving a car and a bike

! Non-commutativity: temporal/causal ordering

(25) Sally drank the medicine and  she got sick

(26) Sally got sick and she drank the medicine

Inclusive and Exclusive ‘or’ 

! Inclusive or (the one from the t-table):

(27) Sam is driving or he is listening to the radio (or he’s doing both).

! Exclusive or (like either-or):

(28) Sally is in Athens or she is in Megara
(= If Sally is in Athens, she is not in Megara: [Stoic logician Chryssipus])

Exercise

Define the meaning of exclusive or by reducing its meaning to that of a combination of the the other

connectives.

Excursus: problems for the interpretation of conditionals

In some cases, the ex falso quodlibet clause for material implication (i.e. a formula pÿq is true

whenever p is false) yields the correct result for the interpretation of NL conditionals:

(29) Intuitively, F(p) and T(q) result in true conditional:

If a number can be divided by 10, it is even

In (29), a false antecedent can intuitively be combined with a true consequent, yielding a conditional

which is evaluated as true, because there are numbers which cannot be divided by 10 (e.g. 2), which

are still even. Similarly for (30), which does not demand that one actively avoids an “A” (von Fintel

2000) - getting an “A” would also lead to a reward.

(30) F(p) and T(q) result in true conditional:

If you get a “B” on your next history test, I will give you $5.

But in other cases, this combination of truth values does not seem to reflect native speaker’s

intuitions about the meaning of the if...(then) construction:

(31) F(p) and T(q) yield false conditional:
Every citizen shall be granted the right to vote, if he/she has reached the age of 18
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Assuming that (31) describes the law, the conditional is interpreted to be  false if the antecedent is

false. Otherwise, the law would leave it open whether citizens under the age of 18 have the right to

vote or not. The intended interpretation is (p ÿ q) v (¬p ÿ ¬q), which is equivalent to p :q. In a

similar vein, statements like (32) are judged to be false, even though they should come out as true

irrespective of how the world is structured (given that the contradiction 2 + 2 = 5 is always false):

(32) F(p) and T(q) yield false conditional:
If 2 + 2 = 5, then 2 + 2 = 4.

Problems such as these (some of which have been known since antiquity) motivated a revision of

the idea that the NL conditional is to be translated as material implication (see in particular work

by Angelika Kratzer, David Lewis and Kai von Fintel). These revisions also attempt to capture

another observation, i.e. the generalization that conditionals seem odd if the antecedent and

consequent are not in some way causally connected (Frege also mentions cases like these):

(33) #If the sun rises in the east, Paris is in France

2.2.3. Tautologies, contradictions and contingencies

The three statements below differ in quality: 

(34) Sally is sick and Bill is sick

(35) Sallyk is sick or shek isn’t sick

(36) Sallyk is sick and shek isn’t sick

While the truth of (34) depends on the situation and the way the world is at the temporal slice

referred to as ‘today’, native speakers know that (35) cannot but be true, irrespective of the actual

facts in a given situation. (34) is called a contingent statement, because its truth is dependent (=

contingent) upon language external factors. (35) is a tautology (representing the so-called law of the

excluded middle, because it states that every statement is either true, or false, but nothing

inbetween). (36) can finally never be understood as a true statement (at least given that one

interprets the two occurrences of sick to mean exactly the same in both conjuncts), and exemplifies

a contradiction.

Whether a formula is a contingency, a tautology or a contradiction can be easily determined

from looking at the t-table:

(37)      Contingency            Tautology  Contradiction

p  q p v q p w  ¬p p v ¬p
T T T T T TT F T F F
T F T F F TT F T F F
F T F F T F T T F F T
F F F F F F T T F F T

        (= (34)) (= (35))         (= (36))
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A compound statement is contingent if  there is at least one T as well as at least one F beneath its

connective in every row of its truth table. It is a tautology if there is a T beneath its connective in

every row of its truth table, and a contradiction if all rows are filled by F.

(38) Some tautologies:

a. p ÿ p
b. (p v q) ÿ p
c. p ÿ (p ÿ q) (Modus ponens)
d. ¬p ÿ (p ÿ q) (ex falso quodlibet)

2.2.4. Logical Equivalence

Moreover, the t-tables also allow one to see which two formulas are equivalent (symbolized by ]).

Two statements are logically equivalent if they have the same truth values regardless of the truth

values assigned to their atomic components. For instance, it turns out that ‘p ÿ q’ is equivalent to

‘¬p w q’, and that ‘¬¬p’ is equivalent to ‘p’:

Note: Logical equivalence is not the same as material equivalence (symbol :) - even though the two

concepts are systematically related one to the other. Logical equivalence is a property that two

formulas can have, while material equivalence is a connective, which is part of a formula. More on

that below (meta vs. object language).

(39) p  q p ÿ q ¬p w  q p ¬ ¬ p
T T T T T F T T T T F T
T F T F F F F F
F T F T T T T T F F T F
F F F T F T T F

These findings correspond to the intuitive judgements one has about pairs such as follows:

(40) a. If you are sick, you can stay at home
b. You are not sick, or you stay at home

(41) a. She is happy 
b. It is not the case that she is not happy

(42) Some equivalences

a. p ] p
b. p v q ] q v p (Commutativity)
c. ¬(p w q) ] ¬p v ¬q (De Morgan Law)
d. ¬(p v q) ] ¬p w ¬q (De Morgan Law)
e. p ÿ q ] ¬p w q (Conditional Law)
f. p ÿ q ] ¬p ÿ ¬q (Contraposition)
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Example of a Deductive Proof 

Since equivalent statements have the same t-values, they can be substituted for one another. This

makes it possible to derive formulas by means of a deductive proof. For instance, contraposition (i.e.

(42)f) can be deductively proved from commutativity and (42)e. Crucially, in such a proof, each line

is logically equivalent with the preceding one: 

(43) To be proved: p ÿ q ] ¬p ÿ ¬q

1. p ÿ q
2. p ÿ q ] ¬p w q by (42)e
3. ¬p w q ] q w ¬p by commutativity
4. q w ¬p ] ¬q ÿ ¬p by (42)e
5. ¬q ÿ ¬p ] p ÿ q since line 1 is equivalent with line 4

Exercise

" Determine whether the pairs are logically equivalent or not by using a t-table:

(44) a. ¬¬p w q b. ¬q ÿ p

(45) a. q w (q ÿ p) b. (q w q) ÿ p

(46) a. ¬(k v ¬(l ÿk)) b. ¬(¬l w ¬k)

(47) a. r ÿ ¬(p : ¬r) b. ¬r  w p

2.2.5. Compositionality and NL

Compositionality is one of the fundamental assumptions about the way in which languages - they

may be formal or natural - are interpreted. The reason why compositionality is so important is a

different one for formal and for natural languages, though. For formal languages, compositionality

is a defining property, it falls out from the way in which the logic is set up. In statement logic, e.g.

the t-tables are given in such a wa, that the meaning of a complex formula cannot be anything else

but a function of the meaning of the parts. Thus, the meaning of the complete formula always

depends systematically on the meaning of the parts. In NL, on the other hands, things are quite

different, because the study of NL is empirically oriented (the theory must conform with given data)

and the question whether NL is compositional or nor therefore constitutes an empirical issue.

Following Frege, most researchers assume compositionality as a guiding principle (a heuristics),

but there are numerous constructions for which it is not clear yet whether they can be given a

compositional analysis.

For further discussion of issues of compositionality see e.g. Kai von Fintels course:

http://semantics-online.org/semantics/
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2.3. QUANTIFICATIONAL PREDICATE LOGIC

2.3.1. Universal Statements

! Sentences in (48)a and (48)b are synonymous - they mean the same in the sense that every

situation which makes (48)a true also makes (48)b true, and v.v. 

(48) a. If something2 is a bird, then         it2                lays eggs
           9this something A 

b. Every birds lays eggs

! Two components are relevant for capturing the meaning of both sentences:

(i) A logical connective

(ii) Variables

"  First, both involve a conditional statement, which can be translated in terms of material

implication. This is obvious for the conditional, which is translated as in (49).  

(49) a. Natural Language:          If A   then B
b. Translation into Statement Logic: A    ÿ B

But also sentences with a universal quantifier (all or every), schematized in (50), can be paraphrased

by a statement involving material implication:

(50) a.  All          A (are)         B
b. For all things: if this thing is an A, then this thing is also B

 ÆÉÉÉÉÉÉÈÉÉÉÉÉÉÉÇ  ÆÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÈÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÇ
   QUANTIFIER  A Condition within the SCOPE of the quanifier

c. For all things:          A(this thing) ÿ  B(this thing)

"  Second, the quantifier introduces objects, and states for how many of these objects the condition

inside its scope has to hold. In our case, every demands that all objects satisfy the condition.

Crucially, this requirement is not assessed for all objects at the same time, but is computed in a step-

by-step fashion by checking for each object, whether this object satsifies the condition or not. This

procedure can be compared to inspection of eggs for intergrity, where one picks the eggs one by one,

determining whether the actual egg one is checking at the very moment is intact or not. Once one

egg has been evaluated, one moves on, picking another one, repeating the procedure, and so on.

Similarly, the quantifier can be thought of as giving an instruction to pick each object under

consideration, evaluating whether this object satisfies the condition in its scope, and then to move

on to the next object. It is obvious that one can only evaluate the egg that one just holding in one’s

hand. Similarly, the quantifier can only evaluate the object it is considering at the moment. In order

not to mix up the eggs/objects, (50) used the expressions ‘this object’, which serves the purpose of

keeping control of which object is currently evaluates. The expression ‘this object’ keeps constant

the particular object temporarily picked, and it does so till the computation reaches the end of the
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scope of the quantifier. Since‘this object’ may refer to many different actual objects (many eggs),

‘this object’ is said to serve as a variable. 

In the example at hand, which involves the quantifier every, the whole sentence is evaluated

as true if all possible ways of picking an object from the available ones leads to a true statement. 

! To illustrate how formulas are evaluated in specific situations, consider (51)a and its

interpretation in the three scenarios below.  

(51) a. Every bullet is black
b. For every thing: if this thing is a bullet, then this thing is also a black

(52) Scenario I:

a. �1 �1 �1 TRUE
b. �2 �2 �2 TRUE

º Sentence is true in Scenario I

(53) Scenario II:

a. �1 �1 �1 TRUE
b. �2 �2 �2 TRUE
c. �3 �3 �3 FALSE

º Sentence is false in Scenario II

(54) Scenario III:

a. �1 �1 �1 TRUE
b. �2 �2 �2 TRUE
c. �3 �3 �3 TRUE

º Sentence is true in Scenario III

In order not to be forced to always use a cumbersome natural language paraphrase referring to ‘the

thing’ under consideration, the expression is substituted by a (shorter) variable, usually x,y,z,... for

individuals. Moreover, for the expression ‘for all’, we use the symbol œ. This yields the following

translation intro quantified predicate logic for (51): 

(55) œx[bullet(x) ÿ black(x)]

2.3.2. Existential Statements

In a similar way, it is possible to translate sentences with an existential quantifier such as one, at

least one, some, or a(n). Here, we use the symbold ‘›’, the so-called existential quantifier, and the

connective ‘v’ instead of ‘ÿ’:

(56) a. Some/A/One bullet is black
b. ›y[buller(y) v black(y)]

(57) Question: Can (56) be translated by the use of ‘ÿ’? If not, why?

The following examples illustrate how to translate slightly more complex sentences into predicate

logic, highlighting common sources for mistakes. 
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2.3.3. Quantifiers, coordination and Scope

! Potential source of confusion: If a universal quantifier has scope over a disjunction (a

coordination involving or), the correct bracketing is important. In some cases, as in (58), adding

brackets at the wrong place (see (59)b) yields an incorrect result. (59)b would e.g. be true if the

world only consisted of white objects, while (58) makes a restricted claim about wine only:

(58) Every wine is red or white 

(59) a. œx[wine(x) ÿ [red(x) w white(x)]]

b. œx[[wine(x) ÿ red(x)] w white(x)] =
œx[white(x)  w [wine(x) ÿ red(x)]]
“Everything is white, or - if it is wine - red”

! Similarly, it is important to pay attention whenever a conjunction (coordination with and) is

combined with an indefinite, i.e. NPs introduced by a(n) or other NPs which are standardly

translated as universal quantifiers (some NP, one NP, at least one NP), as shown by (60) and (61):

(60) a. A man came and left
b. ›x[man(x) v came(x) v left(x)]

(61) a. A man came and a man left
b. ›x[man(x) v came(x)]End of scope of ›  v ›x[man(x) v left(x)]End of scope of ›

(60)a denotes the proposition that a man came and the same man who came left. This ‘sameness’

is expressed by using one quantifier (›) which binds a variable in the argument position of came

as well as in the argument position of left. This ensures that the sentence is true whenever ‘there is

an x, such that x is a man and x came and x left’. In (61)a, on the other hand, the individuals who

arrived and left can - but don’t have to - be represented by two different men. The fact that there are

potentially two different men involved in the two actions is captured by the formula in (61)b, which

uses two existential quantifiers. Crucially, the scope of the first quantifier extends only to the end

of the first closing bracket (as indicated by the subscript). Since quantifiers only bind variables

which are inside their scope, ‘›x’ only binds all occurrences of x up to the first occurrence of ‘]’.

Given that the scope of the first ‘›x’ ends before the conjunction (‘v’), it also follows that the

second occurrence of ›x is interpreted as if the first one would not exist. For this reason, one can

write ‘›x’, using the same variable ‘x’ again. Note however that it would equally be possible (and

maybe less confusing) to use another variable, say ‘z’. (62) and (61)b are accordingly equivalent.

(62) ›x[man(x) v came(x)]End of scope of ›  v ›z[man(z) v left(z)]End of scope of ›

"  Further illustration: In (63), the quantifier cannot bind the higher occurence of the variable z (in

‘sleep(z)’), because it does not take scope over that variable:  

(63) sleep(z) v œz[dog(z) ÿ smell(z)]
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" In (64), the variable x which boy predicates over is only bound by the lower operator, which is

closer than the higher existential, because x is not free at the level designated by K

(64) ›x K[›x[boy(x) v read(x)] v sleep(x)] = lower, local › binds first two x’s

= ›x[boy(x) v read(x)] v ›x[sleep(x)] =/
=/ ›x[boy(x) v read(x) v sleep(x)]

2.3.4. Interdefinability: Equivalences with › and œ

If a formula involves one type of quantifier (› or œ) and negation, it can be translated into another,

equivalent formula which uses the other type of quantifier (i.e. œ instead of ›) and locates the

negation in a different, yet systematically related position.

(65) Observation: The following two statements are equivalent:

(66) a. No animal bears fruit
¬›x[animal(x) v bears_fruit(x)]

b. All animals (are such that they) don’t bear fruit
œx[animal(x) ÿ ¬bears_fruit(x)]

More generally, the following equivalence holds:

(67) A formula in which negation has scope over an existential quantifier (no NP) is equivalent
to a formula with a universal quantifier in which negation takes scope below the connective: 

¬››››x[A(x) v B(x)] ] œœœœx[A(x) ÿ ¬B(x)]

(68) Observation: The following two statements are equivalent:

(69) a. Not every plant bears fruit
¬œx[plant(x) ÿ bears_fruit(x)]

b. At least one plant does not bear fruit
›x[plant(x) v ¬bears_fruit(x)]

More generally, the following equivalence holds (it is the same as in (67), the only difference being

that universal has been replaced by existential and v.v.)

(70) A formula in which negation has scope over a universal quantifier (not every NP) is
equivalent to a formula with an existential quantifier in which negation takes scope below
the connective: 

¬œœœœx[A(x) ÿ B(x)] ] ››››x[A(x) v ¬B(x)]
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2.3.5. Brief summary predicate logic

(71) Quantifier  Paraphrase Example

a. ›x “there is an x such that” ›x[planet(x) v blue(x)]
“There is an x such that x is a planet and x is blue”

b. œx “for every x, if” œx[planet(x) ÿ round(x)]
“For every x, if x is a planet then x is round”

c. ¬›x “there is no x such that” ¬›x[planet(x) v square(x)]
“There is no x such that x is a planet and x is square”

d. ¬œx “for not every x, if” ¬œx[planet(x) ÿ blue(x)]
“For not every x, if x is a planet then x is blue”

! How to formulate equivalences between formulas involving › and œ, respectively:

(i) change quantifier (from › to œ and from œ to ›, marked [) and

(ii) change position of negation (¬, marked by •)

(72)  Equivalence Example

a. ¬›x[A(x) v B(x)] ] œx[A(x) v ¬B(x)] ¬›x[planet(x) v square(x)] ]
   •[      [           • ] œx[planet(x) ÿ ¬square(x)]

b. ¬œx[A(x) ÿ B(x)] ] ›x[A(x) v ¬B(x)] ¬œx[planet(x) ÿ blue(x)] ]
               •[      [           • ] ›x[planet(x) v ¬blue(x)]

Exercises

! Translate the following unambiguous sentences into predicate logic. Use upper case letters for

predicates and lower case letters for arguments (names, variables). 

(73) All girls arrived early
(74) He invited each friend
(75) Nobody called Fred
(76) Sally bought something interesting
(77) We gave Bill every cent we had (NB: give is a three-place predicate!)

(78) You owe them nothing

! Translate the following ambiguous sentences into predicate logic. Since they are two-way

ambiguous, you’ll need two different translations for each sentence: 

(79) A girl climbed every tree
(80) They didn’t see one movie
(81) Everybody didn’t like Sam
(82) Every critic liked all the paintings
(83) One player didn’t win



WiSe 2005/06 42

2.3.6. Application: Entailment/Monotonicity & Inferences in NLS

One of the many applications of quantificational predicate logic in NL analysis pertains to semantic

impact a particular choice of quantifier has on the meaning of the rest of the sentence. Studies of

these properties make it e.g. possible to formulate systematic correlations between purely linguistic

phenomena such as NPI licensing and inference patterns. 

