REFLEXIVIZATION

Topics & Goals

- Categorial grammar meets derivational syntax: a transparent theory of reflexives
- Deriving the underlying LF-representations from general principles
- Evidence for object language status of λ -binder
- de re de se contrasts with reflexive ECM subject

1. TRANSPARENT REFLEXIVES

- (1) Mary praised *herself*.
- (2) a. *Principle A*
 - Reflexive pronouns must be bound in their minimal governing category.
 - b. *Binding* α binds β iff (i) α is a λ -binder, (ii) α and β are co-indexed, and (iii) α c-commands β .
- (3) Some puzzles for Binding Theoretic analyses of reflexives
 - a. Transparent morphemes should be assigned lexical meanings. What is contribution of *self*?
 - b. Why do anaphors require antecedents? (Ideally, answer is related to answer to (3)a).
 - c. Locality: why does the domain of reflexivization by and large match A-movement?
 - d. What blocks multiple reflexivazation (*She showed herself to herself)?

Reflexive anaphors have been analyzed as (lecture notes by Giorgos Spathas, 2017)

- a. *arity reducers* that turn two-place relations into one-place predicates (*Categorial Grammar:* Bach & Partee 1980; Steedman 1985; Keenan 1987/1989; Szabolcsi 1987/1989; non-categorial treatments: Schlenker 2005; Lechner 2007/2012; Reuland 2011; Spathas 2010; i.a.)
 - b. *individual variables* whose syntax forces them to be obligatorily bound (Chomsky 1981; Heim and Kratzer 1998; Büring 2005; i.a.)
 - c. items imposing an identity (or part of) *presupposition* on two individuals (Reinhart and Reuland 1993; Reuland 2001; Dechaine and Wiltschko 2012; Patel-Grosz 2013; Sauerland 2013; Ahn 2015; McKillen 2016)
- (5) Mary praised *herself*.

R

a. $[(her)self]_{<<e,<e,t>>,<e,t>>} = \lambda R_{<e,<e,t>>}.\lambda x. R(x)(x)$ (self as arity reducer)b. $[(her)self_1]_e^g$ = g(1)(self as designated variable)c. $[(her)self]_{<<e,<e,t>>,<e,<e,t>>} = \lambda R_{<e,<e,t>>}.\lambda x. \lambda y. R(x)(x): x = y$ (':' marks presupposition)

Spathas (2017): Languages vary w.r.t. (5).

- (6) *Transparent reflexivization* (Lechner 2007, 2012)
 - a. Reflexives are arity reducers in English
 - b. The logical syntax underlying the arity reduction operator *self* is produced by principles of natural language syntax.
- (7) Assumptions
 - a. The pronominal part of the anaphor (*her* in *herself* ...) expresses presupposition that ensures Φ -feature match with the antecedent (Cooper 1983; Heim 2005; Sauerland 2005)
 - b. Movement creates λ -abstract over the movement trace (Heim & Kratzer 1998)
 - c. Index Reanalysis ((8))

1.1. TRANSITIVE CONTEXTS

self incorporates ((10)b) or covertly raises ((10)a; *anaphor cliticization;* Chomsky 1992; Pica 1987; Safir 1998).

(11) *Observation*: Reflexivization applies *before* the antecedent joins the semantic computation. Thus, the order in which Functional Application combines the items is $self \prec$ antecedent.

1.2. DOUBLE OBJECT CONSTRUCTIONS

Observation: Binding among internal arguments ((12)) poses complications for reflexivization analysis (Szabolcsi 1987; for Büring 2005: 43f ditransitives represent an argument against ?).

(12) Sally showed *Alice* to *herself*.

 t_2 showed_{LF} to t_1

(16) Successful derivation of 'Sally showed Alice, to herself,' in terms of Parasitic Scope
 [XP4] = show(alice)(alice)(sally)

1.3. INTERLUDE: MORE ON PARASITIC SCOPE

Movement creates derived one-place predicates (von Stechow 1993; Heim & Kratzer 1998; i.a.):

(17) a. Sally read every $book_{\langle\langle e,t\rangle,t\rangle}$ b. LF: every $book_{\langle\langle e,t\rangle,t\rangle}[\langle e,t\rangle,\lambda_1]$ Sally read t_1]

In contexts where α combines with a *two-place* relation, α lands inbetween a previously moved β and its λ -binder (Sternefeld 1998; Nissenbaum 1998; Beck & Sauerland 2000; Bhatt & Takahashi 2007; Kennedy 2009).

