Stability of magnetically driven relativistic jets

Nektarios Vlahakis University of Athens

Outline

- normal mode analysis
- unperturbed jet solutions
- dispersion relation results

Unperturbed flow

Cylindrical jet

helical, axisymmetric, cylindrically symmetric and steady flow

$$\boldsymbol{V}_0 = V_{0z}(\varpi)\hat{z} + V_{0\phi}(\varpi)\hat{\phi}, \quad \gamma_0 = \gamma_0(\varpi) = (1 - V_{0z}^2 - V_{0\phi}^2)^{-1/2},$$

$$\rho_{00} = \rho_{00}(\varpi), \quad \xi_0 = \xi_0(\varpi), \quad B_0 = B_{0z}(\varpi)\hat{z} + B_{0\phi}(\varpi)\hat{\phi},$$
$$B_0 = (V_{0z}B_{0\phi} - V_{0\phi}B_{0z})\hat{\varpi},$$
$$\Pi_0 = \frac{\Gamma - 1}{\Gamma} (\xi_0 - 1) \rho_{00} + \frac{B_0^2 - E_0^2}{2}.$$

Equilibrium condition

$$\frac{B_{0\phi}^2 - E_0^2}{\varpi} - \xi_0 \rho_{00} \frac{\gamma_0^2 V_{0\phi}^2}{\varpi} + \frac{d\Pi_0}{d\varpi} = 0.$$

Linearized equations

reduces to (4 equations in real space)

$$\frac{d}{d\varpi} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \frac{1}{\mathcal{D}} \begin{pmatrix} \mathcal{F}_{11} & \mathcal{F}_{12} \\ \mathcal{F}_{21} & \mathcal{F}_{22} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = 0,$$

where the (complex) unknowns are

$$y_1 = i \frac{\varpi V_{1\varpi}}{\omega_0}, \qquad y_2 = \Pi_1 + \frac{y_1}{\varpi} \frac{d\Pi_0}{d\varpi}$$

 $(\mathcal{D}, \mathcal{F}_{ij} \text{ are determinants of } 10 \times 10 \text{ arrays}).$

Equivalently

$$y_2'' + \left[\frac{\mathcal{F}_{11} + \mathcal{F}_{22}}{\mathcal{D}} + \frac{\mathcal{F}_{21}}{\mathcal{D}}\left(\frac{\mathcal{D}}{\mathcal{F}_{21}}\right)'\right]y_2' + \left[\frac{\mathcal{F}_{11}\mathcal{F}_{22} - \mathcal{F}_{12}\mathcal{F}_{21}}{\mathcal{D}^2} + \frac{\mathcal{F}_{21}}{\mathcal{D}}\left(\frac{\mathcal{F}_{22}}{\mathcal{F}_{21}}\right)'\right]y_2 = 0,$$

which for uniform flows with $V_{0\phi} = 0$, $B_{0\phi} = 0$, reduces to Bessel.

EDO AND FRIENDS

Eigenvalue problem

- solve the problem inside the jet (attention to regularity condition on the axis)
- \bullet similarly in the environment (solution vanishes at $\infty)$

• Match the solutions at r_j : $\llbracket y_1 \rrbracket = 0$, $\llbracket y_2 \rrbracket = 0 \longrightarrow$ dispersion relation * spatial approach: $\omega = \Re \omega$ and $\Re k = \Re k(\omega), \Im k = \Im k(\omega)$ $Q = Q_0(\varpi) + Q_1(\varpi)e^{-\Im kz}e^{i(m\phi + \Re kz - \omega t)}$ * temporal approach: $k = \Re k$ and $\Re \omega = \Re \omega(k), \Im \omega = \Im \omega(k)$ $Q = Q_0(\varpi) + Q_1(\varpi)e^{\Im \omega t}e^{i(m\phi + kz - \Re \omega t)}$