Semantics is concerned with meaning relations, not meanings themselves. This property is

clearly foregrounded in the calculation of inferences, which can be reduced to syntactic schemata

such as the syllologisms of classical (Aristotelian and scholastic) logic. One prominent inference

rule is Existence Generalization:

(84) Existence Generalization (EG)

a. Wood floates ÿ Something floats
b. Schema:  NP VP ÿ ›xVP

But EG does not hold for all contexts. Its validity crucially depends on the kind of argumens the

predicate is combined with:

(85) Nothing floats =//=> Something floats

Whether EG holds or not can be read off an independent properties of the meanings of the parts of

the sentence (NP and VP). In particular, the validity of EG is related to monotonicity or entailment

properties of the NP and the VP. 

! Another prominent semantic property which can (at least partially) be explained in terms of

entailment is the behavior of Negative Polarity Items (NPIs - examples repeated from above):

(86) a. Sam hasn’t ever heard about it
b. Nobody has ever heard about it.
c. Everybody who has ever heard about it likes it
d. Many men/at most two dozen people have ever heard about it

(87) a. *Sam has ever heard about it
b. *Everybody has ever heard about it.
c. *Somebody who has ever heard about it likes it
d. *Few men/at least two dozen people have ever heard about it

2.3.6.1. Upward Entailment

Functions can be categorized according to their entailment properties. Some functions are upward

entailing (or monotone increasing): 

(88) A function f is upward entailing iff for any X, Y in the domain of f, 
if X f Y then f(X) f f(Y)
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" For instance, the set of individuals which arrived yesterday morning is subset of individuals who

arrived yesterday:

(89) a. ƒarrived yesterday morning„ = X
ƒarrived yesterday„ = Y

b. ƒarrived yesterday morning„  f X f Y
ƒarrived yesterday„ 

" all and some are upward entailing (let f be all boys or some boys):

(90) a. All/some boys arrived yesterday
b. All/some boys arrived yesterday morning [

2.3.6.2. Downward Entailment

(91) A function f is downward entailing iff for any X, Y in the domain of f, 
if X f Y then f(Y) f f(X)

" Nobody is e.g. a downward entailing (or monotone decreasing; \) function:

(92) ƒarrived yesterday morning„ = X
ƒarrived yesterday„ = Y

(93) a. Nobody arrived yesterday \
b. Nobody arrived yesterday morning

(94) ƒNobody arrived yesterday„  f Y f X
ƒnobody arrived yesterday morning„

" few men is a monotone decreasing function:

(95) a. Few men arrived yesterday \
b. Few men arrived yesterday morning

(96) ƒfew men arrived yesterday„ f
ƒfew men arrived yesterday morning„

" at most two dozen people creates downward entailing contexts: 

(97) a. At most two dozen people arrived yesterday \
b. At most two dozen people arrived yesterday morning

(98) ƒat most two dozen people arrived yesterday„  f
ƒat most two dozen people arrived yesterday morning„

(99) Ladusaw’s Generalization

Only downward entailing contexts license Negative Polarity Items (NPI): 

(100) a. Sam hasn’t ever heard about it
b. Nobody has ever heard about it
c. Few people have ever heard about it
d. At most two dozen people have ever heard about it
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(101) a. *Sam has ever heard about it
b. *Everybody has ever heard about it
c. *Many people have ever heard about it
d. *At least two dozen people have ever heard about it

(102)  Question: Does Ladusaw’s generalization extend to the following examples?

(103) a. Everybody who has ever read it likes it
b. Have you ever read it?

(104) a. Everybody who has read it likes it
b. Everybody who has read it in school likes it

(105) a. Have you read it?
b. Have you read it in school?  

Exercise

In (106) some movie has to take scope over negation, while a movie doesn’t have to do so. (i)

Provide a scenario which can be described by (106)a, but not by (106)b. (ii) Why is there this

imbalance?

(106) a. John didn’t see some movie.
b. John didn’t see a movie.

2.3.7. Formalization of Quantificational Predicate Logic

Quantificational predicate logic, just like predicate calculus, is a formal language. Formal languages

consist of (i) a vocabulary or lexicon, (ii) a syntax, and (iii) a semantics. 

(107) Vocabulary/Lexicon:

a. Terms: Individual constants: sally, john,...
Individual variables: x, y, z, ...

b. Predicates: play, sleep, hit, eat, give,...

c. Logical connectives: v Conjunction (“and”)
w Disjunction (“or”; from Latin vel)
¬ Negation (“not”; also ~)
÷ Material Implication (“if ... then”)
: Biconditional (iff  “if and only if”)

d. Quantifiers: ›, œ

e. Brackets: [, ]
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(108) Semantics: 

a. If P is an n-place relation, and t1,.... ti are terms, then P(t1, ....ti) is a formula

b. If φ and ψ are formulas, then 
i. ƒ¬φ„ = 1 iff ƒφ„ = 0
ii. ƒφ v ψ„ = 1 iff ƒφ„ = ƒψ„ = 1
iii. ƒφ w ψ„ = 1 iff ƒφ„ = 1 or ƒψ„ = 1
iv. ƒφ ÿ ψ„ = 1 iff ƒφ„ = 0 or ƒψ„ = 1
v. ƒφ : ψ„ = 1 iff ƒφ„ = ƒψ„ 

c. i. ƒ›xφ„ = 1 iff substituting x in φ by some a which is an x yields 1
ii. ƒœxφ„ = 1 iff substituting x in φ by any a which is an x yields 1

NB: The simplified version of the semantics provided above is included only for complementes
sake. The actual semantics, in particular that of › and œ is somewhat more complex and involves
what is called temporal variable assignments. For an introduction see e.g. GAMUT I, p. 87.

Some web resources on Logic (for updates see also course webpage) 

"  Excellent logic webpage with good interactive exercises, starts from scratch:

http://people.hofstra.edu/faculty/Stefan_Waner/RealWorld/logic/logic1.html

"  How to read logical notation:

http://www.philosophy.ed.ac.uk/study_html/vade_mecum/sections/section3/3-1.htm

"  For those with some background: http://www.rbjones.com/rbjpub/logic/

"  Glossary of first order logic: http://www.rbjones.com/rbjpub/logic/log004.htm

NEXT: ! Implementing a compositional semantics of a fragment of English

! Determining the semantic composition rules

! Extending formal tool kit (λ-calculus, modified variable assignment)

3. INTRANSITIVE CONSTRUCTIONS (Sections below follow Heim & Kratzer 1998)

Goal: Compositional derivation of the denotation of (1) (= its truth-conditions) from the meaning

of its parts.

(1) Bart smokes.
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Fragment E1

A. Denotations

α is a possible denotation of ƒα„ iff α is either an element of (i), (ii) or the set in (iii):
(i) D: set of individuals
(ii) {0,1}: set of truth values
(iii) Functions from D to {0,1}

B. Lexicon: Semantic translation rules for terminals:

ƒJeff„ = Jeff
ƒBart„ = Bart
ƒsmokes„ = f: D ÿ {0,1}, such that for any a0D, f(a) = 1 iff a smokes
ƒsleeps„ = f: D ÿ {0,1}, s.t. for any a0D, f(a) = 1 iff a sleeps

C. Semantic translation rules for non-terminals:

S1. Sentence Rule:  If α has the form  IP, then ƒα„ = ƒγ„(ƒβ„)
1     (Function Application)

  β    γ 

S2. Non-branching nodes: If α has the formXn, where n0{°,’,P}, then ƒα„ = ƒβ„
 |

β

3.1.  FUNCTION APPLICATION

Consider the fine-grained structure of (1), and the isomorph (= same_structure) examples in (3): 

(2) ƒ[IP [NP [N° Bart]] [VP [V° smokes]]]„ = 1 iff Bart smokes

(3) a. ƒ[IP [NP [N° Joe] [VP [V° arrived]]]„ = 1 iff Joe arrived
b. ƒ[IP [NP [N° Sam] [VP [V° slept]]]„ = 1 iff Sam slept

Whatever constituent is substituted for the subject NP or the VP, the principle of composition

remains the same: 

(4) Corollary: For any sentence of the shape subject^predicate, it holds that

(i) it can be syntactically decomposed into a subject and a predicate and 

(ii) it can be semantically interpreted in such a way that the syntactic subject

is the object of the function denoted by the predicate.

! Note that the syntactic subject serves as a semantic object of the function/predicates!
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Sample Derivation: 

(5) 1. ƒ[IP [NP [N° Bart]] [VP [V° smokes]]]„ = ƒ[VP [V° smokes]]„(ƒ [NP [N° Bart]]„) S1

2. ƒ[VP [V° smokes]]„ = ƒ[V° smokes]„ = ƒsmokes„ 2 x S2

3. ƒ [NP [N° Bart]]„ = ƒ[N° Bart]„ = ƒBart„ 2 x S2

4. ƒ[IP [NP [N° Bart]] [VP [V° smokes]]]„ = ƒsmokes„(ƒBart„) from 1. by substitution

5. ƒsmokes„ =  f: D ÿ {0,1} s.t. for any a0D, Lexicon

—f(a) = 1 iff a smokes    ā
6. ƒBart„ = Bart Lexicon

from 4., by lexical insertion

7. ƒsmokes„(ƒBart„) =  f: D ÿ {0,1} s.t. for any a0D, 

—f(a) = 1 iff a smokes    ā (Bart)

Function application: f applies to ‘Bart’

8.  f: D ÿ {0,1} s.t. for any a0D,

—f(a) = 1 iff a smokes            ā (Bart) = f(Bart) = 1 iff Bart smokes

from 8. by substitution

9. ƒ[IP [NP [N° Bart]] [VP [V° smokes]]]„ = 1 iff Bart smokes
QED

Step 8, which depicts function application, is the central one in the computation. In what

follows, the procedure will be spelled out in more detail. 

Reduction: stepwise substitution (‘rewriting’) of an expression α by an expression β according to

some set of rewriting rules. In the example below, rewriting results in evaluation of parts of the

expression:

(6) (3+7) x (8/2 - 1) = 10 x (4 - 1) = 
= 10 x 3 =
= 30

Function application: leads to a reduction of the arity of the relation (i.e. the number of arguments

it takes). Given that the operation is defined for ‘any a...’ of a suitable type, and given that the terms

‘2’  and ‘Bart’ are suitable a’s (they are members of ù and D, respectively, the variable x can be

instantiated by these terms. Once the function is applied to one of its arguments, it returns as an

output the value on the right-hand side of the equation: 

(7) a.  f: ù ÿ ù s.t. for any a 0ù

—f(x) = x2       ā   (2)     ¸ 22 (= 4)

b.  f: D ÿ D s.t. for any a 0D

—f(x) = 1 iff x smokesā   (Bart) ¸ 1 iff Bart smokes

       ÆÉÈÇ   ÆÉÉÉÉÉÉÈÉÉÉÉÇ      ÆÉÉÈÉÇ          ÆÉÉÉÉÉÉÉÉÉÉÈÉÉÉÉÉÉÉÉÉÉÇ
       Function      Value of function    Argument  FA     Result of Function Application
   plus Variable 
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! The result of Function Application can then be substituted in the derivation, yielding the

equivalence in step 9. More precisely, the substituions are justified in the following way: 

Function Application reduces the part inside the larger box (8)b to the part inside the box

in (8)c. Furthermore, since the sentence denotation is equivalent to the boxed part of (8)b (by (8)a),

and the boxed part of (8)b is equivalent to the boxed part in (8)c, it follows that the sentence

denotation is equivalent to the boxed part in (8)d. It is exactly equivalence which underlies the

crucial step in the derivation, expressed by step 9.

(8) a. ƒ[IP [NP [N° Bart]] [VP [V° smokes]]]„ = ƒsmokes„(ƒBart„)

b. ƒsmokes„(ƒBart„) =   
 f: D ÿ {0,1} s.t. for any a0D, 

—f(a) =        ā (Bart)
1 iff a smokes

„ „
Function Application

„ „
c. ƒsmokes„(ƒBart„) =  1 iff Bart smokes

d. ƒ[IP [NP [N° Bart]] [VP [V° smokes]]]„ =   (= Step 9)1 iff Bart smokes

3.2. MODEL THEORY

Constant symbols: somewhat idealized, names like Jeff and Bart denote the same individual in all

situations: they are rigid designators.  But definite descriptions such as the president may not be

treated in the same way, as the interpretation function returns different individuals (or the concept

thereof), depending on which president one refers to (of a company, of a club, of the USA,...)

(9) a. ƒBart„ = Bart
b. ƒthe_president1„ = George W. Bush

ƒthe_president2„ = Sally Smith (the president of GM)
.....

Moreover, what about lexically ambiguous expression such as e.g. [katse], which means ‘sit!’ in

Greek, but ‘cat’ in German? By definition, a function maps an object from its domain to one and

only one object within its range. It follows that the interpretation function ƒA„ cannot map [katse] to

its appropriate meanings in both languages. That is, one member of the pair of homophones would

end up without an interpretation, counter to the intuitions of native speakers of Greek and German,

respectively.

! The standard solution consists in interpreting expressions relative to a model, which assigns

meanings to natural language expressions. Sentences and their components are mapped on to the

elements of a model M by an interpretation function I (from Weiss & d’Mello 1997):
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(10) A Model for a Language L is an ordered pair <A,I>, where A is a set (the universe) and I is
an interpretation function whose domain is the set of all constants, relations and function
symbols of L such that 

(i) If c is a constant symbol, then I(c) 0 A
(ii) If F is a function symbol, then I(F) is a function on A
(iii) If R is an m-place relation symbol, then I(R) is an m-place relation on A

More generally, models makes it possible to study the properties of  formal systems without

being forced to consider all possible extensions of every single symbol.

Example

The real numbers, the ordering relation (FOLLOW) and the arithmetic operations of multiplication

(MULTIPLY) and addition can be conceived of as a model. A fragment might look as follows:

(11) a. M = <A, I>
A = set of real numbers

b. I(FOLLOW) = <
I(MULTIPLY)   = C

(12) a. For every number, there is a number which FOLLOWS it
b. nine MULTIPLIED with nine

! On this view, expressions in different languages are interpreted differently because they are part

of different models. Returning to the original puzzle of homophony, a simple model theoretic

reconstruction yields the following:

(13) a. Model M-Greek = <A-Greek, I-Greek>
b. A-Greek = {[katse], gata, skillos, alepu, potitki, skiouros, ...}
c. I-Greek(katse) = ‘sit’

(14) a. Model M-Germ = <A-Germ, I-Germ>
b. A-Greek = {sitz, [katse], hund, fuchs, maus, eichhörnchen, ...}
c. I-Germ(katse) = ‘cat’

! In formal semantics, interpretation relative to a model is usually indicated by superscripting the

model (M) to the denotation brackets:

(15) ƒΦ„M = is the function which yields the interpretation of Φ relative to M

(16) a. ƒkatse„M-Greek  =  I-Greek (katse) = ‘sit’
b. ƒkatse„M-Germ =  I-Germ (katse) = ‘cat’

NOTATIONAL CONVENTION: Unless required, superscripts will be suppressed.

Resume

! The meaning of a sentence is defined by its truth-conditions.

! NL semantics is computed compositionally (this is a heuristics, not a fact!)

! Semantics operates on syntactic trees.

! FA derives the meaning of branching nodes from the meaning of its daughters.
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3.3. EXTENSIONS AND EVALUATION

The fragment E1 provides an algorithm to assign truth conditions to simple intransitive sentences

of English. However, it is not know yet whether the sentences are true or false in a specific scenario.

For instance, if Bart and Jeff are the only individuals in a world, and if in that world Jeff smokes

and Bart sleeps, we intuitively know that sentence (2) comes out as false. In order to arrive at this

result, it is necessary to consider the extension of the predicates in an actual scenario, and not just

the extensions of their lexical entries as was done above. Extensions are the denotations of

expressions in an actual situation or world.