(18) a.
$$\begin{bmatrix} \alpha_{<\sigma,<\tau,t>>,<\varepsilon,t>>} & \dots & \beta_{\varepsilon} \end{bmatrix}$$

b. Move β :
$$\begin{bmatrix} \beta_{\varepsilon} \end{bmatrix}$$
$$\begin{bmatrix} \langle \alpha_{<\sigma,<\tau,t>>,<\varepsilon,t>>} & \dots & t_{\beta,\tau} \end{bmatrix} \end{bmatrix}$$

c. Move α :
$$\begin{bmatrix} \beta_{\varepsilon} \end{bmatrix} \begin{bmatrix} \alpha_{<\sigma,<\tau,t>>,<\varepsilon,t>>} & \lambda_{\alpha} & \begin{bmatrix} \langle \tau,t> \\ \lambda_{\beta} \end{bmatrix} \dots & \begin{bmatrix} t_{\alpha,\sigma} & \dots & t_{\beta,\tau} \end{bmatrix} \end{bmatrix} \end{bmatrix}$$

Barker's (2007) analysis of internal, bound interpretation of different (Beck 2000; Carlson 1987; i.a.).

(19) a. All the boys read a *different* book.
b. ∀x,y[boy(x) ∧ boy(y) ∧ x ≠ y → iz.book(z) ∧ read(z)(x) ≠ iz.book(z) ∧ read(z)(y)]
'No two boys read the same book.'

different combines with two-place relation between property choice functions and predicates.

- (20) Choice Function, property version (Winter 2001; Reinhart 2006) f is a choice function (f_{choice}) iff for any non-empty X: $f(X) \subseteq X$
- $(21) \quad \llbracket \text{different} \rrbracket = \lambda F_{<\!\!<\!\!<\!\!et\!\!>\!\!} . \lambda X_e \forall f_{\text{choice}} \forall x_e, y_e[x \leq_p X \land y \leq_p X \land F(f)(x) \land F(f)(y) \rightarrow x = y]]$
- (22) Parastic Scope derivation of (19)a
 - a. All the boys read a different book.
 - b. Step 1: move antecedent [all the boys $[_{\leq et>} \overline{\lambda_1}]$ [t_{1,e} read a [different book]]]]
 - c. Step 2: move 'different' [all the boys] [different [$_{<<et,et>,<et>} \lambda_2$ [$_{<et>} \lambda_1$] [$t_{1,e}$ read a [$t_{2,<et,et>}$ book]]]]]]
 - d. $\forall f \forall x, y[x \leq_p *boy \land y \leq_p *boy \land read(a(f(book)))(x) \land read(a(f(book)))(y)] \rightarrow x = y]]$ 'No two boys read the same book.'

[Barker 2007: (55)]

1.4. DERIVING THE C-COMMAND CONDITION OF CONDITION A

Assumption (Lechner 2007, 2012): Parasitic scope is regulated by syntactic principles.

(23) Syntactic requirement: move higher node first

- a. Feature on functional head attracts antecedent and reflexive ('tucking-in'; Richards 2001).
- b. Movement economy dictates order of movements and functionally determines landing site: higher node moves first, second movement tucks in.
- NB: The same results can be obtained without features by using the Strict Cycle (Lechner 2012).
- (24) Deriving Parasitic Scope by tucking-in (?)

(25) Semantic requirement: move antecedent first Step 2: [antecedent_e] $[_{<e,<e,>>} \lambda_1$ [... t_1 ... reflexive ...]]] Step 4: [antecedent_e] [self_{<<e,<e,+>} [_{<e,<e,+>} λ_2 [_{<e,>} λ_1 [... t_1 ... t_2 ...]]]]]

