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Outline

• relativistic MHD model – results

• the acceleration efficiency in general

• neutron-rich outflows
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GRB + afterglow
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GRB + afterglow

... ...
matter kinetic energy

(γ ∼ a few 100
M = E/γc2 ∼ a few 10−6M�)
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GRB + afterglow

... ...
matter kinetic energy

(γ ∼ a few 100
M = E/γc2 ∼ a few 10−6M�)

... ...?
Poynting flux
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Progenitor models ⇒ NS or BH or BH + debris disk

At the ejection surface E =
c

4π

$Ω
c

Bp︸ ︷︷ ︸
E

Bφ × area × duration ⇒

BpBφ

(1014G)2
=

[
E

1051ergs

] [
area

4π × 1012cm2

]−1 [
$Ω

1010cm s−1

]−1 [
duration

10s

]−1

• from the BH: Bp & 1015G (small Bφ, small area)

• from the disk: smaller magnetic field required ∼ 1014G

– If initially Bp/Bφ > 1, a trans-Alfv énic outflow is produced.

– If initially Bp/Bφ < 1, the outflow is super-Alfv énic from the start.
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Relativistic Magneto-Hydro-Dynamics

• Outflowing matter:

– baryons
– ambient electrons (neutralize the protons)
– e± pairs (Maxwellian distribution)

• photons (blackbody distribution)

• large scale electromagnetic field

We need to integrate:

– Maxwell + Ohm equations
– mass + entropy conservation
– momentum equation
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Assumptions
• special relativity

• steady-state is a safe assumption!

– Ω ∼ 104rad s−1 ⇒ many rotations during the engine’s activity (∼ 10s)
– the outflow is faster than the fastest signals propagating inside the flow
⇒ different parts of the flow (shells) are causally disconnected (frozen
pulse)
(proof can be found in Vlahakis & Königl 2003, ApJ, 596, 1080)

• axisymmetry

• ideal MHD (infinite conductivity)

The problem reduces to two coupled equations: the Bernoulli (or wind
equation) and the transfield component of the momentum equation. The
unknowns are γ and A (the later is the magnetic flux function A =

∫
Bp · dS

that determines the field-, stream-line shape).
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The problem remains difficult (even numerically) and many tried to solve it by
simply ignoring the transfield equation (e.g., Michel 1969, Fendt & Ouyed
2004).

Necessary to solve the transfield because the line shape controls the
acceleration:

aasasa

A+  Aδ

δ S

z

ϖ

A=c
on

st

A

Poynting-to-mass flux ratio ∝ $|Bφ| →
γ ↑ when $|Bφ| ↓
E = |V /c×B| ≈ |Bφ|, E = ($Ω/c)Bp

So, $|Bφ| ∝ $2Bp = ($2/δS)δA.

A way out (the only one at present): choose a special form of boundary
conditions that lead to separation of variables −→
r self-similarity (all quantities on the conical disk surface are power laws in r)
(details of the model can be found in Vlahakis & Königl 2003, ApJ, 596, 1080).
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Trans-Alfv énic Jets (NV & Königl 2001, 2003a)
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• $1 < $ < $6: Thermal acceleration - force free magnetic field
(γ ∝ $ , ρ0 ∝ $−3 , T ∝ $−1 , $Bφ = const, parabolic shape of fieldlines: z ∝ $2)

• $6 < $ < $8: Magnetic acceleration (γ ∝ $ , ρ0 ∝ $−3)

• $ = $8: cylindrical regime - equipartition γ∞ ≈ (−EBφ/4πγρ0Vp)∞
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Super-Alfv énic Jets (NV & Königl 2003b)
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• Thermal acceleration (γ ∝ $0.44 , ρ0 ∝ $−2.4 , T ∝ $−0.8 , Bφ ∝ $−1 , z ∝ $1.5)

• Magnetic acceleration (γ ∝ $0.44 , ρ0 ∝ $−2.4)

• cylindrical regime - equipartition γ∞ ≈ (−EBφ/4πγρ0Vp)∞
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The acceleration efficiency in general

We proved that Poynting-to-mass flux ratio ∝ $|Bφ| ∝ $2Bp.

If µc2 = total energy flux
mass flux (µ is the maximum possible γ) then $|Bφ| ∝ (µ− γ),

and
µ− γ∞
µ− γi

=
($2Bp)∞
($2Bp)i

.

Since ($2Bp)∞ ≈ A we find that γ∞ ≈ µ− µ
A

($2Bp)i

• The more bunched the fieldlines near the origin the higher the acceleration
efficiency.

• In the previous numerical results it happened that ($2Bp)i ≈ 2A, resulting
in equipartition γ∞ ≈ µ/2. Efficiencies higher that 50% have been found,
corresponding to ($2Bp)i � A.
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Neutron-rich hydromagnetic flows
(Vlahakis, Peng, & Königl 2003 ApJL)

A possible resolution to the baryon loading problem (Fuller et al. 2000):

• If the source is neutron-rich, then the neutrons could decouple from the
flow before the protons attain their terminal Lorentz factor.