Above, predicates were taken to denote functions. Moreover, functions are a special kind

of relations, which can be defined as a set of ordered pairs. One way to describe the extensions of

the predicates in the scenario above consists in listing the ordered pairs as a set or in a table:

(17) EXTENSIONS IN SCENARIO SC1:

ƒsmoke„ = {<Bart, 0>, <Jeff, 1>} = Set notation
a l

= ! Bart ÿ 0 ! Function notation (table)
z Jeff ÿ 1 m

ƒsleep„ = {<Bart, 1>, <Jeff, 1>} =

a l
= ! Bart ÿ 1 !

z Jeff ÿ 1 m

Then, the denotation of sentence (2) in scenario SC1 can be given as below:

(18) 1. ƒ[IP [NP [N° Bart]] [VP [V° smokes]]]„ = ƒ[VP [V° smokes]]„(ƒ [NP [N° Bart]]„) S1

2. ƒ[VP [V° smokes]]„ = ƒ[V° smokes]„ = ƒsmokes„ 2 x S2

3. ƒ [NP [N° Bart]]„ = ƒ[N° Bart]„ = ƒBart„ 2 x S2

4. ƒ[IP [NP [N° Bart]] [VP [V° smokes]]]„ = ƒsmokes„(ƒBart„) from 1. by substitution

5. ƒsmokes„ =   Bart ÿ 0 Extension in SC1

   — Jeff  ÿ 1ā   
6. ƒBart„ = Bart Extension in SC1

7. ƒsmokes„(ƒBart„) =   Bart ÿ 0 from 4. by substitution

— Jeff  ÿ 1ā  (Bart) = 0

In (18), the denotation of the predicate is not its lexical entry, but its extension in a scenario, and

(2) can now be evaluated since (2) is paired with a truth value, and no longer with its truth-

conditions: Applying the function ƒsmoke„ to ƒBart„ yields 0, and the sentence correctly comes out

as false in the scenario. Functions such as in (17) which range over truth values are also called

characteristic functions, because they characterize whether an element of the domain has a certain

property or not (see below).
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Bottom-up computation

Above, (2) was proved in a top-down fashion, such that the computation started with the denotation

of the whole clause and decomposed the clause in a step-by-step fashion. But it is equally possible

to prove (2) from bottom-up, both strategies yield the same results:

(2) ƒ[IP [NP [N° Bart]] [VP [V° smokes]]]„ = 1 iff Bart smokes

(19) 1. ƒBart„ = Bart  Lexicon

2. ƒsmokes„ =  f: D ÿ {0,1} s.t. for any a0D, Lexicon

—f(a) = 1 iff a smokes        ā
3. ƒBart„ = ƒ[N° Bart]„ = ƒ [NP [N° Bart]]„ 2 x S2

4. ƒsmokes„ = ƒ[V° smokes]„ = ƒ[VP [V° smokes]]„ 2 x S2

5. ƒ[IP [NP [N° Bart]] [VP [V° smokes]]]„ = ƒ[VP [V° smokes]]„(ƒ [NP [N° Bart]]„) S1

6. ƒ[IP [NP [N° Bart]] [VP [V° smokes]]]„ = ƒsmokes„(ƒBart„) from 5. by substitution

from 4. by lexical insertion

7. ƒsmokes„(ƒBart„) =  f: D ÿ {0,1} s.t. for any a0D, 

—f(a) = 1 iff a smokes       ā (Bart)

applying f to ‘Bart’

8.  f: D ÿ {0,1} s.t. for any a0D,

—f(a) = 1 iff a smokes           ā (Bart) = f(Bart) = 1 iff Bart smokes

9. ƒ[IP [NP [N° Bart]] [VP [V° smokes]]]„ = 1 iff Bart smokes  from 8. by substitution

Application: Connectives 

With this much in the background, one can design lexical entries and translation rules for the

connectives such as and and or which accounts for their occurrence in contexts such as:

(20) a. Bart or Jeff smoke
b. Jeff smokes or sleeps

Even though the analysis is rather awkward - and, as it will turn, ultimately untenable - let us

consider an explicit version of the semantics of disjunction as an exercise in formulating rules and

computing them:
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Fragment E2

Lexicon

ƒor1„ = f: Dÿ(Dÿ((Dÿ{0,1})ÿ{0,1})) s. t. for any a,b 0 D and g: Dÿ{0,1},
f(a)(b)(g) = 1 iff g(a) = 1 or g(b) = 1

ƒor2„ = f: (Dÿ{0,1})ÿ ((Dÿ{0,1}) ÿ (D ÿ{0,1})) s. t. for any a 0 D and 
g,h: D ÿ {0,1}, 

f(g)(h)(a) = 1 iff g(a) = 1 or h(a) = 1

Semantic translation rules

D1. NP-Disjunction: If α has the form      IP,  then ƒα„ = ƒor1„(ƒβ„)(ƒγ„)(ƒδ„)
    2

    NP   δ
                8
            β   or    γ

D2. VP-Disjunction: If α has the form       IP,  then ƒα„ = ƒor2„(ƒβ„)(ƒγ„)(ƒδ„)
    2
   δ     VP

               8 
              β   or   γ

Sample Computation: (20)a

(21) 1. ƒ[IP Bart or Jeff smoke„„„„ = ƒor1„(ƒ[NP Bart]„)(ƒ[NP Jeff]„)(ƒ[VP smoke]„) D1

2. ƒ[NP Bart]„ = ƒBart„ S2

3. ƒ[NP Jeff]„ = ƒJeff„ S2

4. ƒ[VP smoke]„ = ƒsmoke„

5. ƒ[IP Bart or Jeff smoke„„„„ = ƒor1„(ƒBart]„)(ƒJeff„)(ƒsmoke„) substitution

6. ƒor1„(ƒBart]„)(ƒJeff„)(ƒsmoke„)  = Lexicon

=  f: Dÿ(Dÿ((Dÿ{0,1})ÿ{0,1})) s.t. for any a,b0D 

—and g: Dÿ{0,1},f(a)(b)(g) = 1 iff g(a) = 1 or g(b) = 1  ā (Bart)(Jeff)(smoke)

7.  f: Dÿ(Dÿ((Dÿ{0,1})ÿ{0,1})) s.t. for any a,b0D 

—and g: Dÿ{0,1},f(a)(b)(g) = 1 iff g(a) = 1 or g(b) = 1 ā (Bart)(Jeff)(smoke) = 1

     iff Bart smokes or Jeff smokes 

Sample Computation: (20)b
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(22) D2

1. ƒ[IP Jeff smokes or sleeps]„„„„ = ƒor2„(ƒ[VP smoke]„)(ƒ[VP sleep]„)(ƒ[NP Jeff]„)

2. ƒ[NP Jeff]„ = ƒJeff„ S2

3. ƒ[VP smoke]„ = ƒsmoke„ S2

4. ƒ[VP sleep]„ = ƒsleep„ S2

5. ƒ[IP Jeff smoke or sleep]„„„„ = ƒor2„(ƒsmoke„)(ƒsleep„)(ƒJeff„) substitution

6. ƒor2„ (ƒsmoke„)(ƒsleep„)(ƒJeff]„) = Lexicon

=   f: (Dÿ{0,1})ÿ ((Dÿ{0,1}) ÿ (D ÿ{0,1})) s.t.
   for any a 0 D and g,h: Dÿ {0,1}, —f(g)(h)(a) = 1 iff g(a) = 1 or h(a) = 1   ā (Jeff)(smoke)(sleep)

7.      f: (Dÿ{0,1})ÿ ((Dÿ{0,1}) ÿ (D ÿ{0,1})) s.t.
   for any a 0 D and g,h: Dÿ {0,1}, — f(g)(h)(a) = 1 iff g(a) = 1 or h(a) = 1    ā (Jeff)(smoke)(sleep) = 1

          iff Jeff smokes or Jeff sleeps 

(23) Question: Do rules D1 and D2 allow for the derivation of (24)? If not, why?

(24) Bart or Jeff smoke or sleep

Exercises:

Compute the meaning of the following sentences, and provide the necessary lexical entries:

(25) Sally and Sam sleep

(26) Sam does not sleep

(27) Mary is not tired
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4. TWO-PLACE PREDICATES 

Goal: Compositionally derive the truth conditional interpretation of transitive clause (1):

(1) Jeff hit Bart

4.1. CHARACTERISTIC FUNCTIONS

So far, intransitive predicates were taken to denote functions from individuals to truth values. But

it is also possible to reconstruct predicates as sets of individuals, as is e.g. done in standard predicate

logic:

(2) a. ƒsmoke„ = {x|x smokes}
b. ƒsleep„ = {x|x sleeps}

On this conception, predicates denote the set of individuals of which the predicate is true. Sets are

related to (one place) functions in a systematic way by CHARACTERISTIC FUNCTIONS: 

(3) For any set A, f is the characteristic function of A iff 
for any x0A, f(x) = 1 and for any x ó A, f(x) = 0

Thus, the two definitions for the one-place predicate smoke below are synonymous, because the

denotation assigned to smoke in (4)a is the characteristic function of the set on the right side of the

equation sign in (4)b:

(4) a. ƒsmoke„ = f: D ÿ {0,1} s.t. for any a0De, f(x) = 1 iff x smokes
b. ƒsmoke„ = {x|smokes(x) = 1}

For the same reason, the truth values of an expression can be computed either in terms of functions

or sets:

(5) a. ƒBart smokes„ = 1 iff   f: D ÿ {0,1}

— for any a0D, f(a) = 1 iff a smokes ā (Bart) = 1

b. ƒBart smokes„ = 1 iff ƒBart„ 0 ƒsmoke„

As it will turn out, it is useful in certain domains to be able to switch from function talk to set talk

and v.v. More important for present purposes, characteristic functions serve as a first step in solving

the complications posed by transitive predicates for compositionality.

4.2. THE PROBLEM

In classical predicate logic, the extension of a two-place predicate could look as follows:

(6) ƒhit„ = {<Jeff, Bart>, <Jeff, Jeff>}

A pair of individuls satisfies the relation expressed by hit if and only if the pair is a member of the

denotation in (6). FOr instance, the sentence Jeff hit Bart is evaluated as true in this scenario

because <Jeff, Bart> 0{<Jeff, Bart>, <Jeff, Jeff>}. In contrast, the converse sentence Bart hit Jeff
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is false, since <Bart, Jeff> ó{<Jeff, Bart>, <Jeff, Jeff>}.

In (6), the verb denotation is given as a set, while the present system has used function

notation so far. Given the equivalence between functions and sets via the concept of the

characteristic function, (6) can be rendered by the equivalent formula in (7) 

(7) ƒhit„ = {<<Jeff, Bart>, 1>, <<Jeff, Jeff>, 1>, <<Bart, Jeff>, 0>, <<Bart, Bart>, 0>,}

It becomes now also possible to define a lexical entry for hit, which models hit as the characteristic

function of the set in (6). More precisely, the 2-place relation below applies to a pair of individuals

and returns 1 just in case the pair is a member of the set denoted by hit.

(8) ƒhit„ = The relation R: D x D ÿ{0,1}, such that for any a,b 0D,
R(<a,b>) = 1 iff a hit b

There is a problem, though: The principle of compositionality requires that semantic

computations proceed in a local, step-by-step fashion by employing Function application. The

problem that arises with transitive verbs is that in order to make use of the truth conditional

definitions of hit above, hit would have to apply to the object NP and the subject NP

simultaneously. This is so because hit is not construed as a function, but as a relation which applies

to ordered pairs. This challenge for compositionality can be circumvented by breaking up the

relation into the component functions.

4.3. SCHÖNFINKELIZATION

N-place relations can be systematically reduced to 1-place functions by SCHÖNFINKELIZATION

(Schönfinkel 1924; also referred to as ‘Currying’ in the literature). There are two ways to schönfinkel a two-

place relation: left-to-right, and right-to-left: 

(9) Jeff hit Bart

(10) Left-to-Right Schönfinkelization (‘Subject First’)
a l a a ll

<Bart, Bart> ÿ 0
<Bart, Jeff> ÿ 0
<Jeff, Bart> ÿ 1
<Jeff, Jeff> ÿ 1

! ! ! !Bart ÿ 0 !!
! ! !

Bart ÿ
zJeff ÿ 0 m!

ƒhit„ =
! !  = ! a l!
! ! !Jeff ÿ !Bart ÿ 1 !!
z m z zJeff ÿ 1 mm

         ÆÈÇ          ÆÈÇ
      Subject          Object

(11) Right-to-Left Schönfinkelization (‘Object First’)
a l a a ll

<Bart, Bart> ÿ 0
<Bart, Jeff> ÿ 0
<Jeff, Bart> ÿ 1
<Jeff, Jeff> ÿ 1

! ! ! !Bart ÿ 0 !!
! ! !

Bart ÿ
zJeff ÿ 1 m!

ƒhit„ =
! !  = ! a l!
! ! !Jeff ÿ !Bart ÿ 0 !!
z m z zJeff ÿ 1 mm

         ÆÈÇ          ÆÈÇ
      Object  Subject
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On this conception, transitive verbs are functions from individuals to functions from individuals to

truth values. Employing the right-to-left version, it becomes possible to decompose the relation

denoted by hit into two functions such that the denotation of the verb applies to the denotation of

object first, and the VP applies to the denotation of the subject later. This type of analysis observes

compositionality, as it computes the meaning of verb and the object prior the meaning of the VP and

the NP. Thus, the Fregean denotation of the two-place predicate hit is the right-to-left

Schönfinkelization of the characteristic function of the relation denoted by hit.

In order to compute transitive sentences, one furthermore needs an additional rule for the

interpretation of the VP, and a suitable lexical entry for the transitive predicate. The VP rule

employs once again function application:
  

S3. V’ Rule: If α has the form     V’,  then ƒα„ = ƒβ„(ƒγ„)
                   1

                    β    γ

(12) Lexicon

ƒhit„ = f: D ÿ (Dÿ{0,1}) such that for any a,b 0D, 
f(a)(b) = 1 iff b hit a

Sample Computation

(13) 1. ƒ[IP [NP Jeff] [VP hit [NP Bart]]]„ = ƒ[VP hit [NP Bart]]]„ (ƒ[NP Jeff]„) S1

2. ƒ[VP hit [NP Bart]]„ = ƒ[V’ hit [NP Bart]]„ S2

3. ƒ[V’ hit [NP Bart]]„ = ƒ[V° hit]„ (ƒ[NP Bart]„) S3

4. ƒ[IP [NP Jeff] [VP hit [NP Bart]]]„ = ƒ[V° hit]„ (ƒ[NP Bart]„) (ƒ[NP Jeff]„) =
= ƒhit„(Bart)(Jeff) = Substitution, S2 and Lexicon

5. =   f: D ÿ (Dÿ{0,1}) s.t. for any a,b 0D, V°-denotation applies to object

— f(a)(b) = 1 iff b hit a          ā (Bart)(Jeff) =

6. =   g: Dÿ{0,1} s.t. for any b 0D, VP-denotation applies to subject

— g(b) = 1 iff b hit Bart            ā(Jeff) =

7. =  g: Dÿ{0,1} s.t. g(Bart)(Jeff) = 1 iff Jeff hit Bart

Note that unlike in the relational notation, the Schönfinkelized version of hit applies to the object

first, and then to the subject. Thus, strict compositionality is observed. 

Passive

The example above used the right-to-left Schönfinkelization of hit. The alternative left-to-right-

Schönfinkelization (10)a yields the passive version of hit, in which the by-phrase is joined with the

verb first, followed by the subject.

(14) ƒhitpass„  = (10)a
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Exercise

"  Compute the meaning of the example below on the basis of the meaning for hit adopted above:

(15) Jeff was hit by Bart

"  What is the Schönfinkelization for show given the following scenario (only write down those

parts of the table in which the truth function is valued 1)

(16) ƒshow„ = {<John, Mary, Athens>, <Mary, John, Paris>}

Provide a lexical entry for show, which captures its truth-conditions, and design a composition rule.

Derive the meaning of Mary showed John John.
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5. TYPE THEORY

The domain of possible denotations for lexical entries consists now of a variety of functions as well

as of individuals. It does not include all types of functions, though. For instance, there are no

functions from truth-values to individuals do not have a In order to define this domain more

precisely, it is useful to introduce a new tool: type theory.

5.1. RUSSELL’S PARADOX

Russell in a famous letter to Frege obseved in 1902 that Frege’s formalization of mathematical logic

(more precisely, the system presented in the second volume of Grundgesetze der Arithmetic) was

inconsistent. Russell’s criticism was based sets as defined in (1), which lead to what has become

to be known as Russell’s Paradox (or Russell-Zermelo Paradox). 

(1) A= {X0S|X ó X}

A is the set of all sets which do not themselves as an element.

The Problem 

(2) Question:  Is A a member of A?

’ Assume A is a member of A. Then, A satisfies the restriction of the set, because X0S
and should therefore not be a member of A. The assumption leads to a contradiction.

’ Assume A is not a member of A. Then, A satisfies the condition for membership of the
set, because AóA, and should therefore be a member of A. The assumption leads to a
contradiction.

(3) Answer: The question cannot be decided, resulting in a paradox

! A standard instantiation of Russell’s Paradox looks as follows: 

(4) A city council is creating a new position which is meant to improve the appearance of the
male population of the city. In particular, the council is sponsoring a barber shop, and
employing a barber. Moreover, it is stipulated as a rule that the barber shaves everyone who

does not shave himself.

(5) Question:  Does the barber shave himself?

’ If the barber shaves himself, according to the rule he does not shave himself. 

’ If the barber does not shave himself, he must abide by the rule and shave himself. 

(6) Answer: The question cannot be decided, resulting in a paradox.

" Another version of the paradox which can be found in the literature:

(7) In a library there are many books, some of which are catalogues of books or even catalogues
of catalogues. And a catalogue may well list itself, too. Now consider the catalogue of all
catalogues that do not list themselves: does it list itself or not?
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Russell’s Solution

Russell proposes to exclude the paradox by introducing a number of well-formed conditions for sets

called  Type Theory (Russell 1919). In particular, Russell suggests that sets of the form {X0S|X óX}

are illicit because ‘nothing can contain itself, or be contained in itself’. In a differnt (but logically

equivalent) version, this criterion, which Russell refers to as the vicious-circle principle, maintains

that ‘whatever involves all of a collection must not be one of the collection’.8

More precisely, type theory establishes a hierarchy of expressions, and states that

expressions of the same level can not contain each other. Since predication is expressed in terms

of set membership, this in turn entails a restriction on possible predicates, prohibiting predicates

such as to be a set which does not contain itself or to shave everyone who does not shave himself. 

Russell (incorrectly) thought that this solution would also extend to the Liar Pardox.

There are numerous other semantic paradoxes (or antinomies, as they are sometimes called),

among them Grelling’s paradox: 

Grelling’s (1908) Paradox

There are numerous other paradoxes which affect natural language semantics. 

(8) a. autological: adjectives such that the property the adjective expresses applies to itself
(polysyllabic [which is polysyllabic], English [which is an English word])

b. heterological: adjectives such that the property the adjective expresses does not apply
to itself (monosyllabic [which is not monosyllabic], French [which is not a French
word])

Question:  Is heterological heterological?

’ Yes: Heterological satisfies the definition of autological, and is therefore not
heterological, contradicting the assumption.

’ No: By assumption, heterological is therefore autological. Thus, the property which
heterologial expresses has to apply to itself. But since this property consists in being
heterological, heterological is heterological, contradicting the original assumption. 

5.2. FUNCTIONS AND TYPES 

Type theory in semantics allows for a less clumsy definition of the domain and range of functions.

Following Montague (1973), who introduced type theory in semantics, the domain of types for a

language L is made up of e and t, where e stands for individuals, and t for truth values. Derived

types are defined in a recursive manner, as in A(c) (i.e. the output of A(c) feeds its input):

8Generally, the prohibition on Russell-sets is referred to as the well-foundedness of standard set theory.
There are various other solutions to the paradox, including the axiomatic systems by Zermelo-Fraenkel
(ZF) and Neumann-Bernay-Gödel (NBG). More recent developments actually explicitly refute Russell’s
vicious circle principle (e.g. Peter Azcel’s  hypersets, as discussed in John Barwise & John Etchemendy.
1992. The Liar.)
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A. Semantic Types

a. e is a semantic type.
b. t is a semantic type.
c. For any semantic types δ, ε, <δ, ε> is a semantic type.
d. Nothing else is a semantic type.

B. Domains

a. De is the domain of individuals.
b. Dt = {0,1} is the domain of truth values.
c. For any semantic types δ, ε,  D<δ, ε> is the domain of functions from Dδ to Dε.

According to the definitions above, names are assigned type e, the denotations of IP’s are of type

t, intransitive verbs and adjectives are paired with functions of type <e,t>, and transitive verbs,

prepositions and adjectives are interpreted as functions of type <e,<e,t>>. VP, NP, AP and PP-

denotations are finally of type <e,t>. Thus, the domain D can be partitioned into various subsets

which differ in type: Dt, De, D<e,t>, D<e,<e,t>> and so on. 

