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Outline

• astrophysical jets
• why magnetic driving
• bulk acceleration – jet shape – external pressure



AGN jets
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Relativistic motion in GRB jets

the only solution to the “compactness problem”
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Thermal driving is problematic

• requires high temperatures – corresponding thermal
component of the emission in GRBs?
(Zhang & Pe’er 2009)

• fast process – cannot explain pc-scale acceleration in AGN jets
(lack of Compton features implies a lower limit on γ at 103rg,
Sikora et al 2005)

Viable alternative: magnetic driving

Two additional features:

• Extraction of “clean” energy (high energy-to-mass ratio leads
to relativistic flows)

• Self-collimation
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Magnetized outflows
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• Extracted energy per time Ė
mainly in the form of Poynting flux
(magnetic fields tap the rotational energy
of the compact object or disk)
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• Ejected mass per time Ṁ

• The µ ≡ Ė/Ṁc2 gives the maximum
possible bulk Lorentz factor of the flow

• Magnetohydrodynamics:
matter (velocity, density, pressure)
+ large scale electromagnetic field
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Numerical simulations

Komissarov, Vlahakis, Königl & Barkov

Assumptions:

• only jet (given boundary conditions at base)

• ideal MHD

• axisymmetry

• cold (not always, but focus on magnetic effects)

• given wall shape (avoid interaction with environment)
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Input:
magnetized plasma of a given magnetization (given µ = Ė/Ṁc2)
is ejected into a funnel of a given shape

Output:

+ Γ vs distance ? (µ = Ė/Ṁc2 = Ėmatter/Ṁc2︸ ︷︷ ︸
Γ

+ ĖEM/Ṁc2︸ ︷︷ ︸
Γσ

)

+ Γ∞ and the acceleration efficiency
Γ∞
µ

=
Γ∞Ṁc2

Ė
= ?

+ self-collimation (formation of a cylindrical core) ?

+ pressure on the wall ? (≡ pressure of the jet environment)

FRONTIERS OF NONLINEAR PHYSICS Russia, 14 July 2010



left: density/field lines, right: Lorentz factor/current lines (wall shape z ∝ r1.5)
Differential rotation → slow envelope
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Uniform rotation → Γ increases with r
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Γ (increasing),

Γσ (decreasing),

and µ

efficiency > 50%

(similar to the results of
Vlahakis & Königl 2003,2004;
Beskin & Nokhrina 2006)
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Analytical scalings

Simplifications using Γ � 1 and r � rlc (then vφ/c � r/rlc)
(these are valid in the superfast regime)
(note that at fast Γ ≈ µ1/3 � µ):
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Analytical scalings

Simplifications using Γ � 1 and r � rlc (then vφ/c � r/rlc)
(these are valid in the superfast regime)
(note that at fast Γ ≈ µ1/3 � µ):

+ component of the momentum equation
γn(V · ∇) (γwV ) = −γ2nw∇ lnh−∇p + J0E + J ×B

along the flow (wind equation) Γ ≈ µ− ΨΩ2

4π2kc3 S
where the bunching function is S = πr2BpR

Bp·dS
= πr2Bp

Ψ

• acceleration if Bp drops (even slightly) faster than r−2

or, if separation between lines increases faster than the
cylindrical distance
• crucial to solve the transfield component of the momentum
equation (that controls the shape of the field and thus S)
• role of collimation
• external pressure plays important role
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+ transfield component of the momentum equation

Γ2r
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2
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r2
∇⊥r, with ∇⊥ ∼ 1/r,

simplifies to
Γ2r

R︸︷︷︸
inertia

≈ 1︸︷︷︸
EM

− Γ2r
2
lc

r2︸ ︷︷ ︸
centrifugal

• if centrifugal negligible then Γ ≈ z/r (since R−1 ≈ −d2r
dz2 ≈ r

z2)
power-law acceleration regime
(for parabolic shapes z ∝ ra, Γ is a power of r)

• if inetria negligible then Γ ≈ r/rlc linear acceleration regime

• if electromagnetic negligible then ballistic regime
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+ role of external pressure
pext = B2

co/8π ' (Bφ̂)2/8πΓ2 ∝ 1/r2Γ2

Assuming pext ∝ z−αp we find Γ2 ∝ zαp/r2.
Combining with the transfield Γ2r

R ≈ 1− Γ2r2
lc

r2 we find the funnel
shape (we find the exponent a in z ∝ ra).

