The efficiency of the magnetic acceleration in relativistic outflows

Nektarios Vlahakis, University of Athens

mailto: vlahakis@phys.uoa.gr

Outline:

- σ_{∞} in exact relativistic-MHD solutions with applications to AGN and GRB jets, and Crab-like pulsar winds
- how the efficiency depends on the conditions near the central object
- conclusion

- The observed pc-scale acceleration in AGN outflows (e.g., Sudou et al. 2000 for the NGC 6251, Unwin et al. 1997 for the 3C 345) supports magnetic driving.
- A recent measurement of a high (80 ± 20%) linear polarization in the prompt emission in GRB 021206 has been interpreted as evidence that the outflow was magnetically driven (Coburn & Boggs 2003).

Is the flow still Poynting-dominated after the end of the magnetic acceleration? Which is the value of σ_{∞} ?

 $\sigma = \frac{\text{Poynting flux}}{\text{particle energy flux}}$

Could ideal MHD explain the value $\sigma_{\infty} = 0.003$ (Kennel & Coroniti 1984) in the Crab-pulsar wind?

Known solutions of the ideal MHD equations

Michel's solution gives $\gamma_{\infty} = \mu^{1/3}$ and $\sigma_{\infty} = \mu^{2/3} >> 1$ ($\mu c^2 = \frac{\text{total energy flux}}{\text{mass flux}}$; μ is the maximum possible γ).

BUT, it does not satisfy the transfield equation.

Known solutions of the ideal MHD equations

Michel's solution gives $\gamma_{\infty} = \mu^{1/3}$ and $\sigma_{\infty} = \mu^{2/3} >> 1$ ($\mu c^2 = \frac{\text{total energy flux}}{\text{mass flux}}$; μ is the maximum possible γ).

BUT, it does not satisfy the transfield equation.

Necessary to solve the transfield because the line shape controls the acceleration:

Known solutions of the ideal MHD equations

Michel's solution gives $\gamma_{\infty} = \mu^{1/3}$ and $\sigma_{\infty} = \mu^{2/3} >> 1$ ($\mu c^2 = \frac{\text{total energy flux}}{\text{mass flux}}$; μ is the maximum possible γ).

BUT, it does not satisfy the transfield equation.

Necessary to solve the transfield because the line shape controls the acceleration:

THE EFFICIENCY OF THE MAGNETIC ACCELERATION IN RELATIVISTIC OUTFLOWS

GRB outflows (Vlahakis & Königl 2003, ApJ, 596, 1080 and 1104)

equipartition between Poynting and kinetic energy fluxes

Crab-like pulsar winds (Vlahakis, ApJ, 600, January 2004 issue [preprint astro-ph/0309292])

THE EFFICIENCY OF THE MAGNETIC ACCELERATION IN RELATIVISTIC OUTFLOWS

Dogliani / October 2nd, 2003

Chiueh, Li, & Begelman 1998:

Transfield $\rightarrow \varpi/\mathcal{R} \approx 1/\gamma^2 << 1 \Leftrightarrow$ straight lines.

So, $\varpi^2 B_p = \text{const}$, and no acceleration to $\sigma_{\infty} << 1$ is possible.

Chiueh, Li, & Begelman 1998: Transfield $\rightarrow \varpi/\mathcal{R} \approx 1/\gamma^2 << 1 \Leftrightarrow$ straight lines. So, $\varpi^2 B_p =$ const, and no acceleration to $\sigma_{\infty} << 1$ is possible.

Straight lines are not always $z \propto \varpi$ (conical I). The general case is (conical Ia)

$$z = z_0(A) + \frac{\varpi}{\tan \vartheta(A)} \Rightarrow \frac{\varpi^2 B_p}{A} = \frac{1}{A\vartheta' / \sin \vartheta - Az'_0 \sin \vartheta / \varpi} \downarrow$$

This gives
$$\sigma_{\min} = \frac{\sin \vartheta}{A \vartheta'} \frac{\sigma_M}{\mu}$$

 $\sigma_M = \text{Michel's parameter} = \mu \left(\frac{A}{B_p \varpi^2}\right)_{\text{base of the superAlfvénic regime}}$
So, $\sigma_{\min} = \frac{\sin \vartheta}{A \vartheta'} \left(\frac{A}{B_p \varpi^2}\right)_{\text{base of the superAlfvénic regime}}$,
or, $\sigma_{\min} = \frac{\sin \vartheta}{A \vartheta'} \left(\frac{A \Omega}{2|I|}\right)_{\text{base of the superAlfvénic regime}}$.

• A scenario for equatorial pulsar winds

AGN and GRB jets

almost parallel poloidal fieldlines $\Rightarrow \frac{\varpi^2 B_p}{A} = \frac{\varpi^2 \delta A}{\delta S A}$ increases $\propto \varpi$.

Conclusion

- In order to solve for the acceleration it is absolutely necessary to solve for the line shape as well.
 - ★ Michel's (1969) solution is not exact → the σ_{∞} in MHD outflows in principle is (and has been found) << $\mu^{2/3}$.
 - Models with prescribed fieldlines are meaningless.
- In the case of a smooth magnetic flux distribution near the source (B_p π² ~ A), the efficiency is close to 50%, or, σ_∞ ~ 1 (confirmed by self-similar solutions).
- If bunched fieldlines are somehow created near the source $(B_p \varpi^2 >> A)$, the efficiency could be close to 100%, or, $\sigma_{\infty} << 1$ (confirmed by self-similar solutions).