(9) ƒlove„ = f0D<e,<e,t>> s.t. for any a, b 0De,  f(a)(b) = 1 iff b loves a

Exercise

What are the types of the following expressions? Provide lexical entries where possible (i.e. not for

(10)c, e.g.). 

(10) a. ƒbetween„
b. ƒbrother-of„
c. ƒFish contains phosphor„
d. ƒput„
e. ƒnot„
f. ƒyesterday„
g. ƒSally„
h. ƒto swim„
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5.3. TYPE RESTRICTIONS

Type theory can e.g. be employed to capture restrictions on conjunction. Which are the types of the

denotations of the categories which can be conjoined?

(11) a. John is a lawyer and a doctor
b. John is smart and boring
c. John is smart and a lawyer
d. John likes golf and plays tennis
e. John is trying to win the case and anxious to get paid
f. John is trying to win the case and an example of a lawyer

(12) a. *Mary [[V° ate] and [V° slept]] pizza
b. *Mary saw [[CP John playing the guitar] and [NP a lawyer]]
c. *Mary played [[NP the guitar] and [PP in the afternoon]]

Consider the interpretation of lawyer and smart: both expressions are one-place predicates, and are

therefore of type <e,t>. play and eat are of type <e,<e,t>>, and clauses denote truth-values.

(13) Conjecture: Only expressions of the same type can be conjoined (Partee & Rooth 1983).

6. TYPE DRIVEN INTERPRETATION

6.1. PRESUPPOSITIONS 

Presuppositions9 are entailments which are triggered by lexical items, and which determine the

contexts in which an utterance can be felicitously used.

(1) a. Speaker A: “Mary stopped drinking” 
b. Presupposition: Mary used to drink

For instance, using (1)a even though the speaker knows that Mary has never drunk results in a

presupposition failure and an infelicitous discourse. (Such presupposition failures can be repaired,

though, by reconstructing counterfactual contexts in which Mary drank, and by using Gricean

maxims in order to account for the fact that the speaker conveys counterfactual instead of actual

information).

Exercise

What happens if the presuppositions of (parts of) a clause are not met? Are such sentences false?

Assume that Mary has never drunk. In such a scenario, are the following statements true or false?

(Three valued logics and supervaluation logics discusses such issues (Keefe and Smith 1997).)

9One way to define presuppositions can be found in Chierchia and McConnell-Ginet (1990). 
(i) The common ground is the set of propositions speaker and hearer share a belief in.
(ii) A sentence S presupposes a proposition p iff in any context c where S has a semantic value

relative to c, p follows from the common ground of c. 
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(2) a. Mary stopped drinking
b. It is not the case that Mary stopped drinking
c. Mary stopped drinking and it is not the case that Mary stopped drinking

6.2. DEFINITE DESCRIPTIONS (‘KENNZEICHNUNGEN’)

Traditionally, one refers by the name definite description to phrases of the shape ‘the F’. But there

are a number of NPs which do not satisfy this surface criterion, but still function as definite

descriptions semantically. 

! NPs modified by prenominal possessives are definite descriptions: 

(3) a. She bought Sally’s house
b. She bought the house of Sally’s

(4) a. She bought his house
b. She bought the house of his

! For Russell, who worked out the most famous theory of descriptions (see below), names are also

hidden definite descriptions. The nam Betrand Russell can e.g. be assigned the logical form

representation the English logician and philosopher who was born in 1872 and died in 1970 who

wrote Principia Mathematica, ....  This claim is generally thought to be problematic, though.

! Some types of pronouns - sometimes called pronouns of laziness - can be analyzed as hidden

definite descriptions:

(5) a. A man entered the room. He sat down
b. A man entered the room. [The man who entered the room] sat down

"  Note that not every pronoun can be interpreted as a lazy pronoun. (6)a and  (6)b do not mean the

same, and (7) is ungrammatical:

(6) a. Every boy owns a bicycle. He rides it to school.
b. Every boy owns a bicycle. The boy who owns a bicycle rides it to school.

(7) *No boyk owns a bicycle. Hek rides it to school.

6.2.1. The Three Ingredients of Definite descriptions

(8) The President of the United States (‘POTUS’) is bald.

The different contributions of the definite description to the overall meaning in sentences such as

(8) can be broken down into three components. When uttering (8), one makes three different

assertions:

(9) (i) There is a POTUS.
(ii) At most one thing is a POTUS.
(iii) Everything which is a POTUS is bald.
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(i) is the existence assertion, (ii) the uniqueness assertion, and (iii) represents the predication

relation. Out of these three components, the existence and uniqueness criteria are construction

specific to the interpretation of definite descriptions.

6.2.2. A Fregean presupposition account

The classic example (10) is judged as somehow infelicitous since there is no King of France today,

and the statement therefore violates the existence condition of definite description. The infelicity

of (11)b is on the other side due to the fact that a member by definition has two members, which

conflicts with the uniqueness requirement imposed by the.

(10) #The king of France is bold 

(11) a. Sam remembered only a member of the pair 
b. #Sam remembered only the member of the pair

What is now the semantic contribution of the? Note to begin with that the definite determiner

combines with one-place predicates: 

(12) a. They met the Pope
b. *They met the Johannes

The existence and the uniqueness condition can be expressed as presuppositions. That is, instead

of writing these existence and uniqueness into the truth conditions for the (on this option see

below), these conditions are interpreted as restrictions on the domain of the:

(13) ƒthe„ = f 0 D<<e,t>e,>: for any g0D<e,t> s.t. there is exactly one a0De s.t g(a) = 1,
f(g) = the unique a for which g(a) = 1

But with this modification, the is no longer a function of type <<e,t>,e>, i.e. a function from the

whole domain of predicates (<e,t>). Rather, the denotation of the is a so-called PARTIAL FUNCTION.

Partial functions are functions which are not defined for the whole domain, but only for a subset

thereof. In the case at hand, the domain of the is not the whole set D<e,t> but only the subset AfD<e,t>

such that for each member f of A, there is a single individual a such that f(a)  = 1. Thus, the is

defined only for this subset A.

6.2.3. Russell’s theory of descriptions

The general format for definite descriptions looks as in (14): 

(14) a.  The F is a G

b. (i) There is an F
(ii) At most one thing is an F
(iii) Everything which is F is G

Russell proposed the following non-presuppositional interpretation (Russell, 1905, On Denoting. Mind

14. 479-493):
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(15) Russellian definite descriptionDef 

ƒThe F is G„  = ›x[F(x) v œy[F(y) ÿ x = y] v G(x)]
  ÆÈÇ       ÆÉÉÉÉÉÉÉÉÉÉÈÉÉÉÉÉÉÉÉÉÇ     ÆÈÇ 

         ‘there is an F’        ‘at most one           ‘everything 
        (i.e. x)             thing [= x] is an F’   which is F [= x] is G’

A shorter, logically equivalent version reads as follows:

(16) ›x[œy[F(y) : x = y] v G(x)]

" Applying definition (15) to example (8) yields e.g. the semantic representation below: 

(17) a. Let F be instantiated by POTUS and 
let G be instantiated by bald 

b. ƒThe POTUS is bald„ = ›x[POTU(x) v œy[POTUS(y) ÿ x = y] v bald(x)] =

c. = ›x[œy[POTUS(y) : x = y] v bald(x)]

! Russells theory has a number of consequences, two of which are listed below.

I. Non-referring expressions

(18) #The King of France is bald

Russell’s Solution: In all situations without a King of France, (18) is a false statement 

(19) ›x[King of France(x) v œy[King of France(y) ÿ x = y] v bald(y)]

II. Negative existence assertions

(20) The Tower of Babel did not exit

The problem posed by (20) presents itself in the following form: Assume that the Tower of Babel

existed. Then (20) states that it did not exist, resulting in a contradiction. Assume alternatively that

it did not exist. Then (20) predicates (= expresses) something about an object which does not exist.

But this seems to be impossible. 

Russell’s Solution: Negation can have narrow scope ((21)a) or wide scope ((21)b). In the former

reading, sentence leads to contradiction. In the latter reading, sentence expresses a contingent

statement.

(21) a. ›x[Tower of Babel (x) v œy[Tower of Babel(y) ÿ x = y] v ¬exist(y)]
b. ¬›x[Tower of Babel (x) v œy[Tower of Babel(y) ÿ x = y] v exist(y)]
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     FA. Function application: If α has two immediate daughter nodes β and γ (in any

order), and ƒβ„0D<δ, ε> and ƒγ„ 0 Dδ, then ƒα„ = ƒβ„(ƒγ„)

6.3. ABANDONING CONSTRUCTION SPECIFIC RULES

Even though (13) provides a suitable lexical entry for the, it is not possible to compute sentences

containing definite descriptions, yet. This is so because the fragment contains no composition rule

which would allow to interpret trees such as:

(22)         DP
 3
D°     NP
 |      |

   the           N°
     |
  book

Of course, it would be possible to write a separate rule for DP’s. However, following this strategy

would require to design a designated composition rule for all non-terminal branching nodes (DP,

PP, IP, CP, AP, DegP, ...), resulting in a rather awkward system. Type theory offers a more elegant

solution, which rests on the assumption that any two sister nodes which meet the type requirements

are interpreted by Function application 

NB: Apart from FA, one still needs the rule for non-branching nodes S2.) In general, letting interpretation be

driven by the principles of type theory generates a parsimonious syntax-semantics interface which - in most

cases - does need to include explicit interpretation rules which refer to category labels. On this conception,

semantics ‘sees’ only denotations and structure, but is agnostics as to the actual category labels.

Question:  Do the following examples pose a problem for the hypothesis that all selectional

restrictions are captured by semantic principles?

(23) a. *Mary is the old
b. *Jeff man
c. *Blue Sam is

6.4. THE Θ-CRITERION AND INTERPRETABILITY

(24) Θ-Criterion 

a. Every referential NP is assigned exactly one Θ-role.
b. Every Θ-role is assigned to exactly one referential NP.

! Examples which are blocked by (24)a and (24)b: Sentence (24)b is excluded either by the

assumption that the NP Sam is assigned less than one Θ-role, or by the assumption that the subject

Θ-role is assigned to more than one referential NP.
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(25) *Ann arrived Sam.

! Examples which are blocked by (24)a, but not by (24)b:

(26) Ann loved
a. possible reading:    ›x[love(x)(Ann) v ¬Ann = x]
b. impossible reading: love(Ann)(Ann) Subject is assigned more than one Θ-role

! Examples which are blocked by (24)b, but not by (24)a:

(27) *arrived Subject Θ-role is assigned to less than one referential

NP

The Θ-Criterion can now also be given a semantic interpretation: VP’s denote functions of type

<e,t> or <e,<e,t>>, and sentences denote truth values. Moreover, assume the principle of Full

Interpretation (Chomsky 1986, 1995), according to which all expressions in a clause have to be assigned

an interpretation. Given these premises, clauses embedding spurious arguments contain terms whose

denotations cannot be integrated into the computation: 

(28) *Ann arrived Sam

(29) a. ƒarrived Sam„ = ƒarrived„<e,t>(ƒSam„e) = 1 iff Sam arrived

b. ƒAnn arrived Sam„ = ƒarrived Sam„t  ƒAnn„e � Type mismatch

Moreover, if a predicate lacks one of its arguments, the denotation of the sentence will no longer

be a truth value, but an open formula:

(30) a. *arrived
b. ƒarrive„   = f 0 D<e,t> 

Finally, examples in which one NP is assigned more than one Θ-role are excluded by the assumption

that there is a one-to-one correspondence between the number of arguments of a relation and its arity

(number of arguments a relation takes):

(31) Ann loved
a. possible reading:    ›x[love(x)(Anne)]
b. impossible reading: love(Ann)(Ann) Subject is assigned more than one Θ-role

Thus, the Θ-Criterion can be reduced to the principles of semantic interpretability. 
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PM. Predicate Modification 

" If α has the form  XP, and ƒβ„, ƒγ„0D<e,t> then ƒα„ = ƒβ„1ƒγ„
               2 

             β         γ Set notation

" If α has the form  XP, and ƒβ„, ƒγ„0D<e,t>

             2   

 β         γ Function notation

then ƒα„ = the function f <e,t> such that for any a0De, 
f(a) = 1 iff ƒβ„(a) = 1 and ƒγ„(a) = 1

7. MODIFICATION 

! AP’s and NP’s that instantiate non-verbal predicates denote functions from D to {0,1}:

(1) a. ƒblue„ = f: D ÿ {0,1} s.t. for any a0D, a is blue
b. ƒbook„ = f: D ÿ {0,1} s.t. for any a0D, a is a book

"  Adjectives and prepositions that denote non-verbal predicates from D to Dÿ{0,1}:

(2) a. Sam is fond of Mary
b. Sally is in Uppsala

(3) a. ƒfond„ = f: D ÿ (D ÿ {0,1}) s.t. for any a, b0D
f(a)(b) = 1 iff b is fond of a 

b. ƒin„ = f: D ÿ (D ÿ {0,1}) s.t. for any a, b0D
f(a)(b) = 1 iff b is in a 

Question: What is the translation of the copula be in (2)? Can it always be treated this way?

Exercise

Devise lexical entries for above (as in ‘Vienna is above the sea level’), between (as in “3 is between

2 and 4”), during (as in ‘She arrived during the break’) and taller (as in ‘John is taller than Mary’).

7.1. PREDICATE MODIFICATION

Goal: Compositionally derive the interpretation of attributive modifiers. 

(4) The blue book

(5) a. ƒ[IP [NP Sam] [VP read [DP the [NP [AP blue ][NP book]]]]]„ = ?

[NP [AP blue ][NP book]] = {x|x is blue and x is a book}
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Sample Computation

(6) 1. ƒ[IP [NP Sam] [VP read [DP the [NP [AP blue ][NP book]]]]]„ = FA

= ƒƒƒƒ[VP read [DP the [NP [AP blue ][NP book]]]]„(ƒ[NP Sam ]„) =

2. = ƒƒƒƒ[V° read]„ (ƒ[DP the [NP [AP blue ][NP book]]]„)(ƒ[NP Sam ]„) = FA

3. = ƒƒƒƒread„ (ƒ[DP the [NP [AP blue ][NP book]]]„)(ƒSam „) S2

4. ƒ[DP the [NP [AP blue ][NP book]]]„ =  ƒthe„ (ƒ[NP [AP blue ][NP book]]]„) FA & S2

5. ƒ[NP [AP blue ][NP book]]]„ = PM & Lexicon

=  f 0 D<e,t>  s.t. for any a0De blue(a) = 1 and book(a) = 1

6. ƒthe„ (ƒ[NP [AP blue ][NP book]]]„) = Lexicon (‘the’)

=  f 0 D<<e,t>,e> for any  s.t. there is exactly one a0Deg0D<e,t>

—s.t g(a) = 1, f(g) =           ā  the unique a for which g(a) = 1 

(the function f<e,t>

s.t. for any a0De,
f(a) = 1 iff blue(a) =
1 and book(a) = 1)

NB: The function, which is defined for any g0D<e,t> applies to the boxed argument on the
right-hand side. The value of the function is specified in the box in the second line.  

7. = if defined: the unique a for which blue(a) = 1 and book(a) = 1         FA

NB: The ‘if define’ part is a short-hand for stating that the function only returns a value if
there is exactly one a0De  s.t. g(a) = 1. This condition is the presupposition of the definite
description.

8. ƒƒƒƒread„ (ƒ[DP the [NP [AP blue ][NP book]]]„)(ƒSam „)

=  f<e,<e,t>> s.t. for any a,b 0De, —f(a)(b) = 1 iff b read a          ā (the unique a for which blue(a) = 1 and book(a)) (Sam)

9.  f<e,<e,t>> s.t. for any a,b 0De, —f(a)(b) = 1 iff b read a   ā (the unique a for which blue(a) = 1 v book(a))(Sam) = 1

iff Sam read the unique a for which blue(a) = 1 and book(a) = 1

7.2. TYPES OF MODIFICATION 

Traditionally, linguistic research distinguishes among two types of modification:

A. Restrictive modifiers: co-determine the denotation of the expression they modify and thereb help

to identify the extension of an NP. They can be instantiated by attributive APs and restrictive

relative clauses. A subgroup of these constructions, the so-called INTERSECTIVE modifiers (see

below) can be treated in terms of set intersection:

(7) ƒblue book„ = {x|x is blue and x is a book}
(8) ƒbook which Bill read„ = {x|x is a book and Bill read x}

Other intersective adjectives include Swedish, square, pink, sick, 
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B. Non-restrictive modifiers: do not contribute to fixing the denotation of the expression they

modify, but merely add additional qualifications:

(9) Bill, who (- by the way - ) passed the test yesterday, will be in Paris tomorrow.

(10) The number π, whose importance has been recognized by the Babylonians and Egyptians,
is irrational.

(11) Sally will leave on Tuesday, which coincidentally is also Bart’s birthday.

Restrictive and non-restrictive interpretation sometimes correlate with word order variation (on this

type of phenomenon in Romance see e.g. Bernstein 1993: 24f):

(12) a. las olorosas flores non-restrictive

“the flowers, who (by the way) smell”
    b. las flores olorosas restrictive

“the flowers who smell”

7.2.1. Three types of Adjectives

From a logical point of view, AP denotations can be grouped into three classes.

I. Intersective adjectives

Intersective adjectives form APs which satisfy the intersection criterion in (13), (21):

(13) The Property of Intersectivity 

ƒAP NP„ = ƒAP„ 1 ƒNP„

    e.g. ƒsquare table„ = ƒsquare„ 1 ƒtable„

II. Non-intersective and Subsective adjectives

Adjectives such as a leftmost cannot be treated as intersective modifiers. In the case of leftmost,

intersective interpretation yields the wrong truth-conditions. 

(14) a. the leftmost black circle
b. the circle which is leftmost and which is black

(15) a. ÎÙÚÛÜÓ {x|leftmost(x)}1{x|black(x)}1{x|circle(x)} = i
 b. ØÏÐÛÜÓ {x|leftmost(x)}1{x|black(x)}1{x|circle(x)} = Ø

Unlike intersective adjectives (see (16)), NPs attributively modified by non-intersective adjectives

such as alleged, perfect, skillful, fake and former cannot be decomposed into two conjuncts salva

veritate, i.e. in a meaning preserving way. To say that a group of people are perfect cooks ((16)ba)

is not the same  as asserting that they are perfect and that they are cooks: they are perfect only in on

respect, i.e. as cooks.