(26) *Corollary:* (23) and (25) derive the c-command restriction of Condition A.

(27) *Sheself/herself saw Alice.

For expository convenience, I will switch to simpler transitive sentences, which also implicate anaphor movement - once the event argument (or the situation/world argument) is factored in:

(28) $[self] = \lambda R_{<e,<e,<s,t>>>}.\lambda x.\lambda e.R(x)(x)(e)$

Derivation (29) violates the syntactic requirement that higher nodes are attracted first.

Derivation (30) is consistent with movement calculus, but the representation is not interpretable.

(31) *Parasitic Scope Generalization (PSG)* In environments where movement of α provides the semantic context for type driven movement of β, the base position of α c-commands the base position of β.

Problem. The syntactic requirement should be suspended in relative clause. This is incorrect.

	e man OP_2 <i>he/himself_{NOM}</i> liked t ₂ .	*I met the man	(32)
(self-movement	$[_{\langle e,t \rangle}$ (OP) $[\lambda_2 [\text{self liked } t_2]]$		a
(abstraction by silent relative pronoun	$\begin{bmatrix} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	$[_{}$ self	b

Analysis. English reflexives are not arity reducers after all, but introduce identity condition by presupposition. Then, the whole relative clause is of the wrong type (<e,e>) to combine with the head noun.

 $(33) \quad [[self]]_{<<\!e,<\!e,t>>} = \lambda R_{<\!e,<\!e,t>>} \lambda x.\lambda y.R(x)(x): x = y$

2. Some empirical consequences

2.1. LOCALITY

Locality of anaphor licensing matches that of quantifier scope.

Finite clauses. Scope and binding must not cross finite clause boundaries.

(34)	a. #Someone said [that every man is married to Sue].	$(\exists \succ \forall \land \forall \forall \succ \exists)$
	b. # <i>Someone</i> said [that Sue is married to <i>every</i> man].	$(\exists \succ \forall \land \forall \forall \succ \exists)$

(35) a. *John said [that himself saw Mary].
b. *John said [that Mary saw himself].

Raising to subject. Raising subjects can be within the scope of QPs inside raising complements, experiencers cannot. Raising subjects can bind into raising complement, experiencers cannot.

- (36) a. #John seems to *someone* [t to be likely to die in *every battle*]. (∃ ≻ ∀ / *∀ ≻ ∃)
 b. *A soldier* seems to John [t to be likely to die in *every battle*]. (∃ ≻ ∀ / ∀ ≻ ∃) [Fox 2000]
- (37) a. *Mary seemed to *John* [to like *himself*].
 b. *John* seemed to Mary [t to like *himself*].

Raising to object (ECM). ECM subjects can outscope QPs and be bound by antecedent in matrix clause. Neither option is available for the matrix subject.

- (38) a. *Somebody* believed [*every man* to be married to Mary] $(\exists \succ \forall / \forall \succ \exists)$ b. *#Someone* believed [Mary to be married to *every man*]. $(\exists \succ \forall / \forall \succ \exists)$
- (39) a. John believed [himself to win].
 b. *John believed Mary [t to have seen himself].

Subject control. Contexts are uninformative, because presence of PRO masks binding options ((40)a/b from Kennedy 1997; Moulton 2007; Truswell 2012; Wurmbrand 2015, to appear).

- (40) a. At least one American tourist₁ expects PRO_1 to visit every European country this year.
 - b. At least one American tourist₁ hopes PRO_1 to visit every European country this year.
 - c. At least one American tourist₁ hopes PRO_1 to marry every man in this group.
 - d. A different woman₁ promised PRO_1 to marry every man in this group.

