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Superluminal Motion in the M87 Jet
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Relativistic motion in GRB jets

the only solution to the “compactness problem”
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Thermal driving is problematic

requires high temperatures — corresponding thermal
component of the emission in GRBs?
(Zhang & Pe’er 2009)

fast process — cannot explain pc-scale acceleration in AGN jets
(lack of Compton features implies a lower limit on v at 10°r,,
Sikora et al 2005)

Viable alternative: magnetic driving

Two additional features:

Extraction of “clean” energy (high energy-to-mass ratio leads
to relativistic flows)

Self-collimation
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Magnetized outflows

Extracted energy per time &
mainly in the form of Poynting flux
(magnetic fields tap the rotational energy
of theccompact object or disk)

£=__ —B B, x ( area £ B2y2
47T Tlc ( ) 2

E

Ejected mass per time M

The 1 = £/Mc? gives the maximum
possible bulk Lorentz factor of the flow

Magnetohydrodynamics:
matter (velocity, density, pressure)
+ large scale electromagnetic field
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Numerical simulations

Komissarov, Vlahakis, Konigl & Barkov

Assumptions:

only jet (given boundary conditions at base)

ideal MHD

axisymmetry

cold (not always, but focus on magnetic effects)

given wall shape (avoid interaction with environment)
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magnetized plasma of a given magnetization (given pu = £/Mc?)
IS ejected into a funnel of a given shape

= I vsdistance ? (u = £/Mc? = Ematter/ M2+ Epn/Mc?)

T To
, . oo TooMc?
= [, and the acceleration efficiency P B S

= gelf-collimation (formation of a cylindrical core) ?

= pressure on the wall ? (= pressure of the jet environment)
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left: density/field lines, right: Lorentz factor/current lines (wall shape z o r!-°)
Differential rotation — slow envelope
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Uniform rotation — I increases with r
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Analytical scalings

Simplifications using I' > 1 and r > r|. (then vy /c < 7r/71c)
(these are valid in the superfast regime)
(note that at fast I' ~ u!'/3 < p):
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Analytical scalings

Simplifications using I' > 1 and r > r|. (then vy /c < 7r/71c)
(these are valid in the superfast regime)
(note that at fast I' ~ u!'/3 < p):

== component of the momentum equation
yn(V -V)(ywV) = —v?nwVIinh - Vp+ J°E + J x B
. . 2
along the flow (wind equation) I’ ~ p1 — —a2—= S

247T2kc3 5
: : : __ mnr°By,  wroBy
where the bunching function is S = TB,dS — ¥

e acceleration if B, drops (even slightly) faster than r—=

or, if separation between lines increases faster than the
cylindrical distance

e crucial to solve the transfield component of the momentum
equation (that controls the shape of the field and thus S)

e role of collimation

e external pressure plays important role
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1= transfield component of the momentum equation

oI 1\’ I
TVJ_lIl —
[ (93 2) r ; |
—T% o 5 5 —FQT—ISVJ_T, with V| ~ 1/7",
R W 47Tpuprlc r
b pct Bz r?
. e FZT QTIZC
simplifies to = ~. 1 — T pe)
inertia centrifugal

e if centrifugal negligible then 1" ~ = /» (since ' ~ —% X 3)

power-law acceleration regime
(for parabolic shapes z «x r%, I' is a power of r)

e if inetria negligible then 1" ~ /. linear acceleration regime

e if electromagnetic negligible then ballistic regime
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= role of external pressure
Pext = B2 /81 ~ (B?)?/87'? o< 1/r*I'?
Assuming pexi o< 2~ “r we find I'? o< 2% /r?.
Combining with the transfield %27“ ~1— FQZ—% we find the funnel
shape (we find the exponent a in z o r?).

o if the pressure drops slower than z—2 then

~ shape more collimated than z o 2

* linear acceleration I" x r
o if the pressure drops as 22 then

* parabolic shape z x r* with 1 < a < 2

x first I" < r and then power-law acceleration I" ~ z/r oc 7%~}
o if pressure drops faster than =2 then

* conical shape

x linear acceleration I' & r (small efficiency)
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The collimation-acceleration paradigm

e S | through stronger collimation of the inner flux surfaces
relative to the outer ones

e formation of cylindrical core

e analytical scalings using V, ~ 1/r
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Other ways to make S |?

low peyt IN the sub-fast regime doesn’t work
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ballistic — loss of causal cannection across the jet
similar to simulations of unconfined winds by Bogovalov 2001

But it works in the superfast regime
(Tchekhovskoy, Narayan & McKinney 2009)
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Rarefaction acceleration
Komissarov, Vlahakis & Konigl 2010
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li::-gmz/rL3

(application to GRB jets)
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Steady-state rarefaction wave

Sapountzis & Vlahakis 2010
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left: time-dependent rarefaction

middle: steady-state rarefaction
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right: combination of rarefaction and nonuniform initial flow
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Summary

* The collimation-acceleration paradigm provides a viable
explanation of the dynamics of relativistic jets

e depending on the external pressure:
collimation to parabolic shape z «x r% a > 2 with I" x r,
parabolic shape z < 7%, 1 < a < 2withT' ~ z/r oc 7%~ 1,
or conical shape z oc r with I oc 7 c

e bulk acceleration up to Lorentz factors I', = 0.5M 5
C

+ Rarefaction acceleration

e further increases I
e makes GRB jets with 't} > 1
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On current-driven instabilities

The jet is expected to be unstable if the azimuthal magnetic field
dominates the poloidal magnetic field (Kruskal-Shafranov).

B . .
In source’s frame Byl ~ r > 1 — role of inertia?
Bp Tlc
- | By Bs|/T"  7/71c
In the comoving frame ~ ~
g ( BP CO Bp F

In the power-law regime (I" < r/r.) the azimuthal component
dominates (unstable)

In the linear acceleration regime (I" = r/r).) azimuthal and
poloidal components of the magnetic field are comparable
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Linear stability analysis

Equilibrium: For 0 < r < r; (jet), V = 0 (comoving frame),
B. .
B, = . By=-—B., p= f7____ P =0(cold).
L+ (r/ro) "o [1 + (7“/7“0)2}
B2
Magnetization ¢ = ( ? 2> :
dpes | |

_ J
For r > r; (environment), pressure pext.

Perturbations of the form f(r)exp [i (m¢ + kz — wt)] .

We linearize the system of RMHD eqgs and find w = Rew + tImw
for given k and m.

1/I'mw is the growth time of the instability.
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Summary

* current-driven instabilities depend on the spatial scale of the
Lorentz factor (and thus, on the peyt)

e stable jet if acceleration is linear I' o< r (pe., drops slower
than 22, or initial phase of jets wWith pext o< 272)

(becomes unstable when I' saturates)
e unstable in the power-law acceleration regime (end-phase of

jets With pext o 272)
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