Magnetically driven relativistic jets

Nektarios Vlahakis University of Athens

• Extracted energy per time $\dot{\mathcal{E}}$ mainly in the form of Poynting flux (magnetic fields tap the rotational energy of the compact object or disk) $\dot{\mathcal{E}} = \frac{c}{4\pi} \frac{r}{r_{\rm lc}} B_p \ B_{\phi} \times (\text{ area }) \approx \frac{c}{2} B^2 r^2$

• Ejected mass per time \dot{M}

• The $\mu \equiv \dot{\mathcal{E}}/\dot{M}c^2$ gives the maximum possible bulk Lorentz factor of the flow

Magnetohydrodynamics:

matter (velocity, density, pressure)+ large scale electromagnetic field

Numerical simulations

Komissarov, Vlahakis, Königl & Barkov

Assumptions:

- only jet (given boundary conditions at base)
- ideal MHD
- axisymmetry
- cold (not always, but focus on magnetic effects)
- given wall shape (avoid interaction with environment)

TORINO

Input:

magnetized plasma of a given magnetization (given $\mu = \dot{\mathcal{E}}/\dot{M}c^2$) is ejected into a funnel of a given shape (use elliptic coordinates — cut the superfast part into sectors)

Output:

$$\mathbb{I} \quad \Gamma \text{ vs distance ? } (\mu = \dot{\mathcal{E}}/\dot{M}c^2 = \underbrace{\dot{\mathcal{E}}_{matter}/\dot{M}c^2}_{\Gamma} + \underbrace{\dot{\mathcal{E}}_{EM}/\dot{M}c^2}_{\Gamma\sigma})$$

 $\mathbb{R} \Gamma_{\infty} \text{ and the acceleration efficiency } \frac{\Gamma_{\infty}}{\mu} = \frac{\Gamma_{\infty} \dot{M} c^2}{\dot{\mathcal{E}}} = ?$

self-collimation (formation of a cylindrical core) ?

resoure on the wall ? (\equiv pressure of the jet environment)

Results

Results

First what we expect :)

. . .

Analytical results

Simplifications using $\Gamma \gg 1$ and $r \gg r_{lc}$ (then $v_{\phi}/c \ll r/r_{lc}$) (these are valid in the superfast regime) (note that at fast $\Gamma \approx \mu^{1/3} \ll \mu$):

Analytical results

Simplifications using $\Gamma \gg 1$ and $r \gg r_{lc}$ (then $v_{\phi}/c \ll r/r_{lc}$) (these are valid in the superfast regime) (note that at fast $\Gamma \approx \mu^{1/3} \ll \mu$):

- Solution component of the momentum equation along the flow (wind equation) $\Gamma \approx \mu \frac{\Psi \Omega^2}{4\pi^2 k c^3} S$ where the bunching function is $S = \frac{\pi r^2 B_p}{\int B_n \cdot dS} = \frac{\pi r^2 B_p}{\Psi}$
 - acceleration if B_p drops faster than r^{-2} (monopole flow \rightarrow negligible acceleration) (prescribed field shape \rightarrow trivial – and incomplete)
 - \bullet crucial to solve the transfield component of the momentum equation (that controls the shape of the field and thus \mathcal{S})
 - role of collimation
 - external pressure plays important role

register transfield component of the momentum equation

- if centrifugal negligible then $\Gamma \approx z/r$ (since $\mathcal{R}^{-1} \approx -d^2r/dz^2 \approx r/z^2$) power-law acceleration regime (for parabolic shapes $z \propto r^a$, Γ is a power of r)
- if inetria negligible then $\Gamma \approx r/r_{
 m lc}$ linear acceleration regime
- if electromagnetic negligible then ballistic regime

IST $p_{\text{ext}} = B_{\text{co}}^2/8\pi \simeq (B^{\hat{\phi}})^2/8\pi\Gamma^2 \propto 1/r^2\Gamma^2$ Assuming $p_{\text{ext}} \propto z^{-\alpha_p}$ we find $\Gamma^2 \propto z^{\alpha_p}/r^2$.
Combining with the transfield $\frac{\Gamma^2 r}{\mathcal{R}} \approx 1 - \Gamma^2 \frac{r_{\text{lc}}^2}{r^2}$ we find the funnel shape (we find the exponent *a* in *z* ∝ *r^a*).