(throughout: $\exists \succ \forall \forall \forall \succ \exists$)

- (41) a. *John*₁ expected/hoped/promised [PRO₁ to vote for *himself*₁]
 - b. $\left[\sum_{< e, < s, t >>} \lambda_2 \left[\sum_{vP, < s, t >>} t_{2, PRO} \text{ vote for himself}_1 \right] \right]$
 - c. [*self* [$_{e,e,e,s,t>>>} \lambda_1 [\lambda_2 [_{vP,s,t>} t_{2, PRO} \text{ vote for himself}_1]]$]
 - d. $[(41)c] = \lambda x \cdot \lambda e \cdot x$ votes for x in w

Object control & scope. For many speakers, the embedded universals may not scope over the indefinite in any of the object control complements in (42) ((42)d from Wurmbrand to appear, fn. 7).

- (42) a. We persuaded *at least one American tourist*₁ [PRO₁ to visit *every European* country this year].
 b. #We asked *at least one woman*₁ [PRO₁ to marry *every man* in this group].
 - c. #We convinced *a different woman*₁ [PRO₁ to marry *every man* in this group].
 - d. *Someone* has persuaded Mary₁ [PRO₁ to read *every book* on the reading list].

(throughout: $\exists \succ \forall / * \forall \succ \exists$)

Object control & reflexives. Reflexivization across object control predicates is impossible.

(43) **John*₁ promised/asked/convinced us [PRO₂ to vote for *himself*₁].

Double object constructions I. DO can be bound by subject, DO can scope across subject.

- (44) a. Mary showed *John₁* himself₁ in the mirror.
 b. *John₁* showed Mary himself₁ in the mirror.
- (45) a. *A different* child gave me *every book*. $(\exists \succ \forall / \forall \succ \exists)$ b. *At least two judges* awarded me *every medal*. $(\exists_2 \succ \forall / \forall \succ \exists_2)$

Double object constructions II. In the double object frame, IO - DO orders are scope rigid (Barss and Lasnik 1987; Bruening 2001; Lechner 2009). Thus, QR is order preserving.

(46)	a.	I gave <i>a child each doll</i> .	$(\exists \succ \forall / {\boldsymbol{\ast}} \forall \succ \exists)$
	b.	The judges awarded <i>a (#different) athlete every medal</i> .	$(\exists \succ \forall \land * \forall \succ \exists)$

(47) a. $[IO_1 \dots [DO_2 \dots [t_1 \dots [t_2 \dots]]]]$ b. * $[DO_2 \dots [IO_1 \dots [t_1 \dots [t_2 \dots]]]]$

Puzzle. If reflexivization implicates anaphor movement of anaphor, and anaphor movement is like QR, why can reflexive raise across IOs?

#5: REFLEXIVIZATION

Analysis. Difference follows from Parasitic Scope derivation: (i) at the point where *self* moves, the potential intervener *John* has already been moved out of the way; (ii) inverse scope results from QR above highest occurrence of narrow scope quantifier - reflexivization is obtained by tucking in *below* the antecedent.

Small clauses. Scope domain of small clause internal objects does not extend into the superordinate clause:

(49)	 a. Mary made <i>a different representative</i> call <i>every client</i> b. <i>A (#different) representative</i> made Mary call <i>every client</i> 	$(E\prec\forall\forall\forall\precE)$
(50)	 a. Bill saw <i>some woman</i> marry <i>every man</i> b. #<i>Someone</i> saw Mary marry <i>every man</i> 	$(\exists \lor \forall \land \forall \lor \exists)$ $(\exists \lor \forall \land \forall \lor \exists)$
2.1. I-\ Embed	VITHIN-I CONDITION <i>Iding under NP</i> . QR and <i>self</i> movement can cross NP-boundaries	
(51)	a. John read <i>a report</i> on <i>every suspect</i>.b. John read a report on [<i>every suspect</i> Bill did]	(inverse linking) (antecedent contained ellipsis)
(52)	a. John read a report on <i>himself</i>.b. Glenn Straub wins right to keep gaming report on <i>himself</i> sec	ret. [Google, Jan 11 2017]
<i>i-with</i> Hoeks	<i>in-i condition</i> . Prohibition on self-reference follows from ban on lower ema and Napoli 1990; Sauerland 1998: 231, i.a.).	ring (Chomsky 1981; Frey 1993;
(53)	 a. *a picture of itself (is always surprising) b. *a supervisor of himself c. *friends of each other 	
(54)	 a. [a picture of itself] λ₁ [t₁ is surprising] b. *[a picture of t₂] self [λ₁ [λ₂ [t₁ is surprising]]] 	(self lowering)
<i>Proble</i> of an a	<i>em 1</i> . i-within-i condition can be violated if anaphor resides within a firgument position (Chomsky 1981: 212, 229; Jacobson 1994; Sauerland	(reduced) relative clause instead d 1998: 231):
(55)	a. a picture showing itselfb. a man supervising himselfc. der auf sich stolze Mann	(cf. (53)a) (cf. (53)b) (Frey 1989: 131)

