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• Extracted energy per time Ė
mainly in the form of Poynting flux
(magnetic fields tap the rotational energy
of the compact object or disk)
Ė =

c

4π

r

rlc
Bp︸ ︷︷ ︸

E

Bφ × ( area ) ≈ c

2
B2r2

• Ejected mass per time Ṁ

• The µ ≡ Ė/Ṁc2 gives the maximum
possible bulk Lorentz factor of the flow

• Magnetohydrodynamics:
matter (velocity, density, pressure)
+ large scale electromagnetic field
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Numerical simulations

Komissarov, Vlahakis, Königl & Barkov

Assumptions:

• only jet (given boundary conditions at base)

• ideal MHD

• axisymmetry

• cold (not always, but focus on magnetic effects)

• given wall shape (avoid interaction with environment)
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Input:
magnetized plasma of a given magnetization (given µ = Ė/Ṁc2)
is ejected into a funnel of a given shape
(use elliptic coordinates — cut the superfast part into sectors)

Output:

+ Γ vs distance ? (µ = Ė/Ṁc2 = Ėmatter/Ṁc2︸ ︷︷ ︸
Γ

+ ĖEM/Ṁc2︸ ︷︷ ︸
Γσ

)

+ Γ∞ and the acceleration efficiency
Γ∞
µ

=
Γ∞Ṁc2

Ė
= ?

+ self-collimation (formation of a cylindrical core) ?

+ pressure on the wall ? (≡ pressure of the jet environment)
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Results
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Results

. . .

First what we expect :)
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Analytical results

Simplifications using Γ � 1 and r � rlc (then vφ/c � r/rlc)
(these are valid in the superfast regime)
(note that at fast Γ ≈ µ1/3 � µ):
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Analytical results

Simplifications using Γ � 1 and r � rlc (then vφ/c � r/rlc)
(these are valid in the superfast regime)
(note that at fast Γ ≈ µ1/3 � µ):

+ component of the momentum equation along the flow
(wind equation) Γ ≈ µ− ΨΩ2

4π2kc3 S
where the bunching function is S = πr2BpR

Bp·dS
= πr2Bp

Ψ

• acceleration if Bp drops faster than r−2

(monopole flow → negligible acceleration)
(prescribed field shape → trivial – and incomplete)
• crucial to solve the transfield component of the momentum
equation (that controls the shape of the field and thus S)
• role of collimation
• external pressure plays important role
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+ transfield component of the momentum equation

Γ2r

R
≈

(
2I

ΩBpr2

)2

r∇ln
∣∣∣∣IΓ
∣∣∣∣· ∇Ψ
|∇Ψ|

1 +
w

ρc2

4πρu2
p

B2
p

r2
lc

r2

− Γ2r
2
lc

r2

∇r ·∇Ψ
|∇Ψ|

,

or simply,
Γ2r

R︸︷︷︸
inertia

≈ 1︸︷︷︸
EM

− Γ2r
2
lc

r2︸ ︷︷ ︸
centrifugal

• if centrifugal negligible then Γ ≈ z/r (since
R−1 ≈ −d2r/dz2 ≈ r/z2) power-law acceleration regime
(for parabolic shapes z ∝ ra, Γ is a power of r)

• if inetria negligible then Γ ≈ r/rlc linear acceleration regime

• if electromagnetic negligible then ballistic regime
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+ pext = B2
co/8π ' (Bφ̂)2/8πΓ2 ∝ 1/r2Γ2

Assuming pext ∝ z−αp we find Γ2 ∝ zαp/r2.
Combining with the transfield Γ2r

R ≈ 1− Γ2r2
lc

r2 we find the funnel
shape (we find the exponent a in z ∝ ra).

• if αp < 2 (the pressure drops slower than z−2) then
? a > 2 (shape more collimated than z ∝ r2)
? linear acceleration Γ ∝ r

• if αp = 2 then
? 1 < a ≤ 2 (parabolic shape)
? first Γ ∝ r and then power-law acceleration Γ ∼ z/r ∝ ra−1

• if αp > 2 (pressure drops faster than z−2) then
? a = 1 (conical shape)
? linear acceleration Γ ∝ r (small efficiency)
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left: density/field lines, right: Lorentz factor/current lines (wall shape z ∝ r1.5)
Differential rotation → slow envelope
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Uniform rotation → Γ increases with r
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Γ (increasing),

Γσ (decreasing),

and µ

efficiency > 50%

(similarly to the semi-analytical results of
Vlahakis & Königl 2003, 2004)
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Rarefaction acceleration

Komissarov, Vlahakis & Königl
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Analytics of nonrelativistic flows

In the superfast regime:

Bp≈
21/2$3

AΩΨAζ1/2(1− ζ)
$2

, Bφ≈−
$2

AΩΨA(1− ζ)
$

,

Vp≈21/2ζ1/2$AΩ , Vφ≈
ζ$2

AΩ
$

, ρ≈Ψ2
A$2

A(1− ζ)
4π$2

,

ζ ≈ 1
1 + 2($/$f)−2(b−1)

, z ≈ zf

(
$

$f

)b

(ζ is the kinetic-to-total energy flux ratio)

for details see Vlahakis 2009 (in Protostellar Jets in Context, K.
Tsinganos, T. Ray, and M. Stute (eds.), ASS Proceedings Series, 205)
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On current-driven instabilities

The jet is expected to be unstable if the azimuthal magnetic field
dominates the poloidal magnetic field (Kruskal-Shafranov).

In source’s frame
|Bφ|
Bp

≈ r

rlc
� 1 — role of inertia?

In the comoving frame
(
|Bφ|
Bp

)
co

≈ |Bφ|/Γ
Bp

≈ r/rlc

Γ

In the power-law regime (Γ � r/rlc) the azimuthal component
dominates (unstable)

In the linear acceleration regime (Γ ≈ r/rlc) azimuthal and
poloidal components of the magnetic field are comparable
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Linear stability analysis

Equilibrium: For 0 < r < rj (jet), V = 0 (comoving frame),

Bz =
Bj

1 + (r/r0)
2, Bφ =

r

r0
Bz, ρ =

ρj[
1 + (r/r0)

2
]2, P = 0 (cold).

Magnetization σ =

(
B2

φ

4πρc2

)
r=rj

.

For r > rj (environment), pressure pext.

Perturbations of the form f(r) exp [i (mφ + kz − ωt)] .

We linearize the system of RMHD eqs and find ω = Reω + iImω

for given k and m.

1/Imω is the growth time of the instability.
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In the source’s frame growth time is Γ times larger.
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Summary
? Magnetic driving provides a viable explanation of the dynamics

of relativistic jets
• depending on the external pressure:

collimation to parabolic shape z ∝ ra, a > 2 with Γ ∝ r,
parabolic shape z ∝ ra, 1 < a ≤ 2 with Γ ∼ z/r ∝ ra−1,
or conical shape z ∝ r with Γ ∝ r

• bulk acceleration up to Lorentz factors Γ∞ & 0.5
E

Mc2

(in conical flows only near the axis)

? current-driven instabilities depend on the spatial scale of the
Lorentz factor (and thus, on the pext)
• stable jet if acceleration is linear Γ ∝ r (pext drops slower

than z−2, or initial phase of jets with pext ∝ z−2)
(becomes unstable when Γ saturates)

• unstable in the power-law acceleration regime (end-phase of
jets with pext ∝ z−2)
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