• Disk-fed GRB outflows are expected to be neutron-rich, with ∼ 20− 30
neutrons per proton (Pruet et al. 2003; Beloborodov 2003; Vlahakis et al.
2003).

However, it turns out that the decoupling Lorentz factor γd in a thermally
driven, purely hydrodynamic outflow is of the order of γ∞ (e.g., Derishev et al.
1999; Beloborodov 2003), which has so far limited the practical implications of
the Fuller at al. (2000) proposal.
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In a magnetized outflow:

• Part of the thermal energy could be converted to electromagnetic (with the
remainder transfered to baryon kinetic).

• The Lorentz factor increases with lower rate compared to the hydrodynamic
case. This makes it possible to attain γd � γ∞, as it is shown in the
following solution.

• The energy deposited into the Poynting flux is returned to the matter
beyond the decoupling point.

• In the pre-decoupling phase:
• The momentum equation for the whole system

(protons/neutrons/e±/photons/electromagnetic field)
yields the flow velocity.

• The momentum equation for the neutrons alone yields the
neutron-proton collisional drag-force, and the drift velocity.

• When Vproton − Vneutron ∼ c the neutrons decouple.

• In the post-decoupling phase:
• We solve for the protons alone (+ electromagnetic field).

4TH GRB WORKSHOP, ROME (ITALY) Nektarios Vlahakis, October 19, 2004



105 106 107 108 109 1010 1011 1012 1013 1014 1015

z (cm)
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

100

100

101

102

V n, comoving
/c

(V //
−V n //

)/c

−V n  |
 /c

Poynting

kinetic

enthalpy

(a)

(b)

n/p = 30

decoupling at γd = 15

a
γ∞ = 200

Eproton ≈ 1051ergs
≈ 0.5 Eneutron

(a) The three components of the total energy flux, normalized by the mass flux × c2.
(b) Proton–neutron drift velocity.
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Due to the magnetic collimation Vneutron,⊥ ∼ 0.1c at decoupling.

Thus, a two component outflow is naturally created:

• An inner jet consisting of the protons (with γ = 200 and
Ep = 1051 ergs).

• The decoupled neutrons, after undergoing β decay at a
distance ∼ 4× 1014(γd/15)cm, form a wider proton component
(with γ = 15 and Ep = 2× 1051 ergs).

(See Peng, Königl, & Granot, poster in this meeting, for
implications.)
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Discussion

• Magnetic fields provide a viable mechanism to accelerate and
collimate GRB outflows.

• Dissipation enhances the acceleration (Drenkhahn & Spruit
2002). However, a more detailed calculation is needed.

• Neutron-rich magnetized outflows significanty alleviate the
baryon-loading problem. They also provide a way to create a
two-component outflow, consisting of a narrow and a wider jet.
It is important to examine the characteristics of these
two-component jets (e.g., find the relation between their
opening angles), and for that we need to solve the two-fluid
equations near the decoupling point.
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The frozen-pulse approximation

• The arclength along a poloidal fieldline

` =

∫ t

s
c

Vpdt ≈ ct− s ⇒ s = ct− `

• s is constant for each ejected shell. Moreover, the distance between two different shells
`2 − `1 = s1 − s2 remains the same (even if they move with γ1 6= γ2).

• Eliminating t in terms of s: we show that all terms with ∂/∂s are O(1/γ) × remaining
terms (generalizing the HD case examined by Piran, Shemi, & Narayan 1993). Thus we
may examine the motion of each shell using steady-state equations.(

e.g.,
d

dt
= (c− Vp)

∂

∂s
+ V · ∇s ≈ V · ∇s

)
• All physical quantities are functions of r and s.
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The ideal MHD equations

Maxwell:
∇ · B = 0 = ∇× E +

∂B
c∂t

,∇× B =
∂E
c∂t

+
4π

c
J ,∇ · E =

4π

c
J

0

Ohm: E = B× V/c

baryon mass conservation (continuity):
d(γρ0)

dt
+ γρ0∇ · V = 0 , where

d

dt
=

∂

∂t
+ V · ∇

energy UµT µν
,ν = 0 (or specific entropy conservation, or first law for thermodynamics):

d
(

P/ρ
4/3
0

)
dt

= 0

momentum T νi
,ν = 0: γρo

d (ξγV)

dt
= −∇P +

J0E + J× B
c

Eliminating t in terms of s: (V · ∇s) (ξγV)−
(∇s · E) E + (∇s × B)× B

4πγρ0
+
∇P

γρ0
=

(Vp − c)
∂ (ξγV)

∂s
+

∂(E + Bφ)

4πγρ0∂s

∇sA

|∇sA |
× B−∇sA

∇s` · ∇sA

|∇sA |2
∂(E2 − B2

φ)

8πγρ0∂s
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