Problem 2. There is an alternative derivation which does not involve lowering.

Analysis. self-movement crosses an adjunct island in (57)b, but not in (57)c, where raising applies inside relative clause.

3. ECM REFLEXIVES

Two types of ECM predicates (Bresnan 1972: 149ff; Pesetsky 1991):

- (58) B-class: subject to object raising

 a. We believe John to win (*during the next race).
 b. John was believed to have won.
 c. *John believes to have won.

 (59) W-class: no subject to object raising
 - a. Mary wants John to win (during the next race)
 - b. *John was wanted to (have) won.
 - c. John wanted PRO to win.

(simultaneity requirement) (passive) (no obligatory control)

(no simultaneity requirement) (no passive) (obligatory control) Moulton (2005): W-class predicates admit de re interpretations for reflexive ECM subjects.

(60)	<i>W-class: de re reflexives</i>		
	a. John wanted <i>himself</i> to win.	(de se/de re)	
	b. John expected <i>himself</i> to win.	(de se/de re)	[cf. Chierchia 1989, (26c)]
(61)	B-class: no de re reflexives		
	a. John believed <i>himself</i> to win.	(de se/*de re)	[Chierchia 1989, (26b)]
	b. John considered <i>himself</i> to be the winner.	(de se/*de re)	

Further evidence for contrast.

(62) Ann believes that Ben is taller than he_3 is. (g(3) = Ben)

- a. LF: λw [Ann believes λw '[that Ben is taller w' than he₃ <is tall <u>w'/w</u>>]]
- b. contradictory belief (second occurrenc of 'tall' opaque/de dicto) $\lambda w. \forall w' [w' \in Dox_{a,w} \rightarrow ud.Ben is d-tall in w' > ud.Ben is d-tall in w']$
- c. *consistent belief* (second occurrenc of 'tall' transparent/*de re*) $\lambda w. \forall w'[w' \in Dox_{a,w} \rightarrow \iota d.Ben \text{ is d-tall in } w' \succ \iota d.Ben \text{ is d-tall in } \underline{w}]$

Substituting the ECM subject by a reflexive remnant in phrasal comparatives bleeds consistent reading (Hellan 1981; Napoli 1983; Heim 1985; i.a.):

- (63) Ann believes that Ben is taller than himself.
 - a. LF: λw [Ann believes λw '[that Ben is taller \underline{w} ' than himself $\langle tall \underline{w'/w} \rangle$]]
 - b. contradictory belief (\checkmark Ellipsis Parallelism) $\lambda w. \forall w'[w' \in Dox_{a,w} \rightarrow Ben(\lambda x[\iota d.x \text{ is d-tall in } \underline{w'} \succ \iota d.x \text{ is d-tall in } \underline{w'}])$
 - c. unattested consistent belief (XEllipsis Parallelism) $\lambda w. \forall w'[w' \in Dox_{a,w} \rightarrow Ben(\lambda x[\iota d.x \text{ is d-tall in } \underline{w'} > \iota d.x \text{ is d-tall in } \underline{w}])$

Only W-class has consistent reading \Rightarrow only W-class admits *de re* subject reflexives.