Unperturbed jet solutions

Try to mimic the Komissarov et al simulation results (for AGN and GRB jets)

cold, nonrotating jet

$$V_{0} = V_{0}(\varpi)\hat{z}, \quad \gamma_{0} = \gamma_{0}(\varpi) = (1 - V_{0}^{2})^{-1/2},$$

$$\rho_{00} = \rho_{00}(\varpi), \quad \xi_{0} = 1, \quad B_{0} = B_{0z}(\varpi)\hat{z} + B_{0\phi}(\varpi)\hat{\phi},$$

$$E_{0} = V_{0}B_{0\phi}\hat{\varpi}.$$

Equilibrium condition

$$\frac{B_{0\phi}^2/\gamma_0^2}{\varpi} + \frac{d}{d\varpi} \left(\frac{B_{0z}^2 + B_{0\phi}^2/\gamma_0^2}{2} \right) = 0 \,,$$

relates B_{0z} with $B_{0\phi}/\gamma_0$.

EDO AND FRIENDS

A cold, nonrotating solution:

Formation of core crucial for the acceleration.

The bunching function $S \equiv \frac{\widehat{\pi \varpi^2} B_{0z}}{\int_0^{\varpi} B_{0z} 2\pi \varpi d\varpi}$ is related to the acceleration efficiency $\sigma = \frac{1}{\frac{S_f}{S} - 1}$, where S_f integral of motion ~ 0.9 . Since $S \approx 1 - \zeta$ we get $\sigma = \frac{1 - \zeta}{\zeta - 0.1}$.

• choice of $\gamma_0(\varpi)$:

From Ferraro's law $V_{0\phi} = \varpi \Omega + V_{0z} B_{0\phi}/B_{0z}$, where Ω integral of motion, we get $-B_{0\phi}/B_{0z} \approx \varpi \Omega$, or, $\gamma_0 \approx \varpi \Omega \sqrt{\frac{(2\zeta-1)(\varpi/\varpi_0)^2}{\left[1+(\varpi/\varpi_0)^2\right]^{2\zeta}-1-2\zeta(\varpi/\varpi_0)^2}}$.

The choice of ϖ_0 controls the value of γ_0 on the axis and the jet surface.

EDO AND FRIENDS

left: density/field lines, right: Lorentz factor/current lines (jet boundary $z \propto r^{1.5}$) Uniform rotation $\rightarrow \gamma$ increases with r

Differential rotation \rightarrow slow envelope and faster decrease of B_{ϕ}

• choice of $ho_{00}(arpi)$:

This comes from the mass-to-magnetic flux ratio integral $\frac{\gamma_0 \rho_{00} V_0}{B_{0z}}$, which is assumed constant in the simulations. So $\rho_{00} \propto B_{0z}/\gamma_0$. The constant of proportionality from the value of $\sigma = \frac{B_{0\phi}^2/\gamma_0^2}{\rho_{00}}$.

• external medium:

uniform, with zero $B_{0\phi}$ and $V_{0\phi} \rightarrow$ Bessel. In all the following a thermal pressure is assumed, $\xi_e = 1.01$. A cold, magnetized environment gives approximatelly same results.

Ω=const, -B_{$$\phi$$}/B_z=110 r /r_j

m=1, Ω =const

Ω=const, -B_{$$\phi$$}/B_z=20.75 r /r_j

m=1, Ω =const

Ω=const, -B_{$$\phi$$}/B_z=9.17 r /r_j

m=1, Ω =const

variable Ω

m=1, variable Ω

Summary – Next steps

- \star Kink instability in principle is in action.
- \star High γ stabilize.
- \star High $|B_{\phi}|/B_z$ and high σ destibilize.
- ★ During the acceleration, growth time vs dynamical timescale?
- Probably kink instability not so important during the acceleration phase and for a few tens jet radii after its end.
- ★ Jets from accretion disks more stable?
- Explore the parameter space for kink and other modes
- colder/moving environment? other jet equilibrium models?
- comparison with numerical studies.