Magnetically driven relativistic jets

Nektarios Vlahakis University of Athens

• Extracted energy per time $\dot{\mathcal{E}}$ mainly in the form of Poynting flux (magnetic fields tap the rotational energy of the compact object or disk) $\dot{\mathcal{E}}=$ \overline{c} 4π $\stackrel{\cdot}{r}$ $r_{\rm lc}$ $\overline{B_p}$ ${\sum\limits_{E}}$ E $B_\phi \times ($ area $) \approx$ \overline{c} 2 B^2r^2

 \bullet Ejected mass per time M

• The $\mu \equiv \dot{\mathcal{E}}/ \dot{M} c^2$ gives the maximum possible bulk Lorentz factor of the flow

• Magnetohydrodynamics:

matter (velocity, density, pressure) + large scale electromagnetic field

Numerical simulations

Komissarov, Vlahakis, Königl & Barkov

Assumptions:

- only jet (given boundary conditions at base)
- ideal MHD
- axisymmetry
- cold (not always, but focus on magnetic effects)
- given wall shape (avoid interaction with environment)

Input:

magnetized plasma of a given magnetization (given $\mu = {\dot{\mathcal{E}}}/{\dot{M}} c^2)$ is ejected into a funnel of a given shape (use elliptic coordinates — cut the superfast part into sectors)

Output:

$$
\text{ as } \Gamma \text{ vs distance ? } (\mu = \dot{\mathcal{E}}/\dot{M}c^2 = \underbrace{\dot{\mathcal{E}}_{matter}/\dot{M}c^2}_{\Gamma} + \underbrace{\dot{\mathcal{E}}_{EM}/\dot{M}c^2}_{\Gamma\sigma})
$$

াজ Γ_{∞} and the acceleration efficiency $\frac{\Gamma_{\infty}}{\Gamma_{\infty}}$ μ = $\Gamma_{\infty} \dot M c^2$ $\dot{\mathcal{E}}$ $=$?

☞ self-collimation (formation of a cylindrical core) ?

 $■$ pressure on the wall ? (\equiv pressure of the jet environment)

Results

Results

First what we expect :)

. . .

Analytical results

Simplifications using $\Gamma \gg 1$ and $r \gg r_{\rm lc}$ (then $v_\phi/c \ll r/r_{\rm lc}$) (these are valid in the superfast regime) (note that at fast $\Gamma \approx \mu^{1/3} \ll \mu$):

Analytical results

Simplifications using $\Gamma \gg 1$ and $r \gg r_{\rm lc}$ (then $v_{\phi}/c \ll r/r_{\rm lc}$) (these are valid in the superfast regime) (note that at fast $\Gamma \approx \mu^{1/3} \ll \mu$):

- ☞ component of the momentum equation along the flow (wind equation) $\Gamma \approx \mu \Psi\Omega^2$ $\frac{\Psi\Omega^2}{4\pi^2kc^3}\mathcal{S}$ where the bunching function is $\mathcal{S}=$ πr^2B_p $\overline{\int \boldsymbol{B}_{p}\!\cdot\!d\boldsymbol{S}}$ = πr^2B_p Ψ
	- acceleration if B_p drops faster than r^{-2} (monopole flow \rightarrow negligible acceleration) (prescribed field shape \rightarrow trivial – and incomplete)
	- crucial to solve the transfield component of the momentum equation (that controls the shape of the field and thus S)
	- role of collimation
	- external pressure plays important role

☞ transfield component of the momentum equation

- if centrifugal negligible then $\Gamma \approx z/r$ (since $\mathcal{R}^{-1} \approx -d^2r/dz^2 \approx r/z^2$) power-law acceleration regime (for parabolic shapes $z \propto r^a$, Γ is a power of r)
- if inetria negligible then $\Gamma \approx r/r_{\rm lc}$ linear acceleration regime
- if electromagnetic negligible then ballistic regime

 $\approx\,p_{\rm ext}=B_{\rm co}^2/8\pi\simeq(B^{\hat\phi})^2/8\pi\Gamma^2\propto 1/r^2\Gamma^2$ Assuming $p_{\rm ext}\propto z^{-\alpha_p}$ we find $\Gamma^2\propto z^{\alpha_p}/r^2.$ Combining with the transfield $\frac{\Gamma^2 r}{\mathcal{R}} \approx 1 - \Gamma^2 \frac{r_{\rm lo}^2}{r^2}$ lc $\frac{T_{\rm lc}}{r^2}$ we find the funnel shape (we find the exponent a in $z \propto r^a$).