(64)	<i>W-class: consistent reading possible</i> a. Ben wants <i>himself</i> to be taller than himself.	(de se/de re)
	b. Ben would prefer <i>himself</i> to be taller than himself.c. Ben had expected <i>himself</i> to score better than himself.	(de se/de re) (de se/de re) (de se/de re)
(65)	B-class: inconsistent reading only	
	a. Ben believes <i>himself</i> to be taller than himself.	(de se/*de re)
	b Ben considers <i>himself</i> to be smarter than himself	(de se/*de re)

υ.	Den considers <i>nimself</i> to be smarter than infisen.	(de ser de re)

Analysis. Weak and strong reflexivity (building on Moulton 2005) and presuppositionality.

(66) Presuppositional reflexives

a.
$$\llbracket self_{strong} \rrbracket = \lambda x_e \lambda R_{\langle e, \langle e, \langle e, \langle e, \langle e, \langle e, \rangle \rangle \rangle} \lambda y_e \lambda w_s R(x)(y)(w): \forall w R(x)(y)(w) \rightarrow x = y \text{ in } w$$

b. $\llbracket self_{weak} \rrbracket = \lambda x_e \lambda w_s \lambda R_{\langle e, \langle e, \rangle \rangle} \lambda y_e R(x)(y): x = y \text{ in } w$

Putting identity into the presupposition (in conjunction with a theory that allows the computation to ignore presuppositions in the relevant contexts) accounts for strict readings (Sauerland 2013; cf. McKillen 2015).

(67)	W-class binding/sloppy and coreference/strict		
	a. John expected <i>himself</i> to win and his wife did, too.	(Sauerland 2016, (28))	
	b. Only John expected <i>himself</i> to win.	(ibid, (29))	
(68)	B-class ECM verbs: binding/sloppy and coreference/strict		
	a. John believes <i>himself</i> to be intelligent, but noone else does.	(Landau 2013, (127))	
	b. Only John believes <i>himself</i> to win.		

From the definitions in (66) it follows that the two versions of *self* move to different positions.

- (69) a. pron-self_{strong} can be used only if its sister node is of type <e,<e,<s,t>>>
 b. w-pron-self_{weak} can be used only if its sister node is of type <e,<e,t>>
- (70) Derivation of de se reading of 'John expects himself to win'

(*self*_{strong} moves to a position within vP)

(71) Derivation of de re reading of 'John expects himself to win'

(*self*_{weak} moves to a position **above** vP)

#5: REFLEXIVIZATION

- (72) For any $x \in D_e$ and world/situation w: $Exp_{x,w} =_{Def} \{w' | w' \text{ is compatible with } x \text{ 's expectations in } w\}$
- (73) $[\![expect]\!] = \lambda P_{<st>} \lambda w_{s} \cdot \forall w' [w' \in Exp_{x,w} \rightarrow P(w')]$

Excluding the de re reading with B-class verbs

- (74) John believed *himself* to win. (**de re*)
 - a. Step 1, Case driven overt movement of reflexive (XType mismatch) [John [$_{vP}$ himself_{weak, <<e,<e,t>>>} [$_{vP<e,<e,<s,t>>>>} \lambda_2 \lambda_1 [t_{1, John}$ believed $t_{2, self}$ to win]]]]
 - b. Step 2, covert raising: (XSyntax) [John [himself_{weak, <<e,<e,+>,<e,<e,+>>} [$_{vP<e,<e,t>>} \lambda_3 \lambda_4 [_{vP} \underline{w} [_{vP<st>} t_{4, John} [t_{3, self} [_{vP<e,<e,st>>} \lambda_2 \lambda_1 [t_{1, John} believed t_{2, self} to win]]]]]]]]$

Option A. Freezing effect. Don't move self once it has reached its case position.

Option B. Interface economy. Don't move terms covertly that have already satisfied their semantic requirements by overt movement.

4. PROBLEMS FOR CATEGORIAL ANALYSES OF REFLEXIVES

(75)	<x, a="" x,="">-pattern</x,>	(Subject binds IO)
	a. Alice showed us_{DO} to herself _{IO} (in the mirror)	
	b. Alice showed $herself_{IO} Bill_{DO}$	
(76)	<a, x="" x,="">-pattern</a,>	(DO binds IO or v.v.)
	a. We showed Alice _{DO} to herself _{IO}	
	b. We showed $Alice_{IO}$ herself DO	
(77)	<x, a,="" x="">-pattern</x,>	(Subject binds DO)
	a. Alice showed herself _{DO} to us_{IO}	
	b. Alice showed us_{IO} herself _{DO}	

Problem 1: surface oriented categorial analysis only derives pattern (75)a.