(16) a. They are Danish cooks =
b. = They are Danish and they are cooks 



WiSe 2005/06 70

(17) a. They are perfect cooks

b. … They are perfect and they are cooks

(18) ƒperfect cooks„ … ƒperfect„ 1 ƒcooks„ non-intersective

! Moreover, if  adjectives such as alleged were intersective, the following entailment relation

should hold:

(19) If ƒα„ = ƒβ„ then ƒalleged α„ = ƒalleged β„

But clearly, the inference in (20) below is invalid:

(20) The murderer was the president of the company
She met the alleged murderer
ˆ She met the alleged president of the company

" Formally, non-intersective adjectives fall into two groups. First, there are adjectives which are

subsective, as defined in (21), among them perfect, skillful, good, and recent:

(21) The Property of Subsectivity

ƒAP NP„ = ƒAP„ f ƒNP„

     e.g. ƒperfect cook„ = ƒperfect„ f ƒcook„

If an individual is a perfect cook, then he is perfect as a cook, but not necessarily as a composer,

writer, etc... Thus, in this example, ‘perfect’ is only a property of cooks, and not of other groups of

individuals. 

III. Non-intersective and Non-Subsective adjectives

Finally, there are adjectives which are non-intersective, but also fail to observe the subsective

property. This last group includes former, alleged, fictitious, putative, imaginary,arguable, and

counterfeit. 

(22) They are alleged/former criminals
a. ƒalleged/former criminals„ … ƒalleged/former„ 1 ƒcriminals„ non-intersective

b. ƒalleged/former criminals„ ç ƒcriminals„ non-subsective

Its members can only show up in attributive position:

(23) a. They are alleged criminals
b. *They are alleged and they are criminals 

This observation serves as a further argument against analyzing the nexus between alleged and the

common noun they modify by intersection. If alleged were intersective, it would remain mysterious

why it cannot be construed in predicative position.

Note finally that if an adjective is intersective, it is also subsective, but not v.v.

Exercise 

Show why this is the case.
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7.2.2. Two Open Issues

I. Relative Clauses: may serve as restrictive modifiers, which semantically are intersected  with the

common noun denotation: 

(24) a. ƒ[NP the book [CP which t is blue]]„ = {x|book x and x is blue}
b. ƒ[NP the book [CP which Bill read t]]„ = {x|book x and Bill read x}

The relative clause internal trace is translated here as a semantic variable (i.e. x in the restriction of

the set). Assume moreover that the relative pronoun is semantically vacuous (as can be seen from

the fact that it is optional in some contexts). 

(25) 1. ƒt„ = x

2. ƒread x„ = ƒread„(x)

3. ƒwhich Bill read x„ = ƒread„(x)(Bill)

4. ƒread„(x)(Bill) =  f<e,<e,t>> s.t. for any a,b 0De, —f(a)(b) = 1 iff b read a     ā(x)(Bill)

5. ƒbook which Bill read x„= ƒbook„<e,t>  ƒwhich Bill read x„<t> � Type conflict

The computation crashes in line 5, because the common noun denotes a predicate, but the relative

clause denotes a formula (an expression of type t). Thus, the relative clause and the NP cannot be

composed by the principles licit under the assumption of type driven interpretation.

Goal I: Find a tool to represent relative clauses as predicates.

II. Pronouns: In contrast to names such as Ann, the reference of pronouns can vary from situation

to situation. With the rules introduced so far, pronouns cannot be interpreted.

(26) a. Ann slept
b. She slept

Goal II: Define a suitable semantic characterization of pronominal reference. 

It will turn out that the strategies which will lead to a better understanding of relative clauses and

pronouns are related. 
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8. THE λ-CALCULUS

In mathematics, functions express correpondences between two variables, the dependent and the

indepent one. The expression in (27) denotes the value of a function. If f is e.g. (extensionally)

defined as in (28), the value is ‘x2 + 1', which denotes an object of type e (assuming that numbers

are of type e). The function can therefore also be specified by the formula in (29):

(27) f(x)

(28) f: 1 ÿ 2
2 ÿ 5
3 ÿ 10
4 ÿ 17

....
(29) f(x) = x2 + 1

The classical function notation is not optimally transparent, though. It does not permit to make

reference to the function itself. There is no notational device that would allow to refer to the abstract

object (of type <e,e>) representing the operation that maps 1 to 2, 2 to 5, 3 to 10 and so on. This is

so because in the classical mathematical notation, the function symbol (‘f’) cannot be separated from

the independent variable. Expressions such as ‘f = x2 + 1’ are not well-formed.

The λ-calculus, conceived by Alonso Church (1936), fills this gap (see Church 1940, Curry

1934 for typed λ-calculus). In particular, the λ-calculus makes it possible to seperate the function from

the variable, and thereby provides a way to refer to the name f independently of the variable x. The

symbol ‘f’ on the left-hand side of (30) unambiguously specifies a function, in this case an object

of type <e,e>. The right-hand side of (30) is called a λ-term (on ‘term’ see also fn. 4).

(30) f = λx[f(x)]

Thus, (27) (by convention) denotes the value of a function, while the function itself is represented

by the λ-term (30).

Example

The expressions under a. can be expressed in λ-calculus as in b:

(31) a. f(x) = x2 + 1
b. f = λx[x2 + 1]

(32) a. f(x,y) = x + y
b. f = λxλy[x + y]

Montague (1970) was the first to apply the (typed version of the) λ-calculus to the analysis of NL. 

" For an updated version of this part see http://users.uoa.gr/~wlechner/Sem2013.htm

" An interactive guide with online exercises and solutions has been provided by Chris

Barker at http://ling.ucsd.edu/~barker/Lambda/

" For a more demanding introduction by Barendregt and Barendsen see:

http://www.cs.ru.nl/home/Erik.Barendsen/onderwijs/T3/materiaal/lambda.pdf
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8.1. λ-ABSTRACTION

Illustrating λ-abstraction by means of the example in (1), the λ-operator turns an OPEN FORMULA (i.e.

an expression of type t which contains an unbound variable) into a derived predicate  (type <e,t>)

by abstraction over the free variable.

(1) read(x)(Bill) open formula

(2) a. whichx Bill read tx 
b. λx[read(x)(Bill)] λ-abstraction over x ± predicate

The operation of λ-abstraction is defined in a more general way such that it can be applied to

expressions of any type. That is, the variable followed by the λ-operator can range over any possible

type (predicates, relations, functions,...). As any formal language, the λ-calculus is precisely defined

by a syntax, which generates all and only the well-formed expressions of the calculus, and a

semantics interpreting these expressions.

8.1.1. Syntax for λ-terms

(3) If φ is an expression of type δ, and α is a variable of type ε, then λα [φ] is an expression of

type <ε,δ>.

(4) a. f(x) = x+2
b. y = x+2
c. λx[x+2] the function which maps arbitrary x to x+2

(5) a. love(x)(y)
b. λx[love(x)(John)] the individuals John loves

c. λxλy[love(x)(y)] two-place relation of ‘love’

8.1.2. A remark on notation

In the literature, there are a number of different ways to write λ-terms. For reasons of visibility (on

the blackboard) we will use square brackets to mark the scope of the λ-term. Other authors employ

round brackets, and in the classical λ-calculus, the λ-operator and the body  or dots (.). 

(6) λxλy[see(x)(y)] . λxλy(see(x)(y)) . λxλy.see(x)(y)

8.1.3. Semantics for λ-terms

There are two possible ways of interpreting λ-terms 

(7) a. λα [φ]:  “the smallest function which maps α to φ.”
b. λα [φ]:  “the function which maps α to 1 if φ, and to 0 otherwise”

Choice between these versions depends on the context. In general, reading (7)a applies if φ does not
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denote a truth value, and (7)b if φ denotes a truth value.10 When φ values over {0,1}, the λ-

expression λα[φ] is a characteristic function for a set, and can therefore also serve as notation for

a set. 

(8) Set Notation λ-Notation

a. {x0D|smoke(x) = 1} λx[smoke(x)]
“the function which maps x to 1 if x smokes, and to
0 otherwise” .set of smokers

b. {x0D|love(x)(John) = 1} λx[love(x)(John)]
“the function which maps x to 1 if John loves x,
and to 0 otherwise” .set of individuals John loves

c. {x0D|{y0D|love(x)(y) = 1}} λxλy[love(x)(y)]
“the function which maps x to the function which
maps y to 1 if y loves x, and to 0 otherwise”

      Examples      Type

(9) a. λx[P(x)] {x0D|P(x) = 1} <e,t>
b. λP[P(a)] {P0D<e,t> |P(a) = 1} <<e,t>,t>
c. λxλy[R(x)(y)] {x0D|{y0D|R(x)(y) = 1}} <e,<e,t>>
d. λRλQ[R(y)(x) w Q(y)]    .... <<e,<e,t>>,<<e,t>,t>>
e. λVλxλRλy[V(R(x)) v R(y)(x)] <<<e,t>,t>,<e,<<e,<e,t>>,<e,t>>>>

���� Note that the order of abstraction matters! Consider the two order in which abstraction over

x and y can be applied to love(x)(y):

(10) Abstracting over x first

a. λx[love(x)(y)] the individuals y loves/‘being loved by y’ relation

b. λyλx[love(x)(y)] two-place relation of ‘being loved by’

(11) Abstracting over y first

a. λy[love(x)(y)] the individuals which love x/‘loving x’ relation

b. λxλy[love(x)(y)] two-place relation of ‘love’

Exercise

! What is the type of the following expressions (where x, y,a,d 0De, and P, M0D<e,t>). What is the

type of Q and R? (Assumption: all expressions inside square brackets are of type t)

(12) a. λP[P(x) v M(x)] d. λMλxλP[¬P(x) v M(x)]
b. λPλM›x[P(x) w ¬M(x)] e. λxλyλPλd[Q(P)(d)(x) v M(y)] 
c. λxλRλP[R(P)(x)] f. λQλRλxλM[¬Q(R(M))(x)(a)]

10Both readings can be subsumed under (7)a, given that λx[smoke(x)] is read as “the function which
maps x to the denotation of smoke(x)” (NB: smoke(x) denotes a truth value).
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"  Which of the following expressions are well-formed? If a term is well-formed, provide its type

(assume a and b are individual constants, that P,M0D<e,t>, Q0D<e,<e,t>> and that V0D<<e,t>,t>):

(13) a. λx[P(a)] e. λPλx[P(a)(b)]
b. λx[M(x)] w M(b) f. λQλx[Q(a)(x) v P(b)] 
c. λx[M(x) w M(b)] g. λMλV[V(M) ÿ ¬M(b)]
d. λ¬Pλy[P(y)] h. ¬λQ[Q(b)(a)]

! What is the meaning of expressions such as λx[P(y)] or λx[Q(2)]? 

8.2. λ-CONVERSION

λ-terms can be reduced by three rules, which as a group are referred to as λ-conversion. The two

which are relevant for present purposes are α-conversion and β-reduction

α-conversion: formalizes the fact that λ-expressions which only differ in the name assigned to

bound variables (alphabetic variants) are freely interchangeable. The λ-expressions below all denote

the same function:

(14) λxλy[F(x)(y)] / 
/ λwλz[F(w)(z)] /
/ λyλx[F(y)(x)]   ... α-conversion

β-conversion (or β-reduction): expresses function application, i.e. the reduction of an expression

by applying the function to one of its arguments. Generally, the term λ-conversion is used in a

narrow interpretation as referring to β-reduction.

(15) λx[read(x)(Bill)](Kafka) = read(Kafka)(Bill) β-reduction/λ-conversion

(16) If λα [φ] is an expression of type <ε,δ>, and γ is an expression of type ε, then λα [φ](γ) is

the expression of type δ which results from substituting all occurrences of α in φ by γ.

(Slightly more formally: λα [φ](γ) = φ[α ÿ γ])

Examples Type

(17) a. λx[P(x)](a) = P(a) t
b. λP[P(a)](Q) = Q(a) t
c. λxλy[P(x)(y)](a) = λy[P(a)(y)] <e,t>
d. λxλy[P(x)(y)](a)(b) = λy[P(a)(y)](b) <e,t>

= P(a)(b) t

���� Note that the understood bracketing of λxλy[P(x)(y)](a)(b) is λx[λy[P(x)(y)]](a)(b) and not

λx[λy[P(x)(y)](a)](b), unless otherwise indicated. This is a common source of confusion! 
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(18) Set Notation λ-Notation

a. ƒlove„  ²
{x|{y|love(x)(y)}} λxλy[love(x)(y)]

b. ƒlove Peter„ ²
Peter 0{x|{y|love(x)(y)}} = λxλy[love(x)(y)](Peter) =

= {y|love(Peter)(y)} = λy[love(Peter)(y)] (by conversion)

c. ƒThey love Peter„ ²
they 0{y|love(Peter)(y)} λy[love(Peter)(y)](they) =

= love(Peter)(they) = love(Peter)(they)

Exercises

Reduce the follwing expressions as much as possible by λ-conversion and provide their type.

(19) a. λx[M(x)](j) f. λP[P(j)](λx[M(x)])
b. λxλy[P(y)(x)](a)(b) g λx[λy[P(x)(y)]](a)
c. λx[λy[P(x)(y)](a)](b) h. λPλx[P(x)] (λz[z=a])
d. λxλP[P(x)](j)(M) i. λPλx[P(a)(b)] (λxλc[Q(x)(c)])
e. λx[λy[P(x)(y)](a)] j λxλPλy[P(x) v ¬x=y](a)(λz[Q(z)(a)])

Free vs. Bound variables

The two computations below, which differ only in the variable converted into the λ-term, yield

different results: Only the first one preserves meaning.

(20) ›y[x…y] Assume: x = z (or: let x and z be bound e.g. by λPλw[P(w)])

(21) a. λx[›y[x…y]] Abstraction over x

b. λx[›y[x…y]](z) Conversion of variable which is free in the scope of the λ-operator

c. ›y[z…y] ] ›y[x…y]

(22) a. λx[›y[x…y]] Abstraction over x

b. λx[›y[x…y]](y) Conversion of variable which is bound in scope of λ (bound by ›)

c. ›y[y…y] ]/ ›y[x…y]

���� Thus, in working with the λ-calculus it is important to keep in mind the theorem in (23),

which prohibits accidental binding of free variables.

(23) Theorem: Free variables must not get accidentally bound by λ-conversion!
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8.3. APPLYING THE λ-CALCULUS 

The λ-notation provides a less awkward way of calculating the meaning of sentences, which

expressed the compositional nature of the translation procedure in a transparent way. 

(24) Bill read the book

(25) ƒread„ = λxλy[read(x)(y)]
ƒbook„ = λx[book(x)]
ƒthe„ = λP[the unique a such that P(a) = 1]

Presupposition: Defined for any P0D<e,t>, iff there is exactly one a0De

such that P(a)=1

Sample Derivation

(26) 1. ƒ[IP [NP Bill] [VP read [NP the book]]]„ = 1 iff

2. ƒ[VP read [NP the book]]„ (ƒ[NP Bill]„) = 1 iff FA

3. ƒ[VP read]„ (ƒ[NP the book]„) (ƒ[NP Bill]„) = 1 iff FA

4. ƒread„ (ƒthe book„) (ƒBill„)  = 1 iff Non-branching nodes

5. λxλy[read(x)(y)](λP[the unique a such that P(a) = 1](λx[book(x)]))(Bill) = 1 iff

6. λxλy[read(x)(y)](the unique a such that λx[book(x)])(a))(Bill) = 1 iff

7. λxλy[read(x)(y)](the unique a such that book(a))(Bill) = 1 iff

8. λy[read(the unique a such that book(a))(y)](Bill) = 1 iff

9. read(the unique a such that book(a))(Bill) = 1

Lexical insertion applies in step 5, λ-conversion in steps 6-9. The λ-terms to be converted in the next

step are marked in italics).

8.4. RELATIVE CLAUSE REVISITED

Predicate Modification can be defined as follows in the λ-notation:

   PM. Predicate Modification

If α has the form  XP, and ƒβ„, ƒγ„0D<e,t>

             2 
β          γ λ-notation

then ƒα„  =  λx[ƒβ„(x) v ƒγ„(x)]

! Relative clauses contain an empty operator movement chain (Chomsky 1977): 

(27) the book [CP OPi which Bill read ti]



WiSe 2005/06 78

Assume that the operator is interpreted as a λ-binder and that operator movement leads to λ-

abstraction (for more on the details of this strategy see below).

(28) ƒOPi α„ = λx[ƒα„]

(29) 1. ƒ[CP which Bill read ti]„ =
= λxλy[read(x)(y)](x)(Bill) = Lexical Insertion

= λy[read(x)(y)](Bill) = λ-Conversion

= read(x)(Bill) = λ-Conversion

2. ƒ[CP OPi which Bill read ti]„ =
= λx[read(x)(Bill)] λ-Abstraction

3. ƒ[NP book [CP OPi which Bill read ti]]„ =
= λx[λy[book(y)](x) = 1 v λz[read(z)(Bill)](x) = 1] = PM

= λx[book(x) = 1 v read(x)(Bill) = 1] λ-Conversion

8.5. A FURTHER PROBLEM FOR RELATIVE CLAUSES

Pronouns in the scope (roughly: the c-command domain) of a quantifier can be interpreted either

deictically as referring expressions (for more on that see below), or as variables whose interpretation

covaries with the interpretation of the quantificational term:

(30) No driver found his keys
a. For no x, s.t. x is a driver, x found y’s keys : referential reading
b. For no x, s.t. x is a driver, x found x’s keys : bound variable reading

It is easy to see that the two readings are independent, and that pronouns are therefore ambiguous

between these two interpretations: 

’  Assume a scenario where Jeff and Martin are the drivers, and none of them found their

own keys, but they found Sam’s keys. Then, (30) comes out as false in the referential reading (30)a,

but as true in the bound interpretation (30)b. 