- if $\alpha_p < 2$ (the pressure drops slower than z^{-2}) then
	- \star $a > 2$ (shape more collimated than $z \propto r^2$)
	- \star linear acceleration $\Gamma \propto r$
- if $\alpha_p = 2$ then
	- \star 1 $<$ $a \leq 2$ (parabolic shape)
	- \star first $\Gamma \propto r$ and then power-law acceleration $\Gamma \sim z/r \propto r^{a-1}$
- if $\alpha_p > 2$ (pressure drops faster than z^{-2}) then
	- \star $a = 1$ (conical shape)
	- \star linear acceleration $\Gamma \propto r$ (small efficiency)

left: density/field lines, right: Lorentz factor/current lines (wall shape $z\propto r^{1.5})$ Differential rotation \rightarrow slow envelope

Uniform rotation $\rightarrow \Gamma$ increases with r

Rarefaction acceleration

Komissarov, Vlahakis & Königl

Analytics of nonrelativistic flows

In the superfast regime:

$$
B_p \approx \frac{2^{1/2} \varpi_A^3 \Omega \Psi_A \zeta^{1/2} (1-\zeta)}{\varpi^2}, \quad B_\phi \approx -\frac{\varpi_A^2 \Omega \Psi_A (1-\zeta)}{\varpi},
$$

$$
V_p \approx 2^{1/2} \zeta^{1/2} \varpi_A \Omega, \quad V_\phi \approx \frac{\zeta \varpi_A^2 \Omega}{\varpi}, \quad \rho \approx \frac{\Psi_A^2 \varpi_A^2 (1-\zeta)}{4 \pi \varpi^2},
$$

$$
\zeta \approx \frac{1}{1 + 2(\varpi/\varpi_f)^{-2(b-1)}}, \quad z \approx z_f \left(\frac{\varpi}{\varpi_f}\right)^b
$$

 (ζ) is the kinetic-to-total energy flux ratio)

for details see Vlahakis 2009 (in Protostellar Jets in Context, K. Tsinganos, T. Ray, and M. Stute (eds.), ASS Proceedings Series, 205)

On current-driven instabilities

The jet is expected to be unstable if the azimuthal magnetic field dominates the poloidal magnetic field (Kruskal-Shafranov).

In source's frame
$$
\frac{|B_{\phi}|}{B_p} \approx \frac{r}{r_{\rm lc}} \gg 1
$$
 — role of inertia?
In the comoving frame $\left(\frac{|B_{\phi}|}{B_p}\right)_{\rm co} \approx \frac{|B_{\phi}|/\Gamma}{B_p} \approx \frac{r/r_{\rm lc}}{\Gamma}$

In the power-law regime ($\Gamma \ll r/r_{\rm lc}$) the azimuthal component dominates (unstable)

In the linear acceleration regime ($\Gamma \approx r/r_{\rm lc}$) azimuthal and poloidal components of the magnetic field are comparable

Linear stability analysis

Equilibrium: For
$$
0 < r < r_j
$$
 (jet), $V = 0$ (comoving frame),

\n $B_z = \frac{B_j}{1 + \left(\frac{r}{r_0}\right)^2}, B_\phi = \frac{r}{r_0} B_z, \rho = \frac{\rho_j}{\left[1 + \left(\frac{r}{r_0}\right)^2\right]^2}, P = 0$ (cold).

\nMagnetization $\sigma = \left(\frac{B_\phi^2}{4\pi\rho c^2}\right)_{r = r_j}$.

\nFor $r > r_j$ (environment), pressure p_{ext} .

Perturbations of the form $f(r) \exp[i(m\phi + kz - \omega t)]$.

We linearize the system of RMHD eqs and find $\omega = Re\omega + iIm\omega$ for given k and m .

 $1/Im\omega$ is the growth time of the instability.

(thin red line for $(B_{\phi}/B_z)_{\text{co}} = 1$)

In the source's frame growth time is Γ times larger.

Summary

- \star Magnetic driving provides a viable explanation of the dynamics of relativistic jets
	- depending on the external pressure: collimation to parabolic shape $z \propto r^a, a > 2$ with $\Gamma \propto r$, parabolic shape $z \propto r^a, 1 < a \leq 2$ with $\Gamma \sim z/r \propto r^{a-1}$, or conical shape $z \propto r$ with $\Gamma \propto r$ $\mathcal E$
	- bulk acceleration up to Lorentz factors $\Gamma_{\infty}\gtrsim 0.5$ Mc^2 (in conical flows only near the axis)
- \star current-driven instabilities depend on the spatial scale of the Lorentz factor (and thus, on the p_{ext})
	- stable jet if acceleration is linear $\Gamma \propto r$ ($p_{\rm ext}$ drops slower than z^{-2} , or initial phase of jets with $p_{\rm ext}\propto z^{-2}$) (becomes unstable when Γ saturates)
	- unstable in the power-law acceleration regime (end-phase of jets with $p_{\rm ext}\propto z^{-2}$)