Problem 2: even this analysis requires non-standard parse (78)b in which order does not translate into c-command (contra Barss & Lasnik 1987; Larson 1988).

- (78) Alice showed us_{DO} to herself_{IO} (= (75)a) a. self(show'(us))(alice) (= (75)a)
 - b. Alice [[showed us_{DO}] to $herself_{IO}$]

Potential solution: Type polymorphism (type shifting) and Wrap (reordering of arguments)

Problem - overgeneration: (79)b derives (80)a, but also admits ill-formed (80)b. Similar problems affect other members of the family.

Selected references

- Ahn, Byron. 2012. Twin reflexives. Talk presented at University of Arizona Linguistics Colloquium, January 20, 2012. Handout available for download at: <u>http://byron.bol.ucla.edu/papers/Ahn-UofA-Handout.pdf</u>
- Ahn, Byron. 2015. Giving reflexivity a voice: twin reflexives in English. Ph.D. dissertation, University of California, Los Angeles.
- Bach, Emmon and Barbara H. Partee. 1980. Anaphora and Semantic Structure. In: J. Kreiman and A. E. Ojeda (eds.), Papers from the Parasession on Pronouns and Anaphora. Chicago: University of Chicago Press. Reprinted in Partee, 2004, Compositionality in Formal Semantics: Selected Papers of Barbara Partee. Oxford: Blackwell Publishers.
- Barker, Chris. 2007. Parasitic Scope. Linguistics and Philosophy 30. 3: 407-444.
- Büring, D. 2005. Binding Theory. Cambridge Textbooks in Linguistics. Cambridge University Press.
- Chomsky, N. 1981. Lectures on Government and Binding: The Pisa Lectures. Mouton de Gruyter.
- Dowty, David. 1996. Non-Constituent Coordination, Wrapping, and Multimodal Categorial Grammars. In:
 M. L. Dalla Chiara et al. (eds.), *Structures and Norms in Science*, Berlin/New York: Springer, pp. 347-368. Available for download at: <u>ftp://ftp.ling.ohio-state.edu/pub/dowty/nccwmmcg.ps.gz</u>
- Dowty, David. 1999. Anaphora and Type Logical Grammar. Presentation at Stanford University Linguistics Colloquium, January 19, 1999. Available for download at: http://ling.ohio-state.edu/~dowty/anaphora.abs.ps
- Dowty, David. 2007. Compositionality as an Empirical Problem. In: C. Barker and P. Jacobson (eds.), *Direct Compositionality*. Oxford: Oxford University Press, pp. 23-101. Available for download at:

http://www.ling.ohio-state.edu/~dowty/context-free-semantics.pdf

- Keenan, Edward. 1988. On semantics and the binding theory. In J. Hawkins (ed.), *Explaining Language Universals*. Oxford: Blackwell, pp 104–155.
- Keenan, Ed. 2007. On the Denotations of Anaphors. In Research on Language and Computation 5.1:5-17. Formerly C54.
- Keenan, Ed & Dag Westerstahl. 1997. Generalized Quantifiers in Logic and Language. In *Handbook of Logic and Language*, J. van Benthem and A. ter Meulen (eds.). Elsevier. 837-893.
- Kennedy, Christopher. 1999. Projecting the Adjective: The Syntax and Semantics of Gradability and Comparison. New York: Garland Press.
- Kennedy, Chris. 2009. Modes of Comparison. In: Proceedings of CLS 43: 141-165.
- Lechner, Winfried. 2004. Ellipsis in Comparatives. Berlin und New York, Mouton de Gruyter, 285 pp.
- Lechner, Winfried, 2012. Towards a theory of transparent reflexivization. Ms., University of Athens. [http://users.uoa.gr/~wlechner/Reflexivization%202012.pdf]
- Lerner, Jean-Yves and Manfred Pinkal. 1995. Comparative ellipsis and variable binding. In: Proceedings of Semantics and Linguistic Theory, Volume 5, M. Simons and T. Galloway (eds.). 222-236. Ithaca, NY. Cornell University.
- McKillen, Alanah. 2016. On the interpretation of reflexive pronouns. Ph.D. dissertation, McGill University, Montreal.
- Pancheva, Roumyana. 2006. Phrasal and clausal comparatives in Slavic. In: Formal Approaches to Slavic Linguistics 14: The Princeton Meeting, (eds.) J. Lavine, S. Franks, M. Tasseva-Kurktchieva and H. Filip. 236-257
- Pancheva, Roumyana. 2009. More Students Attended FASL than CONSOLE. In: Formal Approaches to Slavic Linguistics 18: The Cornell Meeting, 2009, (eds.) W. Browne, A. Cooper, A. Fisher, E. Kesici, N. Predolac, D. Zec. 383-400. Ann Arbor: Michigan Slavic Publications.
- Pinkham, Jessie. 1985. *The Formation of Comparative Clauses in French and English*. New York: Garland publishing.
- Reinhart, Tanya, and Reuland, Eric. 1993. Reflexivity. Linguistic Inquiry 24. 4: 657-720.
- Reuland, Eric. 2001. Primitives of Binding. Linguistic Inquiry 32.3: 439-492.

Reuland, Eric. 2011. Anaphora and Language Design. Cambridge, Mass: MIT Press.

- Rudin, Catherine. 1988. On multiple questions and multiple wh fronting. natural Language and Linguistic Theory 6: 445-501.
- Safir, Ken. 1996. Semantic Atoms of Anaphora. Natural Language and Linguistic Theory 14.4: 545-589.
- Safir, Ken. 2003. Anaphora, Movement and Coconstrual. In L. Delsing, C. Falk, G. Josefsson, and H. Sigurdsson (eds.), *Grammar in Focus Volume II: Festschrift for Christer Platzack*. Department of Scandinavian Languages, Lund University.
- Safir, Ken. 2004a. The Syntax of (In)dependence. Cambridge, Massachusetts: MIT Press.
- Safir, Ken. 2004b. The Syntax of Anaphora. Oxford: Oxford University Press.
- Sauerland, Uli. 2013. Presuppositions and the alternative tier. In Proceedings of SALT 23, 156–173.
- Schlenker, Philip. 2005. Non-redundancy: towards a semantic reinterpretation of binding theory. *Natural Language Semantics* **13**, 1–92.
- Spathas, Giorgos. 2010. Focus on Anaphora: accent placement and the syntax and semantics of anaphors. LOT Dissertation Series, Utrecht, The Netherlands.
- Spathas, G. 2012. Reflexivizers and intensifiers: consequences for a theory of focus. In *Proceedings of Sinn und Bedeutung* 17, 581–598.
- Stassen, Leon. 1985. Comparison and Universal Grammar. Oxford: Basil Blackwell.
- Stechow, Arnim von. 1984. Comparing Semantic Theories of Comparison. *Journal of Semantics* 3: 1-79. Szabolcsi, Anna. 1987. Bound variables in syntax. (Are there any?). In J. Groenendijk and M. Stockhof
 - (eds.), *Proceedings of the 6th Amsterdam Colloquium*. Amsterdam: University of Amsterdam, pp. 331-353. Available for download at:

http://semanticsarchive.net/Archive/GQyODUwZ/

Szabolcsi, Anna, 1989. Bound variables in syntax. (Are there any?). In: R. Bartsch, J.F. van Benthem and P. van Emde (eds.), Semantics and Contextual Expression (Groningen-Amsterdam Studies in Semantics 11). Dortrecht: Foris Publications. Available for download at:

http://files.nyu.edu/as109/public/szabolcsi_bound_variables_in_syntax_are_there_any_1989.pdf

Wurmbrand, Susi. 2015, to appear. The cost of raising quantifiers. Accepted for a special issue in Glossa. (First version 2015)