’ Assume alternatively that while once again Jeff and Martin are the drivers, Jeff found his

own keys, but nothing else happened in this scenario. In this situation, (30) is judged as true in the

referential interpretation, and as false if the pronoun is construed as a bound variable.

! On the most direct hypothesis bound variable pronouns are translated in the same way as traces,

that is they denote variables (for expository convenience, it will be assumed again that there is only

a single variable):

(31) ƒher„ = x

Contexts which combine traces inside relative clauses and pronouns such as (32) pose now the

following problem

(32) Everybody knows a woman who liked him
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If both the trace and the pronoun are translated as variable ‘x’, the resulting reading does not match

the intuitive truth-conditions (lets abstract away from the detailed analysis of the quantifier, and

assume that it can be compositionally integrated, concentrating for present purposes on the NP-head

of the relative clause):

(33) 1. ƒOP t liked him„ = λx[ƒt liked him„] OP-Rule

2. λx[ƒt liked him„] = λx[ƒliked„(ƒhim„)(ƒt„)] FA

Y 3. λx[ƒliked„(ƒhim„)(ƒt„)] = λx[ƒliked„(x)(x)] Lexical insertion

Consider now the meaning of the last line above, which denotes a reflexive predicate. However,

clearly, (32) does not involve reflexivization. 

The problem arising in this context is that traces and pronouns bear indices, which have to

be taken into account in the interpretation. For this reason, the semantic rules have to include a rule

which translates variables according to the values which is assigned to them.
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9. PRONOUNS

(1) a. Ann slept
b. She7 slept

Pronouns are interpreted as variables, and not as constants. This means that while Ann can be given

a meaningful interpretation in contexts where there is an individual called ‘Ann’, pronouns lack

reference of their own. Rather, they are interpreted by assigning them a referent. This assignment

of reference is rotationally expressed in terms of the index (subscripted natural number) on the

pronoun. That is, it is the index and not the lexical material which contributes the interpretation of

the pronoun.

(2) Assumption: Only the index on a pronoun is interpreted.

(3) For any i0ù and any α0Dpronoun : ƒαn„  =  ƒn„

Notation Convention: Syntacticians generally use lower case letters as indices while

semanticists use both letters and numbers (subject to personal preference). Nothing

bears on this matter, though, as long as one remains consistent.)

9.1. TYPES OF PRONOUNS

Traditionally, pronouns are grouped together in two classes, depending upon whether they get their

interpretation from the utterance situation (e.g. by pointing)  or from the linguistic context. If the

reference of a pronoun is fixed by the utterance context, as in (3), it is called a deictic pronoun.

(4) a. She12 lost the keys
b. He5 is the murderer

But pronouns can also be used anaphorically, in case of which the referent is determined by some

other linguistic expression in the discourse. For instance, while the first pronoun in (4)b is

traditionally said to be deictic, because there is no linguistic antecedent, the second one is

ambiguous between a deictic (index 11) and an anaphoric (index 6) interpretation:

(5) She6 lost her6/11 keys

Both types of pronouns introduced above are referential in the sense that one interprets them as

standing in for some individual. If the are interpreted as coreferential with some linguistic

antecedent,  this antecedent therefore also has to refer to some individual. They differ in this respect

from bound variable pronouns ,which are interpreted as variables. 

NB: The latter property will relate pronouns to the relative clause puzzle!

(6) a. Nobody3 lost his3 keys
b. ¬›x[person(x) v x_lost_x’s_keys] 
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9.2. ASSIGNMENT FUNCTIONS

Pronouns are assigned their reference by assignment functions - usually written ‘g’. An assignment

function is a function from indices to individuals which yields as its value the meaning of that index.

For instance, if one picks the specific assignment function g below, the pronoun she7 will refer

Mary: 

(7) Situation 1: She7 arrived
g(7) = Mary
ƒShe7 arrived„g ] ƒMary arrived„g

There are two kinds of individual in De: constants and variables. Only the meaning of the

latter is dependent upon an assignment function. Thus, the two types of terms are assigned

denotations in the following way: 

(8) ƒα„g = α if α is a constants  
ƒα„g = g(α) if α is a variable

The choice of assignment function depends to the context. That is, if in a situation the speaker has

been waiting for Mary, and then utters She arrived once she has reached her destination, the

sentence is most likely11 interpreted by using the assignment function g above. If however the

speaker is expecting Susan, as in Situation 2, he/she will most likely assign to 7 the value Susan,

instead of Mary: 

(9) Situation 2: She7 arrived
g’(7) = Susan
ƒShe7 arrived„g ] ƒSusan arrived„g

Thus, context dependence can be achieved by using assignment functions which differ in the

individual they assign to certain indices.

Variables in Linguistis and in Logic

Semantic (individual) variables come in two guises: traces and pronouns. In linguistics, they are not

distinguished in the same way as in logic, where different variables are assigned to different letters;

instead, they are kept apart by subscripts. Thus, the ‘variable’ part is in fact the index on the

trace/pronoun. In order to keep in line with this tradition, the assignment function g will be taken

to apply to the index, and not to the trace itself:

(10) ƒαi„
g = g(i) if is a variable

For instance, the denotation of Sally is Sally, while the denotation of the pronoun he1 is Tom under

assignment g, but Sally under assignment g’ below:

11The qualification ‘most likely’ is necessary, because which assignment function is finally chosen is
entirely determined by the context, i.e. extralinguistic factors such as the design of the situation,
speakers’ intentions, wishes and hopes, etc... The actual choice of the assignment functions accordingly
varies with the context.



WiSe 2005/06 82

(11) a. g =  1 ÿ Tom

—2  ÿ Sally ā
g’ =  1 ÿ Sally

—2  ÿ Mary ā
b. ƒhe1„ 

g = g(1) = Tom
ƒhe1„ 

g’ = g’(1)= Sally

Question: How can it be ensured that antecedent and pronoun matchin gender features?

9.3. RELATIVE CLAUSES & ASSIGNMENT FUNCTIONS

What else is needed in order to employ assignment functions in the interpretation of relative

clauses? Recall that the problem was that in example (32), repeated below, translating both the trace

and the pronoun as variable ‘x’, the resulting reading yielded a reflexive predicate:

(12) Everybody knows a woman who liked him (= (32))

(13) a. ƒOP t liked him„ = λx[ƒt liked him„] OP-Rule

b. λx[ƒt liked him„] = λx[ƒliked„(ƒhim„)(ƒt„)] FA 
Y c. λx[ƒliked„(ƒhim„)(ƒt„)] = λx[ƒliked„(x)(x)] Lexicon pronoun & trace

But section 9.2. introduced a way to distinguish the pronoun and the trace in terms of assignment

functions. Thus, one gains:

(14) a. ƒt1 liked him6„
g = ƒliked„g(ƒhim6„

g)(ƒt1„
g) FA 

b. ƒliked„g(ƒhim6„
g)(ƒt1„

g) = ƒliked„g(g(6)) (g(1)) Interpreting pronoun & t

But it has not been ensured yet that the variable t1, the trace of the empty operator, co-varies with

its antecedent. That is, the final representation should look as follows:

(15) œx[human(x) ÿ ›y[woman (y) v know(y)(x) v like(x)(y)]]

However, if one applies the lexical entry for the empty operator employed so far, the result is (17):

(16) ƒOP α„ = λx[ƒα„]

(17) a. ƒOP1 t1 liked him6„ =
b. = λx[ƒƒƒƒt1 liked him6„

g] =
c. = λx[ƒliked„(g(6))(g(1))]

and this is certainly not the correct result. Switching for ease of exposition to set talk, (17) denotes

the set of all individuals in the domain if ƒƒƒƒt1 liked him6„
g  = 1, - that is if the individual denoted by

g(1) likes the individual denoted by g(6) - and the empty set otherwise.

Exercise

Design a scenario and an assignment function under which (17) denotes the predicate which is true

of all individuals.
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Desiderata for Assignment Functions

The deliberations above support two conclusions: 

’ First, assignment functions have to be designed in such a way that they do not only

return individual constants as their values, but also range over variables. 

(18) Let g(1) = x
Let g(6) = y

ƒt1„ = g(1) = x
ƒhim6„ = g(6) = y

(19) 1. ƒOP1 t1 liked him6„ = λx[ƒliked„(g(6))(g(1))]
2. λx[ƒliked„(g(6))(g(1))] = λx[ƒliked„(y)(x)

’ Second, it must be ensured that they introduce the correct variable! While the

representation above would indeed do, as it lets the λ-operator bind the subject position of like, the

following translation, where g(1) yields z instead of x has e.g. to be excluded:

(20) λx[ƒliked„(g(6))(g(1))] = λx[ƒliked„(y)(z)] Y

Goal: Define an operation which makes it possible to let variables in the domain of the λ-

operator co-vary with the index of the trace. 

 

9.4. MODIFIED ASSIGNMENT FUNCTIONS

In order to connect the index of the trace and the λ-term, it turns out to be useful to define the

notation of a modified variable assignment.12

(21) g[x/a] is the modified variable assignment g’ which 

possibly differs from g only in that it assigns a to x.

Example

(22) Let g(3) = Sally 
g(5) = Tom

a. ƒt3„
 g = g(3) = Sally

b. ƒt3„
 g[3/Mary] = g[3/Mary](3)  = Mary

c. ƒt5„
 g = g(5) = Tom

d. ƒt5„
 g[3/Mary] = g[3/Mary](5)  = Tom

e. ƒt5 „
 g[3/Mary, 5/Mary] = g[3/Mary, 5/Mary](5)  = Mary

12Interpreting quantified formulas by temporary assignments was first suggested by Alfred Tarski in the
1940ies. Using this method, Tarski was able to design the first compositional treatment of first order
logic (predicate calculus).
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PA. Predicate (Lambda-) Abstraction (final version)

For any g and any n0ù, if α has the form XP, then ƒα„g  =  λx[ƒγ„]g[n/x]

                                     2
                        OPn       γ

" Why is there the qualification ‘possibly’ in the definition of modified assignment function?

Because g and g’ are identical if g(x) = a. For instance, 

(23) Let g(3) = Mary

Then ƒt3„
 g[3/Mary] = g[3/Mary](3) = Mary =  g(3)

" The notations in (24)a and (24)b are equivalent:

(24) Let g(1) = Tom
g(2) = Sally

a. g =  1 ÿ Tom

—2  ÿ Sally ā
b. g[2/Mary] =  1 ÿ Tom    [2 ÿMary]

—2  ÿ Sally ā
A remark on notational conventions: The literature employs a confounding number of different

ways to graphically encode modified assignment functions. It is possible to find at least the

following notations, which all mean the same. 

(25) a. g[2/Mary] (e.g. GAMUT [modulo type face], and present manuscript)

b. g[2 ÿ Mary] (e.g. Heim & Kratzer 1998)

c. g[2:= Mary] (e.g. Barendregt 1984)

d. g Mary
2 (e.g. Dowty, Wall & Peters 1981)

e. g[Mary/2] (e.g. in classic Montague grammar, mathematical logic) 

9.5. RELATIVE CLAUSES REVISITED

Modified assignment functions provide an elegant way to ensure that the index on the trace of the

empty operator is assigned the same value as the variable which the λ-operator is defined for.

(26) Assumptions  

" Empty operator is interpreted as a λ-abstractor over the individual variable it binds.

! Only the index on the trace is interpreted (just like with pronouns).
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Sample Derivation

(27) movie that Bill had rented

(28) a. ƒ[CP OP1  that Bill had rented t1]„
g =

= λx[ƒthat Bill had rented t1„
g[1/x]] = Predicate Abstraction

= λx[ƒBill_had_rented„g[1/x] (ƒti„
g[1/x])] =

= λx[Bill_had_rented (ƒt1„
g[1/x])] =

= λx[Bill_had_rented (g[1/x](ƒt1„))]=

L = λx[Bill_had_rented (g[1/x](1))] =

T = λx[Bill_had_rented (x)]

b. ƒmovie [CP OP1 that Bill had rented t1]„
g =

= λx[movie(x)] λx[Bill_had_rented(x)] = Predicate Modification

= λx[movie(x) v Bill_ had_rented(x)]

APPENDIX: FURTHER APPLICATIONS OF Λ-CALCULUS

Conjunction

(29) a. Sam sings and Mary smokes
b. ƒand1„ = λp<t> λq<t> [q =1 v q = 1]

(30) a. Sam sings and smokes
b. ƒand2„ = λP<e,t> λQ<e,t> λx[P(x) =1 v Q(x) = 1]

(31) a. Sam bought and ate the pie
b. ƒand3„ = λP<e,<e,t>> λQ<e,<e,t>> λxλy[P(x)(y) =1 v Q(x)(y) = 1]

(32) a. Sam and Mary sing
b. ƒand4„ = λxλyλP[P(x) = 1 v P(y) = 1]

Passive

(33) a. Syntax: The book was written by Arp
b. Semantics Input: [IP The book [VP [V°writePass ] Arp]]

(34) ƒwriteactive „ = λxλy[write(x)(y)]
ƒwritten„ = ƒwritepassive„ =

= λxλy[writeactive (y)(x)]

(35) ƒPassive„ = λP<e,<e,t>> λxλy[P(y)(x)]
λPλxλy[P(y)(x)](λwλz[writeactive (w)(z)]) = λ-Conversion

= λxλy[λwλz[writeactive(w)(z)](y)(x)] = λ-Conversion

= λxλy[λz[writeactive(y)(z)](x)] = λ-Conversion

= λxλy[writeactive(y)(x)]
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Reflexives

Lexical/semantics approaches towards reflexivization13: reflexive pronouns turn non-reflexive

predicates into reflexive ones:

(36) Syntax: [IP Sam [VP saw herself]]
a. LF: [IP Sam [VP [V° selfi  [V°saw]] ti ]]
b. Semantics: [IP Sam [VP [V° self [V°saw]]]]  

Exercise

Assume the lexical entry for the semantic translation of self, assuming that for any two-place

predicate  P, self-P is the diagonalization of P. Compute the meaning of Sam saw herself. Does the

analysis carry over to I showed Bill to himself? If not, what would an LF have to look like which

derives the correct interpretation?

(37) λP<e,<e,t>> λx[P(x)(x)]

Diagonalization: the function which assigns each individual in D to itself (f(x) = x): 

(38) x f(x) = 1 2 3 4
1 " 
2 "    
3 "  
4 "  

13See e.g. Bach, Emmon and Barbara H. Partee. 1980. Anaphora and Semantic Structure. In: J. Kreiman
and A. E. Ojeda (eds.), Papers from the Parasession on Pronouns and Anaphora. Chicago: University
of Chicago Press. 

Keenan, Edward. 1988. On semantics and the binding theory. In J. Hawkins (ed.), Explaining

Language Universals. Oxford: Blackwell, pp 104–155. 
Reinhart, Tanya and Eric Reuland. 1993. Reflexivity. Linguistic Inquiry 24.4: 657-720.

Szabolcsi, Anna. 1987. Bound variables in syntax. (Are there any?). In J. Groenendijk and M.
Stockhof (eds.), Proceedings of the 6th Amsterdam Colloquium. Amsterdam: University of Amsterdam,
pp. 331-353. Available for download at: http://semanticsarchive.net/Archive/GQyODUwZ/
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10. QUANTIFICATION

NEXT: " Quantifiers vs. referring expressions.

!  Interpretation: a first approximation

" Compositional interpretation of quantifiers (λ-notation)

! Quantifiers in object position and inside NPs: Quantifier raising and its

interpretation 

[" Logical properties of quantifiers (existential constructions, extraposition, ...)]

[! The semantics of quantification (Tarski’s temporary assignments)]

10.1. NAMES VS. QUANTIFIERS

The object NP in (1)a is a name, while the object of (1)b is represented by a quantifier: 

(1) a. Sam read Ulysses/Kratylos/the telephone book of Uppsala.
b. Sam read every book/some book/no book/most books..

(2) a. Names: Ulysses, Kratylos, Fear and Loathing in Las Vegas, Gone with the Wind, ...
b. Quantifiers: every book, some book, no book, more than two books, half of the books,

most books, ...

Quantifiers systematically differ in their referential properties from names: unlike names, quantifiers

do not refer to individuals. Thus, they cannot be treated as symbols of type e.

1. Lack of Reference

Names refer to an individual in the world. The expression Sam refers e.g. to the person with the

name Sam, and Ann to the woman which happens to bear the name Ann. Therefore, we know that

sentence (3) is true in all those situations in which Sam likes Ann, and false otherwise: 

(3) Sam likes Ann.

Quantifiers on the other side fail to refer to individuals. This becomes especially evident with

negative existential quantifiers (¬›xΦ or œx¬Φ):  

(4) a. No dog likes Ann. ¬›x[dog(x) v likes(Ann)(x)]
b. Ann likes no dog. ¬›x[dog(x) v likes(x)(Ann)]

On this conception, quantifiers operate on sets, which in turn are made up of individuals. A

quantifier such as no dog in (4) relates e.g. the set of dogs with the set of individual who like Ann

or who are liked by Ann.

2. Law of the excluded middle

(5) Question:  Are the following two statements true or false? 

(6) Sam is French or Sam is not French
(7) Everybody is French or everybody is not French.
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Generally, the law of the excluded middle - a law of 2-valued logic - holds that for any p, it is

always true that ‘p or not p’ holds. Assume that p is valued as a VP-denotation, as in (8)a below.

Combining this VP with a name in subject position results in a tautology. (8)b is true, irrespective

whether Sam is a p (i.e. French) in any given situation:

(8) a. Let p = be French
Ö p w ¬p ² be French or be not French (= De)

b. Sam is French or Sam is not French

(9) Law of excluded middle

a. General: Öp w ¬p

b. Specific: Öœx0De œp0D<e,t>[x0p w x0¬p]

NOTATIONAL CONVENTION: ‘Ö’ denotes semantic entailment.

(10) a. A Ö B A semantically entails B 

b. Ö A A is a tautology

c. Ö'A A is a contradiction

If any antecedent entails A, A is universally valid or a tautology. If no antecedent entails A, that is

if A is false whatever the choice of the antecedent, A is a contradiction. If A is neither a tautology

or a contradiction, A is a contingency. That is, the truth of A is contingent on the choice of the

antecedent: for some, A will come out as true, and for others false. 