• if the pressure drops slower than z−2 then
? shape more collimated than z ∝ r2

? linear acceleration Γ ∝ r

• if the pressure drops as z−2 then
? parabolic shape z ∝ ra with 1 < a ≤ 2
? first Γ ∝ r and then power-law acceleration Γ ∼ z/r ∝ ra−1

• if pressure drops faster than z−2 then
? conical shape
? linear acceleration Γ ∝ r (small efficiency)
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The collimation-acceleration paradigm

• S ↓ through stronger collimation of the inner flux surfaces
relative to the outer ones

• formation of cylindrical core

• analytical scalings using ∇⊥ ∼ 1/r
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Other ways to make S ↓?
• low pext in the sub-fast regime doesn’t work

ballistic → loss of causal cannection across the jet
similar to simulations of unconfined winds by Bogovalov 2001

• But it works in the superfast regime
(Tchekhovskoy, Narayan & McKinney 2009)
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Rarefaction acceleration

Komissarov, Vlahakis & Königl 2010

FRONTIERS OF NONLINEAR PHYSICS Russia, 14 July 2010



(application to GRB jets)
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Steady-state rarefaction wave

Sapountzis & Vlahakis 2010

left: time-dependent rarefaction

middle: steady-state rarefaction

right: combination of rarefaction and nonuniform initial flow
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Summary

? The collimation-acceleration paradigm provides a viable
explanation of the dynamics of relativistic jets
(similarly to non-relativistic ones)
• depending on the external pressure:

collimation to parabolic shape z ∝ ra, a > 2 with Γ ∝ r,
parabolic shape z ∝ ra, 1 < a ≤ 2 with Γ ∼ z/r ∝ ra−1,
or conical shape z ∝ r with Γ ∝ r

• bulk acceleration up to Lorentz factors Γ∞ & 0.5
E

Mc2

? Rarefaction acceleration
• further increases Γ
• makes GRB jets with Γϑ � 1
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On current-driven instabilities

The jet is expected to be unstable if the azimuthal magnetic field
dominates the poloidal magnetic field (Kruskal-Shafranov).

In source’s frame
|Bφ|
Bp

≈ r

rlc
� 1 — role of inertia?

In the comoving frame
(
|Bφ|
Bp

)
co

≈ |Bφ|/Γ
Bp

≈ r/rlc

Γ

In the power-law regime (Γ � r/rlc) the azimuthal component
dominates (unstable)

In the linear acceleration regime (Γ ≈ r/rlc) azimuthal and
poloidal components of the magnetic field are comparable
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Linear stability analysis

Equilibrium: For 0 < r < rj (jet), V = 0 (comoving frame),

Bz =
Bj

1 + (r/r0)
2, Bφ =

r

r0
Bz, ρ =

ρj[
1 + (r/r0)

2
]2, P = 0 (cold).

Magnetization σ =

(
B2

φ

4πρc2

)
r=rj

.

For r > rj (environment), pressure pext.

Perturbations of the form f(r) exp [i (mφ + kz − ωt)] .

We linearize the system of RMHD eqs and find ω = Reω + iImω

for given k and m.

1/Imω is the growth time of the instability.
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(thin red line for (Bφ/Bz)co = 1)
In the source’s frame growth time is Γ times larger.
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Summary
? current-driven instabilities depend on the spatial scale of the

Lorentz factor (and thus, on the pext)
• stable jet if acceleration is linear Γ ∝ r (pext drops slower

than z−2, or initial phase of jets with pext ∝ z−2)
(becomes unstable when Γ saturates)

• unstable in the power-law acceleration regime (end-phase of
jets with pext ∝ z−2)
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