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Jet speed

Superluminal Motion in the M87 Jet
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On the bulk acceleration

e More distant components have higher apparent speeds

e Brightness temperature increases with distance (Lee,
Lobanov, et al)

e A more general argument on the acceleration (Sikora et al):

lack of bulk-Compton features — small (v < 5) bulk Lorentz
factor at < 10°r,

the ~ saturates at values ~ a few 10 around the blazar zone
(102 — 10%*r,)

So, relativistic AGN jets undergo the bulk of their acceleration
on parsec scales (> size of the central black hole)

Sikora et al also argue that the protons are the dynamically
important component in the outflow.
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Hydro-Dynamics

e In case n. ~ ny, Ymax ~ kT;/myc* ~ 1 even with T; ~ 102K
o If ne # nyp, Ymax ~ (ne/nyp) X (KT;/m,c?) could be > 1
e With some heating source, vi,.x > 1 1S In principle possible

However, even in the last two cases, HD is unlikely to work
because the HD acceleration saturates at distances comparable
to the sonic surface where gravity is still important, i.e., very
close to the disk surface (certainly at < 10°r,)
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Polarization
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Faraday RM gradients across the jet
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helical field surrounding the emitting region (Gabuzda)
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What magnetic fields can do

* extract energy (Poynting flux)

* extract angular momentum

~ transfer energy and angular momentum to matter
* explain relatively large-scale acceleration

» self-collimation

* synchrotron emission

» polarization and RM maps
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A unipolar inductor

current <~ By

Poynting flux ~FEB; s
extracted (angular momentum
as well)

+\+%} +_-_Rf‘+ E
Q

The Faraday disk could be the rotating accretion disk, or the frame dragging if
energy is extracted from the ergosphere of a rotating black hole (Blandford &
Znajek mechanism)

-
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How to model magnetized outflows?

* as pure electromagnetic energy (force-free, magnetodynamics,
electromagnetic outflows):
— ignore matter inertia (reasonable near the origin)
— this by assumption does not allow to study the transfer of
energy form Poynting to kinetic
— wave speed = ¢ — no shocks
— there may be some dissipation (e.g. reconnection) —
radiation

* as magneto-hydro-dynamic flow
— the force-free case is included as the low inertia limit
— the back reaction from the matter to the field is included
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Magnetized outflows

Extracted energy per time &
mainly in the form of Poynting flux
(magnetic fields tap the rotational energy
of theccompact object or disk)

£=__ —B B, x ( area £ B2y2
4 Tlc ( ) 2

E

Ejected mass per time M

The 1 = £/Mc? gives the maximum
possible bulk Lorentz factor of the flow

Magnetohydrodynamics:
matter (velocity, density, pressure)
+ large scale electromagnetic field
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Basic questions

iz pulk acceleration

e thermal (due to VP) — velocities up to C,
e magnetocentrifugal — velocities up to Vy,

enthalpy )
5 .

e relativistic thermal (thermal fireball) gives v ~ (
mass x c

e magnetic (J x B force)
acceleration efficiency v/ = ?
terminal v, ?

= collimation
hoop-stress + electric force
degree of collimation ?
jet opening angle ?
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some key steps on MHD modeling

e Michel 1969: assuming monopole flow (crucial) — inefficient
acceleration with ., ~ /3 < 1

e Li, Chiueh & Begelman 1992; Contopoulos 1994: cold
self-similar model — ~., = /2 (50% efficiency)

e Vlahakis & Konigl 2003: generalization of the self-similar
model (including thermal and radiation effects) — v, ~ 1/2
(50% efficiency)

e VIahakis 2004: complete asymptotic transfield force-balance
connect the flow-shape (collimation) with acceleration
explain why Michel's model is inefficient

e Beskin & Nokhrina 2006: parabolic jet with v, ~ /2
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some key steps (cont’d)

e Komissarov, Barkov, Vlahakis & Konigl 2007 and
Komissarov, Vlahakis, Konigl & Barkov 2009:
possible for the first time to simulate high v MHD flows and
follow the acceleration up to the end
+ analytical scalings
+ role of causality, role of external pressure

e Tchekhovskoy, McKinney & Narayan, 2009: simulations of
nearly monopolar flow (more detailed than in Komissarov et al
2009)

Even for nearly monopolar flow the acceleration is efficient
near the rotation axis

e Lyubarsky 2009:
generalization of the analytical results of Vlahakis 2004 and
Komissarov et al 2009
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“Standard” model for magnetic acceleration

= component of the momentum equation

(V- V) (ywV) = -Vp+ J'E+ J x B
along the flow (wind equation): v ~ u — F
where F o r?n~V,, = r*x mass flux

since mass flux xS = const,
F oxr?/6S ocr/dl)

acceleration requires the separation between streamlines to
increase faster than the cylindrical radius

the collimation-acceleration paradigm:
F | through stronger collimation of the inner streamlines
relative to the outer ones (differential collimation)

i external pressure plays important role
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Komissarov, Vlahakis, Konigl, & Barkov 2009
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Differential rotation — slow envelope
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Caveat: v ~ 1 (for high ~)

very narrow jets (v < 1° for v > 100) — early breaks or no
breaks at all

this is a result of causality (across jet): outer lines need to
know that there is space to expand

Mach cone half-opening 6,,, should be > ¥
51/2
With sin 6, — Y 7 the requirement for causality yields
Wo oo

v9 < ot/2,
For efficient acceleration (¢ ~ 1 or smaller) we always get
v ~ 1
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Rarefaction acceleration

TORINO 13 March 2013



Rarefaction acceleration
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Rarefaction acceleration
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Rarefaction simple waves

At ¢t = 0 two uniform states are in contact:

o
[
X

|eft state right state

X

This Riemann problem allows self-similar solutions that depend
only on ¢ = x/t.

o when right=vacuum, simple rarefaction wave
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Simulation results

Komissarov, Vlahakis & Konigl 2010
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Steady-state rarefaction wave

Sapountzis & Vlahakis (MNRAS submitted)

“flow around a corner”

planar geometry

ignoring B,, (honzero B,))
similarity variable x/z (angle 0)

generalization of the nonrelativistic, hydrodynamic rarefaction
(e.g. Landau & Lifshitz)

in addition, allow for innomogeneity in the “left” state
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Axisymmetric model

Solve steady-state axisymmetric MHD eqgs using the method of
characteristics (Sapountzis & Vlahakis in preparation)
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Summary

* The collimation-acceleration paradigm provides a viable
explanation of the dynamics of relativistic jets

£

* bulk acceleration up to Lorentz factors v, 2 O.5M >
C

caveat: in ultrarelativistic GRB jets 9 ~ 1/~

* Rarefaction acceleration

e further increases ~
e makes GRB jets with v > 1

* Future work

e apply other stratified jet models
e attention to the shock from reflection on the rotation axis
e Use realistic pressure distributions

inside the star (from stellar-evolution models),

and outside — shock formation
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