What is important for present purposes is that the law of the excluded middle only applies 

to referring expressions (names), but does not hold for quantifiers: While (8)b is a tautology, (11)b,

in which the subject is a quantifier instead of a name, is not. The truth of (11)b is contingent upon

the way the world is structured. It holds only  if either everybody adopts French citizenship or if all

French become e.g. Polish citizens.

(11) a. Let p = be French

b. Everybody is French or everybody is not French

c. ¬Ö œQPœp0D<e,t> [QP0p w QP0¬p]

It follows now that quantifiers cannot be treated as referring expressions. 

Further example: Here is a further example involving the law of the excluded middle: The following

sentence once again is a tautology, it is true independent of the actual length of the book Ulysses.

(12) Ulysses is more than 100 pages long or Ulysses is less than 1,000 pages long.

Substituting the name by a quantifier leads to a sentence which is no longer a tautology. In the actual

world, (13) is e.g. evaluated as false. This is so because there are some books less than 100 pages

long - falsifying the first sentence in the disjunction - and there are also some books which are
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longer than 1,000 pages, falsifying the second sentence.14

(13) Every book is more than 100 pages long or every book is less than 1000 pages long.

Law of contradiction

Consider finally the a pair of statements below, which differ only w.r.t. the subject position. 

(14) Ulysses is boring and Ulysses is not boring.
(15) Some book is boring and some book is not boring.

Sentence (14) can never be true, irrespective of the actual situation. That is, (14) is a contradiction,

as are all statements of the form ‘p and not p’. Again, sentences of the same shape in which the

name has been substituted by a quantifier behave differently: Unlike (14), (15) can be used as a

truthful description of some situation. 

10.2. INTERPRETING QUANTIFIED SENTENCES 

It was pointed out that set notation can be substituted for function notation and v.v. For instance,

noun phrases such as [NP book] denote characteristic functions of sets of individuals (λx[book(x)

=1]). The set theoretic notation offers an intuitive and transparent way to conceptualize the effects

of natural language quantification.

Recall that given the set theoretic translation of predicates, function application is

reinterpreted as set membership:

(16) ƒdog„ = {Rover, Sue}
ƒsleep„ = {Rover, Sue, Pat}

(17) ƒSam sleeps„ = Rover 0 ƒsleep„

Consider now the quantification structures as in (18)a:

(18) a. Every dog sleeps
b. No dog sleeps

Intuitively, quantifiers establish relations between sets: (18)aa means that the set of dogs is a subset

of the set of individuals who sleep. And (18)ab means that the intersection of the set of dogs and

the set of individuals who sleep is empty15. 

(19) a. {x|x is a dog} f {x|x sleeps} (= (18)aa)
b. {x|x is a dog} 1 {x|x sleeps} = {} = i (= (18)ab)

14(12) and (13) can be reduced to the general format ‘p v ¬p’ by the following inference: Assume that
p stands for the statement ‘Ulysses is more than 100 pages long’. Then ‘not p’ is the statement ‘It is not
the case that Ulysses is more than 100 pages long’. From this, one can infer the truth of the statement q
= ‘Ulysses is less than 1000 pages long’. This is so because everything which is 100 or less pages long
is also less than 1,000 pages long.  One can now substitute q for ‘not p’, resulting in (1), (12).

15Euler (1768) was the first to employ Leibniz’s device of illustrating logical relations by geometrical
relations to model three of the four Aristotelian forms of statements (all, no and some).
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10.2.1. Syncategorematic Translation

As a first approximation towards a semantics for quantified sentences, assume the following

(syncategorematic; see below) lexical entries for every and no:

(20) ƒevery α β„ = 1 iff ƒα„ f ƒβ„
ƒno α β„ = 1 iff ƒα„ 1 ƒβ„ = i

On this view, one just needs to plug in the denotation of the quantifier to gain the correct result:

(21)     IP
 3

     DP       VP
2  |

           D°       NP            V°
| | |

        every      N°      sleeps

|
   dog

(22) ƒEvery dog sleeps„ = 1 iff ƒdog„ f ƒsleeps„

However, this method suffers from serious flaws. Notice that the definitions for every and

no in (20) differ from all other lexical entries that we have encountered so far. Usually, the lexical

entry of a category α was of the form ƒα„ = ____, while in (20), the denotation brackets also include

two variables, which are instantiated by the common noun (dogs) and the VP (sleep). Strictly

speaking, we do not assign a meaning to every, but to the (IP) node resulting from applying every

to a common noun and a VP. Such a translation in which the lexical item is assigned a meaning only

in context with other nodes is referred to as SYNCATEGOREMATIC treatment. Clearly,

syncategorematic rules violate the spirit of the principle of compositionality, in that they obfuscate

the interpretation of the internal structure of a given constituent. This is undesirable as it fails to

account for the generative capacity of natural language, i.e. the observation that a finite (small)

number of recursive rules derives the infinite set of all well-formed sentences.

10.2.2. Categorematic Translation 

A first version of categorematic lexical entries for the universal quantifier and the negative

existential can be given as below:

(23) ƒevery„(A)(B) = 1 iff A f B
ƒno„ (A)(B) = 1 iff A 1 B = i

Furthermore, once the lexical entry is changed slightly such that the two argument positions (A and

B) are abstracted over by λ-abstraction, it becomes possible to interpret quantified clauses

compositionally. Thus, unlike in the categorematic analysis, every node is assigned a meaning:

(24) ƒevery„ = λPλQ[P f Q]
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Sample Derivation

(25)     IP
 3

     DP       VP
2  |

           D°       NP            V°
| | |

        every      N°      sleeps

|
       dog

(26) 1. ƒEvery dog sleeps„ = 1 iff

2. ƒevery„(ƒdog„)(ƒsleeps„) = 1 iff FA

3. λPλQ[P f Q](ƒdog„)(ƒsleeps„) = 1 iff Lexicon

4. λQ[ƒdog„ f Q] (ƒsleeps„) = 1 iff λ-Conversion

5. ƒdog„ f ƒsleeps„ λ-Conversion

���� Note that the denotation of the subject DP applies to the VP-denotation, and not vice versa

(as was the case in the examples encountered so far)! This follows directly from the theory

of types (see below).

���� Quantifiers measure how many As are Bs in Q(A)(B):

(27) a. Some dogs sleep
b. Most dogs sleep
c. At least two dogs sleep

(28) a. ƒsome„ (A)(B) = 1 iff A 1 B =/  i
b. ƒmost„(A)(B) = 1 iff |A1B| > ½ |A|      or 

ƒmost„(A)(B) = 1 iff |A1B| > |A - B|
c. ƒat least two„(A)(B) = 1 iff |A1B| $ 2

10.2.3.Translation into Predicate Logic

Although it is in principle possible to generalize the set theoretic analysis to other quantifiers, sets

lack the expressive power to account for the fact that ordering plays a role in the interpretation of

sentences (relations, ordered pairs, etc...). Thus, we revert to the notation in terms of Predicate Logic

in what follows. The set theoretic notions of intersection, negation and union can also be expressed

in terms of first order predicate logic (using œ, ›, ¬, v and ÿ).

(23) ƒevery„(A)(B) = 1 iff œx[A(x) ÿ B(x)]
ƒno„ (A)(B) = 1 iff ¬›x[A(x) v B(x)]

Again, using the λ-notation yields the lexical entry which can be compositionally interpreted (in

what follows, brackets will be omitted unless ambiguity arises).
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(29) ƒevery„= λPλQ[œ[xP(x) ÿ Q(x)]]
ƒno„  = λPλQ[¬›x[P(x) v Q(x)]]

It becomes now also possible to determine the logical type of quantifiers: They denote functions of

type <<e,t>,<e,t>,t>, that is they are functions from characteristic functions of individuals to

functions from functions from characteristic functions of individuals to truth values. Since (almost)

all natural language quantifiers are of this type, such quantifiers are also called Generalized

Quantifiers (following Mostowsky 1957; see Barwise and Cooper 1982).

Sample Derivation

At this point, everything which is needed in order to compute the compositional meaning of a

sentence is in place. Observe that all lexical entries are treated as λ-terms, and that λ-conversion

ensures that the variables are bound off correctly:

(30) 1. ƒEvery dog sleeps„ = 1 iff

2. ƒevery„ (ƒdog„)(ƒsleeps„) = 1 iff FA

3. λPλQ[œx[P(x) ÿ Q(x)]](ƒλy[dog(y)„) (λzƒsleeps(z)„) = 1 iff Lexicon

4. λQ[œx ƒλy[dog(y)„(x) ÿ Q(x)](λzƒsleeps(z)„) = 1 iff λ-Conversion

5. œx ƒλy[dog(y)„(x) ÿ λzƒsleeps(z)„(x)] = 1 iff λ-Conversion

6. œx ƒdog(x) ÿ sleeps(x)] = 1 λ-Conversion

Exercises

! Provide the predicate logic translation for the following sentences (ignoring tense, as usually):

(31) a. Exactly one boy read the book which someone had recommended.
b. Sam does not like Sally but someone else.
c. They liked every movie except Titanic.
d. Birds lay eggs but not all mammals do not lay eggs.
e. Someone has stolen a book and has not returned it.

"  Design the lexical entries (λ-notation) for the three quantifiers used below:

(32) a. At least one dog arrived
b. ›x[dog(x) v arrive(x)]

(33) a. At least two dogs arrived.
b. ›x›y[x=/ y v dog(x) vdog(y) v arrive(x) v arrive(y)]

(34) a. The milkman arrived
b. ›x[milkman(x) v œy[milkman(y) ÿ x = y] v arrive(y)] =

= ›x[œy[milkman(y) : x = y] v arrive(y)] (Russell 1905)
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! Determine whether the statements below are true of false in the Model TL:

(35) MODEL TL
a. D = {m(ary), s(am), b(ill)}
b. ƒtired„ = {m,s}

ƒlike„ = {<m,s>, <m,b>, <b,s>, <s,s>}

(36) a. ›x›y›z[like(y)(x) v tired(y) v like(z)(x) v ¬tired(z)]
b.  œx[¬meet(x)(x)]

c. œz[meet(z)(z) : ¬tired(z)]
d. ›x›y[meet(y)(x) v ¬tired(x) v ¬tired(y)]
e. œx[meet(x)(x) ÿ ›y[meet(y)(x) v tired(y)]]
f. œx[tired(x) ÿ ›y[meet(y)(x)]]

10.2.4. The limits of 1st order Predicate Logic

Is it now possible to find a suitable first order predicate logic interpretation for all quantifiers in

natural language? The answer is negative, i.e. it works for some, but not for others. To illustrate,

consider most (assume most means more than half):

(37) Most French hate Mozart

(38) a. ƒmost„ = λPλQ[most x[P(x) v Q(x)]]
b. ƒmost„ = λPλQ[most x[P(x) ÿ Q(x)]]

The reason why it is impossible to translate determiners such as most (and many, few) into first order

predicate logic becomes apparent once one consider the natural language paraphrases for (37)

modeled after the lexical entries above: 

(39) a. For most individuals: they are French and they hate Mozart
b. For most individuals: they are French if they hate Mozart

Neither version of (39)a not (39)b captures the meaning of (37)b correctly. While (39)a can be true

only if there is a substantial inflation of French citizens, the truth conditions of (39)b require that

for the larger part of the population, French citizenship is contingent upon specific musical tastes.

But this is not what (37)b means.

This finding indicates that not all natural language quantifiers can be translated into first

order predicate logic. Moreover, it shows that natural language employs so-called restrictive

quantification (Mostowsky 1957, Rescher 1962, Geach 1972). Notice that the reason why (38) yields the

wrong results is that the domain of most in the metalanguage translation is the whole universe (all

individuals). But this gives now rise to truth condition which are too strong/weak. What is required

is that most quantifies only over those individuals which are in the denotation of the first argument

of the quantifier (French). Thus, the domain of quantification has to be restricted. A 

Finally, two suitable lexical entries for most (in set notation; repeated from above):

(40) ƒmost„(A)(B) ] |A1B| > ½ |A| (Fintel 1994)

ƒmost„(A)(B) ] |A1B| > |A - B | (Partee, ter Meulen, Wall 1993: 395)
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10.3.  QUANTIFIER RAISING

The treatment for quantifiers advocated above faces a serious problem: The lexical entries cover

only cases in which the quantifier occupies the subject position of a sentence, as e.g. in (4)a:

(29) ƒevery„ = λPλQ[œxP(x) ÿ Q(x)]
ƒno„ = λPλQ[¬›xP(x) v Q(x)]

(41) a. No dog likes Ann. T (= (4)a)
b. Ann likes no dog. Y (= (4)b)
c. She looked for it [PP in every corner] Y

d. They invited [NP a student [PP from every European country]]. Y

The lexical entry for no in (29) can however not be employed in the interpretation of (4)b, because 

in the tree for (4)b, there is no suitable NP and VP constituent which no could apply to in a

compositional way. More precisely, ƒno dog„ is of type <e,t>,t>, while ƒlike„ is of type <e,<e,t>>.

Thus, they can neither be combined by Function application nor by Predicate Modification:

(42)     IP
   3
 NP        VP
 |  3
N°    V°          DP
|      | 2  

        Ann likes       D°     NP            
        |       |
      no      N°

      |
  dog

One possible solution to this problem consists in modulating the type of quantifiers or for verbs,

such that they can be combined in a meaningful way (see. e.g. Heim and Kratzer 1998: 180f for discussion).

A suitable lexical entry for no in object position would look as follows:

(43) ƒnoObject„ = λP<e,t> λQ <e,<e,t>> λx¬›y[P(y) v Q(y)(x)]

This conception misses the insight though, that the meanings of QPs in different syntactic

encironments are related to each other in a systematic way, resulting in a blow-up of the lexicon. 

Option I: Type Shifting

Quantifiers (no in no book) are invariably treated as expressions of type <<e,t>,<<e,t>,t>, and so-

called TYPE SHIFTING operators are introduced into the syntax, which change the type of the

quantifier as required. For instance, the operator [Object applies to QPs in object position, shifting

them to expressions of type <<e,<e,t>,<e,t>>, which may combine with transitive verbs:

(44) ƒ[Object„ = λV<<e,t>,t> λQ<e,<e,t>> λx[V(λy[Q(y)(x)])]
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Sample Derivation

(45) a. They like no book

b. ƒThey5  [like [[Object [no book]]]„g =

1. = ƒ[Object„(ƒno book„)(ƒlike„)(ƒthey5„
g) =

2. = λVVVVλQλx[VVVV(λy[Q(y)(x)])] (λP¬››››z[book(z) vvvv P(z)]) (λaλb[like(a)(b)])(g(5)) = 

3. = λQ λx[λP¬›z[book(z) v P(z)](λy[Q(y)(x)])] (λaλb[like(a)(b)]) (g(5)) =

4. = λQλx[¬›z[book(z) v λy[Q(y)(x)](z)]] (λaλb[like(a)(b)]) (g(5)) =

5. = λQλx[¬›z[book(z) v Q(z)(x)]] (λaλb[like(a)(b)]) (g(5))  =

6. = λx[¬›z[book(z) v λaλb[like(a)(b)](z)(x)]] (g(5))  =

7. = λx[¬›z[book(z) v λb[like(z)(b)](x)]] (g(5)) =

8. = λx[¬›z[book(z) v like(z)(x)]] (g(5))  =

9. = ¬›z[book(z) v like(z)(g(5))]

10. Let g(5)  = the boys. Then

¬›z[book(z) v like(z)(g(5))]     =    ¬›z[book(z) v like(z)(the boys)]

Option II: Quantifier Raising

Option I requires a separate type shifting operation for QPs in direct object position, one for QPs

in indirect object position, one for QPs which serve as prepositional complements, and so on.

However,  there is a second, more straightforward way to derive the meaning of sentences with QPs

in object position, which makes use of the interpretational procedures which have already been

introduced for the analysis of relative clause. In fact, it will turn out that - with the exception of a

minor change in the definition of Predicate Abstraction - it is not necessary to add any further

semantic assumption in order to arrive at the correct interpretation of object QPs!

To begin with, recall from the discussion of relative clause, that empty operator movement

is interpreted as λ-abstraction over the trace left in the base position. Assume now that this method

is generalized to other types of movement (wh-movement, topicalization, scrambling,...). Assume

moreover that quantifiers move covertly in Logical Form (LF) and adjoin to the IP node (Chomsky

1976; May 1977, 1985; see Hornstein 1995 for overview). The LF-representation for sentence (4)b on this

analysis is illustrated by the tree in (46)b (see Heim and Kratzer 1998: 184ff): 
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(46) a.    IP
       3
 NP         VP

   |  3
  N°    V°          DP
   |      | 2  

 Ann likes       D°     NP     
                    |       |

      no      N°
      |
  dog

b.         IP-1t            Quantifier Raising

        wo
     DP<<e,t>,t>                 IP-2<e,t> 
  2                 3
D°       NP          λ3                  IP-3t 

  |  |                           3 
no        N°                     NPe            VP<e,t> 

              |                     |       3
            dog                   N°         V°          t3, e

                                       |            |   
                                   Ann      likes

Before proceeding, a remark on the use of indices in the graph (46)b is in order: It is a

common notational convention in the transformational grammars to subscript the index of a moved

phrase to the trace as well as to the dislocated phrase. However, in (46)b, the movement index (‘3')

is separated from the moved category (no dog), and adjoined below the target of movement (no

dog). This step is motivated by semantic considerations, as will become clear in a moment, and

comes at the cost that movment does not just involve dislocation, but also implicates local

reorganization of the tree. It should not go unnoticed, though, that the algorithm can be easily

formalized and generalizes to all types of movement (e.g. operator movement).

Turning to the interpretation of (46)b, observe that after QR, the QP resides now in a

position in which it is compositionally interpretable: Just as was the case with empty operator

movement, the sister node of the dislocated category is a predicate of individuals (<e,t>) derived

by λ-abstraction. The QP, which denotes a function of type <<e,t>,t>, can therefore directly combine

with IP-2. So much for the types. 