- if $\alpha_p < 2$ (the pressure drops slower than z^{-2}) then
 - $\star a > 2$ (shape more collimated than $z \propto r^2$)
 - $\star~$ linear acceleration $\Gamma \propto r$
- if $\alpha_p = 2$ then
 - $\star 1 < a \leq 2$ (parabolic shape)
 - \star first $\Gamma \propto r$ and then power-law acceleration $\Gamma \sim z/r \propto r^{a-1}$
- if $\alpha_p > 2$ (pressure drops faster than z^{-2}) then
 - $\star a = 1$ (conical shape)
 - \star linear acceleration $\Gamma \propto r$ (small efficiency)

left: density/field lines, right: Lorentz factor/current lines (wall shape $z \propto r^{1.5}$) Differential rotation \rightarrow slow envelope

Uniform rotation $\to \Gamma$ increases with r

Rarefaction acceleration

Komissarov, Vlahakis & Königl

Analytics of nonrelativistic flows

In the superfast regime:

$$\begin{split} B_p \approx & \frac{2^{1/2} \varpi_{\mathrm{A}}^3 \Omega \Psi_A \zeta^{1/2} (1-\zeta)}{\varpi^2}, \quad B_\phi \approx -\frac{\varpi_{\mathrm{A}}^2 \Omega \Psi_A (1-\zeta)}{\varpi}, \\ V_p \approx & 2^{1/2} \zeta^{1/2} \varpi_{\mathrm{A}} \Omega, \quad V_\phi \approx \frac{\zeta \varpi_{\mathrm{A}}^2 \Omega}{\varpi}, \quad \rho \approx \frac{\Psi_A^2 \varpi_{\mathrm{A}}^2 (1-\zeta)}{4\pi \varpi^2}, \\ & \zeta \approx \frac{1}{1+2(\varpi/\varpi_{\mathrm{f}})^{-2(b-1)}}, \quad z \approx z_{\mathrm{f}} \left(\frac{\varpi}{\varpi_{\mathrm{f}}}\right)^b \end{split}$$

(ζ is the kinetic-to-total energy flux ratio)

for details see Vlahakis 2009 (in Protostellar Jets in Context, K. Tsinganos, T. Ray, and M. Stute (eds.), ASS Proceedings Series, 205)

On current-driven instabilities

The jet is expected to be unstable if the azimuthal magnetic field dominates the poloidal magnetic field (Kruskal-Shafranov).

In source's frame
$$\frac{|B_{\phi}|}{B_p} \approx \frac{r}{r_{\rm lc}} \gg 1$$
 — role of inertia?
In the comoving frame $\left(\frac{|B_{\phi}|}{B_p}\right)_{\rm co} \approx \frac{|B_{\phi}|/\Gamma}{B_p} \approx \frac{r/r_{\rm lc}}{\Gamma}$

In the power-law regime ($\Gamma \ll r/r_{\rm lc}$) the azimuthal component dominates (unstable)

In the linear acceleration regime ($\Gamma \approx r/r_{\rm lc}$) azimuthal and poloidal components of the magnetic field are comparable

Linear stability analysis

Equilibrium: For $0 < r < r_j$ (jet), V = 0 (comoving frame), $B_z = \frac{B_j}{1 + (r/r_0)^2}, B_\phi = \frac{r}{r_0}B_z, \rho = \frac{\rho_j}{\left[1 + (r/r_0)^2\right]^2}, P = 0$ (cold). Magnetization $\sigma = \left(\frac{B_\phi^2}{4\pi\rho c^2}\right)_{r=r_j}$. For $r > r_j$ (environment), pressure p_{ext} .

Perturbations of the form $f(r) \exp \left[i \left(m\phi + kz - \omega t\right)\right]$.

We linearize the system of RMHD eqs and find $\omega = Re\omega + iIm\omega$ for given k and m.

 $1/Im\omega$ is the growth time of the instability.

In the source's frame growth time is Γ times larger.

Summary

- Magnetic driving provides a viable explanation of the dynamics of relativistic jets
 - depending on the external pressure: collimation to parabolic shape z ∝ r^a, a > 2 with Γ ∝ r, parabolic shape z ∝ r^a, 1 < a ≤ 2 with Γ ~ z/r ∝ r^{a-1}, or conical shape z ∝ r with Γ ∝ r
 - bulk acceleration up to Lorentz factors $\Gamma_{\infty} \gtrsim 0.5 \frac{\mathcal{E}}{Mc^2}$ (in conical flows only near the axis)
- \star current-driven instabilities depend on the spatial scale of the Lorentz factor (and thus, on the $p_{\rm ext}$)
 - stable jet if acceleration is linear $\Gamma \propto r \ (p_{\rm ext} \text{ drops slower} \ \text{than } z^{-2}$, or initial phase of jets with $p_{\rm ext} \propto z^{-2}$) (becomes unstable when Γ saturates)
 - unstable in the power-law acceleration regime (end-phase of jets with $p_{\rm ext} \propto z^{-2}$)