One more ingredient needs to be spelled out: the interpretation of λ-abstraction. The analysis

of relative clause lead to the conclusion that an empty operator functions as λ-abstractor, and that

variables bound by this λ-operator inside the relative clause are captured by the λ-operator by the

means of a modified variable assignment (ƒOPn Ψ„g  =  λx[ƒΨ„]g[n/x]). On current views, the rule for

Predicate Abstraction needs to be slightly altered, leading to the - in fact simplified - version below:

PA. Predicate (Lambda-) Abstraction (final version)

For any g and and n0ù, if α has the form XP, then ƒα„g  =  λx[ƒγ„]g[n/x]

                           2
                        n           γ

Given these premises, the tree (46)b can now be subjected to semantic interpretation. Crucially, note

that the interpretation of structures involving QR proceeds - up to IP-2 - exactly along the same lines



97 Introduction to formal semantics

as the interpretation of relative clause. The computation proceeds as follows (this proof is for one

pretty complete, but still contains - for expository reasons - a redundant steps [2.]): 

(47) 1. ƒ[IP-3 [No dog] [IP-2 3 [IP-1 Ann [VP likes t3]]]]„
g = 1 iff

2. ƒ[No dog]„g (ƒ[IP-2 3 [IP-1 Ann [VP likes t3]]]„
g) = 1 iff 9. = 1 FA

3. ƒ[No dog]„g (λx[ƒ[IP-1 Ann [VP likes t3]]„
g[3/x]]) λ-Abstraction

4. ƒAnn„ = Ann Lexicon

5. ƒlikes„ = λvλw[like(v)(w)] Lexicon

6. λx[ƒ[IP-1 Ann [VP likes t3]]„
g[3/x]] =

= λx[ƒlikes„ (ƒt3„
g[3/x])(Ann)] = Substitution & FA

= λx[ƒlikes„ (g[3/x](ƒt3„))(Ann)] = Varibale assignment

= λx[ƒlikes„ (g[3/x](3))(Ann)] = Interpretation of trace

= λx[ƒlikes„ (x)(Ann)] = Application of g

= λx[λvλw[like(v)(w)](x)(Ann)] = Substitution from 5.

= λx[λw[like(x)(w)](Ann)] = λ-Conversion

= λx[like(x)(Ann)] λ-Conversion

7. ƒdog„ = λz[dog(z)] Lexicon

8. ƒ[No dog]„g  = λPλQ¬›y[P(y) v Q(y)](λzƒdog(z)„) = Lexicon & Substitution from 7.

= λQ¬›y[λvƒdog(z)„(y) v Q(y)] = λ-Conversion

= λQ¬›y[ƒdog(y)„ v Q(y)] λ-Conversion

9. λQ¬›y[dog(y) v Q(y)] (λx[likes(x)(Ann)]) = Substituting 6. & 8. into 2.

= ¬›y[dog(y) v λx[likes (x)(Ann)](y)] =

= ¬›y[dog(y)] v likes (y)(Ann)]]

Exercise
The discussion above has revolved around cases in which one quantified phrase was situated either

in subject or in object position of a transitive clause. But there are also cases which combine two

or more QPs in one clause, as has been pointed out at various times. These sentences display truth

-conditional ambiguity under certain circumstances. Determine for the following examples below: 

(i) Whether they are ambiguous. 

(ii) If they are, provide a compositional derivation (similar to the one given in (47)). 

(iii) If they are not ambiguous, explain why.

(48) a. Exactly five American presidents committed exactly one crime.
b. Some guard was standing in front of every window.
c. Every story has an ending.
d. Sally met a person who knew every member of the Favoritener Kleintierzüchterverband



WiSe 2005/06 98

10.4. MOTIVATING QR

Obviously, one would like to have independent evidence for the movement process of QP’s

postulated in 10.3. Otherwise, the analysis of object QPs in terms of QR would fail to satisfy the

criterion that no assumption should be adopted just in order to justify the existence of the

phenomenon under scrutiny. But there is in fact strong evidence in favor of such an operation which

comes from the following constructions:

!  QP-QP-interaction:

(49) A doctor saw each patient

! Antecedent Contained Deletion  (May 197, 1985; Fiengo and May 1994)

(50) Sally met every personi Bill did -

- = met ti 

On ACD see below, section 11.

!  Inverse Linking 

(51) A barber from every cityk hates itk  

! A  constraint on QR: Coordinate Structure Constraint and Ruys (1992) effects

(52) a. Sam has seen none of the movies and Bill tried to see it
b. Sam has seen none of the movies and Bill tried to see Terminator.

Scenario: Assume that Sam saw Terminator and Scanners. Moreover, suppose Bill tried to see

Scanners, but Bill didn’t try to see Terminator (making the second conjunct come out

as false). Finally, assume it refers to Terminator. 

Predicted    Intuition

(53) a. ¬›x[movie(x) v see(x)(Sam) v tried_to_see(x)(Bill)] F T

b. ¬›x[movie(x) v see(x)(Sam) v tried_to_see(g(it))(Bill)] T T

c. ¬›x[movie(x) v see(x)(Sam)] v tried_to_see(g(it))(Bill) F T

(54) a. ¬›x[movie(x) v see(x)(Sam) v tried_to_see(Terminator)(Bill)] T *
b. ¬›x[movie(x) v see(x)(Sam)] v tried_to_see(Terminator)(Bill) F T
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11. ANTECEDENT CONTAINED DELETION

11.1. PROBLEM & STANDARD ANALYSIS

Ellipsis resolution in configurations where the antecedent (the VP) contains the node which hosts

the ellipsis (the object) leads to endless regress (May 1977, Fiengo & May 1994, Sag 1976):

(55) a. John [VP read every book Bill did -]
b. - = [VP read every book Bill did -]
c. John [VP read every book Bill did [VP read every book Bill did [VP read every book Bill

did...]]] Ellipsis resolution leads to endless regress

Observation: ACD is possible only if the NP containing the ellipsis site - the host - is

quantificational.

(56) a. Dulles suspected everyone that Philby does
b. Dulles suspected someone who Philby does
c. Dulles suspected noone who Philby does
d. *Dulles suspected Burgess who Philby does
e. *Dulles suspected his friend who Philby does
f. *Dulles suspected this spy who Philby does

This has been taken to indicate that ACD resolution should in one way or the other be tied to the

process which fixes quantifier scope (QR). 

Standard Analysis: QR of QP which hosts the ellipsis site resolves regress (May 1977, Sag 1976):

(57) a. John [VP read every book that Bill did -]
[IP [every book that Bill did -]k  [IP John [VP read tk]] QR

b. - = [VP read tk]
c. For every book such that Bill read it, John read it

! The fine-grained structure of (57)d look as in (59). Note that the constituent structure matches the

interpretation given in (57)d (the empty operator OPk in (59) represents the λ-abstractor). For

reasons of clarity, the denotations of the components below are specified in set-notation.

(58) John [Antecedent VP  read every book Bill [Elliptical VP did -]]

(59)    IP
       qp

QPk          IP
      3  3
every NP2           John       VP     »  Antecedent VP

        3    5
 NP1 CP      read tk

4    3
    book OPk IP

      3
 Bill          VP   »  Elliptical VP

      5 
       read tk
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(60) Meaning of relative clause: {x|Bill read x}

(61) Meaning of NP1 (book): {x|x is a book}

(62) Meaning of NP2 (book Bill read): {x|x is a book} 1 {x|Bill read x} =

   = {x|x is a book and Bill read x}

! Universal quantifier (every; formal symbol œ) can be interpreted by subset relationship (‘f’):

(63)    Every [dog] is [an animal]
       ÆÈÇ     ÆÉÉÉÈÉÉÉÇ

{x|x is a dog} f {x|x is an animal}
“the set of dogs is a subset of the set of animals”

! Applying this algorithm to ACD yields the correct interpretation for the elliptical VP:

(64) a. John [Antecedent VP  read every book Bill [Elliptical VP did  -]] Surface representation

b. every book Bill [Elliptical VP did -] [John [Antecedent VP read tk] QR of object

      ÆÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÈÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÇ    !
 z-----<-----<------<m

c. every book Bill [Elliptical VP did -] [John [Antecedent VP read tk]
     ÆÉÉÉÉÉÉÉÉÈÉÉÉÉÉÉÉÉÇ Fill antecedent VP

    [VP read tk] into ellipsis site

d. every book Bill [VP read tk] [John [Antecedent VP read tk]
        ÆÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÈÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÇ     ÆÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÈÉÉÉÉÉÉÉÉÉÉÉÉÉÇ

 {x|x is a book and Bill read x}  f   {x|John read x} Interpretation

“the set of books Bill read is a subset of the things John read”

11.2. SYNTACTIC LOCALITY

Observation I: The OP-chain in ACD is sensitive to locality conditions.

(65) a. *John [VP2 read everything [CP which Bill believed [NP the claim that he [VP1 did  -]]]]
 b. [IP [everything [CP which Bill believed [NP the claim that he [VP1 did  -]]] 

[IP John [VP2 read tk] QR

c. -  =  [VP2 read tk]

This generalization supports the assumption that the ellipsis site contains a trace at LF, as well as

structure to host this trace. Since QR is a precondition for identifying the ellipsis, the ellipsis site

can furthermore be ‘filled’ by syntactic structure only subsequent to QR, i.e. at LF. Therefore, the

locality violation in (65) cannot be computed earlier than at the abstract level of LF. Assuming that

locality is a syntactic property, it follows that locality sensitivity of ACD can be interpreted as a

further argument for the existence of an abstract syntactic level of representation (= LF).

Observation II: QR in ACD is sensitive to locality conditions.
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! There are contexts in which QR can proceed either into a higher (infinitival) or into the lower

clause. The ellipsis in ACD can then be resolved in two ways, leading to ambiguity:

(66) John expected the boys to read every book Mary [VP did -]
a. John expected the boys to read every book Mary read Narrow QR

b. John expected the boys to read every book Mary expected the boys to read Wide QR

(67) John wanted to read every book Mary [VP did -]
a. John wanted to read every book Mary read Narrow QR

b. John wanted to read every book Mary wanted to read Wide QR

! It is moreover possible to create contexts in which a narrow interpretation is blocked due to

independent restrictions. Observe to begin with that the collective predicate to agree on in (68) is

only compatible with a plural subject (*She/I/Tom/the man gathered). More precisely, since there

are two predicates subsequent to ellipsis resolution, both subjects must be plural:

(68) a. *She gathered in every city that Bill did 
b. *The girls gathered in every city that Bill did
c. *She gathered in every city that the boys did
d. The girls gathered in every city that the boys did

(69) combines properties of  (66) with properties of (68): (69) is ambiguous w.r.t. ellipsis resolution,

and at the same time contains a collective predicate. Since the subject of the relative clause in (69)

is a singular term (Bill), the VP which fills the ellipsis site must be chosen such as to be compatible

with a singular subject. Hence, only the higher VP, which does not require a plural subject, may

serve as the antecedent for the ellipsis. Similar observations apply to (70) and (71) 

(69) I expected the boys to gather in every city that Bill did

a. *I expected the boys to gather in every city that Bill agreed on

b. I expected the boys to gather in every city that 
Bill expected the boys to agree on 

(70) I expected the boys to solve as a group every problem that Bill did Not ambiguous

(71) I expected the boys to agree on every topic Bill did Not ambiguous

! This configuration supplies (at least at first sight) a possibility to test the hypothesis that QR in

ACD is sensitive to islands. More specifically, if the higher predicate and the QP are separated by

an island, one is led to suspect that it should no longer be possible to generate the sensical reading,

and the sentence should end up as unacceptable: 

(72) *I had the expectation that the boys gather in every city that Bill did

a. *I had the expectation that the boys gather in every city that 
Bill gathered in Narrow QR: YPlural restriction

b. *I had the expectation that the boys gather in every city that 
Bill had the expectation that the boys gather in Wide QR: YLocality
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The judgements about (72) appear rather robust. Unfortunately, the example can also be excluded

by an additional factor: In (72), the empty operator chain also violates locality. Thus, one needs to

find contexts which constitute islands for QR, but do not block empty operator movement. 

! Does negation fulfill these criteria? Recall that negation blocks QR of objects:

(73) I do not know every poem. œ > ¬ /*œ > ¬

Consider in this light (74). On the one hand, the object needs to pass over negation in order to

escape the plural predicate solve as a group. On the other hand, such movement should be blocked

by negation. (74) indeed seems to be rather marked:

(74) ?*I don’t expect the boys to gather in every city that Bill did

a. *I don’t expect the boys to gather in every city that Bill gathered in 
Narrow QR: YPlural restriction

b. *I don’t expect the boys to gather in every city that
 Bill didn’t expect the boys to gather in Wide QR: YLocality of QR

Crucially, negation does not interfere with formation of relative clauses, thus the marginality of (74)

cannot be due to a locality violation induced by empty operator movement: 

(75) I know about a/every topic OPk that Bill didn’t solve tk

" Similar conclusions can be reached on the basis of the following examples:

(76) ?*I didn’t want them to agree on every topic Bill did

(77) ?*She claimed that the electorial committee elected every candidate Senator Smith did

In sum, these observations support the assumption that the host QP reaches its LF position

by movement, and that this movement operation is subject to syntactic constraints. Next, consider

a possible alternative analysis of ACD, which would - if successful - invalidate the argument for QR

coming from ACD, and therefore deserves special attention.

11.3. EXTRAPOSITION 

Alternative analysis: Baltin (1987) claims that ACD is an illusion. Ellipsis inside the relative clause

is resolved in overt syntax by extraposition of the relative clause, which can equally aid in resolving

endless regress:

(78) a. John [VP read every book that Bill did -]
b. John [VP [VP read tk]  [every book that Bill did -]k] (Extraposition)
c. - = [VP read ti]
d. For every book such that John read it, Bill read it
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11.4. LARSON & MAY (1990)

Larson and May present a number of counter-arguments against Baltin (1987), in defense of the

original QR analysis. In sum, these (and other) considerations led to the widely shared consensus

that ACD is in fact best analyzed as the product of QR. 

Argument I: Why is extraposition obligatory? Usually, it is an optional process.

Argument II: Extraposed CPs do not license that-drop, while that may be omitted in the relative

clause containing the ellipsis in ACD.

(79) I read something yesterday *(that) you had recommended

(80) I read something (that) John did

Argument III: Clause internal ACD cannot be reduced to extraposition, because there is direct

evidence from serialization for the position of the relative clause - it is certainly not extraposed.

(81) a. ?John believed [IP [everyone you did -] to be a genius]]
b. - = [VP you believed t to be a genius ]
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12. SOME LOGICAL PROPERTIES OF NL-QUANTIFIERS

(see e.g. von Fintel 1994)

There is an imbalance in the contribution which the left and the right argument of a quantifier make

to the overall interpretation of the GQ. Various properties of GQ indicate that the left argument of

the quantifier (its domain argument) plays a more prominent role.

12.1. RESTRICTIVE QUANTIFICATION 

Natural language employs restrictive quantification (Mostowsky 1957, Rescher 1962, Geach 1972

among many others), as expressed by GQ theory:

(82) Most dogs sleep.
a. Most individuals are such that they are dogs and sleep.
b. Most individuals are such that if they are dogs then they sleep.

(83) Question:  Which models would render (82)a and (82)b vacuously true?

(84) ƒmost„(A)(B) ] |A1B| > ½ |A| [Fintel 1994]

ƒmost„(A)(B) ] |A1B| > |(D - B) 1 A| [Chierchia and McConnnell-Ginet 1990: 409]

ƒmost„(A)(B) ] |A1B| > |A - B | [Partee, ter Meulen, Wall 1993: 395]

12.2. CONSERVATIVITY 

The left argument figures more prominently in interpretation:

(85) D is conservative iff (‘live on’ property of Barwise and Cooper 1981)

ƒD„(A)(B) ] ƒD„ (A)(A1B)

(86) Conservative Quantifiers

a. ƒEvery man runs„ ] ƒEvery man is a man who runs„

b. ƒNo man runs„ ] ƒNo man is a man who runs„

c. ƒMost men run„ ] ƒMost men are men who run„

d. ƒFewer than 5 men run„  ] ƒFewer than 5 men are men who run„

(87) Non-conservative Quantifiers

a. ƒall non„(A)(B) ] (D-A) f B [Chierchia and McConnel-Ginet 1990]

b. ¬ƒAll non-men run„ ] ƒAll non-men are men who run„

(88) Question:  What is minimally required for the second sentence to be false?

(89) a. ƒonly„(A)(B)  ] B f A

b. ¬ƒOnly men run„ ] 
c. ƒOnly men are men who run„ (2nd clause is tautology)
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12.3. PRESUPPOSITIONS

The denotation of the left argument of a quantifier can be restricted by presuppositions in that the

set denoted by the left argument imposes necessary preconditions on the model:

(90) Existence presupposition

The king of France is bold

(91) Cardinality presupposition

a. If |A| = 2, then ƒboth„ (A)(B)  ] A f B
If ¬ |A| = 2, then ƒboth„ (A)(B) is undefined

b. Both dogs sleep.

Hence, formulas containing natural language quantifiers cannot be vacuously true (Strawson 1952): 

(92) All dogs are asleep. (infelicitous in world without dogs)

12.4. A CONSEQUENCE OF CONSERVATIVITY 

Two further properties of a certain class of determiners: 

(93) D is symmetric iff 

ƒD„(A)(B) ] ƒD„(B)(A)

(94) D is intersective iff 

ƒD„(A)(B) ] ƒD„(A1B)(B)

Symmetric D’s are also intersective if conservativity is ensured (and v.v.):

(95) ƒD„(A)(B) ] ƒD„(B)(A) ]  ƒD„(A1B)(B)

(96) symmetric ÿ intersective

ƒD„(A)(B) ] ƒD„(B)(A) ]  ƒD„(B)(A1B)]  ƒD„(A1B)(B)
    symmetry        conservativity     symmetry

(97) Symmetric, intersective

a. ƒSome dogs sleep„ ] ƒSome sleepers are dogs„

b. ƒSome dogs sleep„ ] ƒSome sleeping dogs sleep„

(98) Non-symmetric, non-intersective

a. ¬ƒAll dogs sleep„ ] ƒAll sleepers are dogs„

b. ¬ƒAll dogs sleep„ ] ƒAll sleeping dogs sleep„ (2nd clause is tautology)

(99) Observation: Symmetric, intersective D’s are weak, they are tolerated in existential

construction.

(100) There is/are some/a/three/*all/*every/*most dogs in the garden.
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