Dynamics of astrophysical magnetized jets

Nektarios Vlahakis University of Athens

Outline

- introduction (observed jet characteristics)
- magnetohydrodynamics (collimation-acceleration)
- linear jet stability (resulting growth rates)

Examples of astrophysical jets

(scale =1000 AU, $V_{\infty} = a few100$ km/s)

PRINCETON ATHENS CENTER 2 July 2024

The jet from the M87 galaxy

(from Blandford+2018)

Image Credit: The EHT Multi-wavelength Science Working Group; the EHT Collaboration; ALMA (ESO/NAOJ/NRAO); the EVN; the EAVN Collaboration; VLBA (NRAO); the GMVA; the Hubble Space Telescope; the Neil Gehrels Swift Observat

(Park+2021)

X-ray binaries γ**-ray bursts**

mildly relativistic $\gamma = a$ few 100

Basic questions

- source of matter/energy?
- bulk acceleration?
- collimation?
- role of environment?

Theoretical modeling

 \mathbb{F} if energy source = thermal energy:

thermal acceleration is an efficient mechanism

gives terminal speed $\frac{m_p V_\infty^2}{2}$ ∞ 2 $\sim k_{\rm B}T_i$ for YSO jets or terminal Lorentz factors $\gamma_\infty m_p c^2 \sim k_{\rm B} T_i$ for relativistic jets in both cases needs high initial temperatures T_i to explain the

observed motions

☞ magnetic acceleration more likely

Polarization

(Marscher et al 2008, Nature)

observed $E_{\rm rad} \perp B_{\perp \rm los}$ (modified by Faraday rotation and relativistic effects)

Faraday RM gradients across the jet

helical field surrounding the emitting region (Gabuzda)

Role of magnetic field

- \star extract energy (Poynting flux)
- \star extract angular momentum
- \star transfer energy and angular momentum to matter
- \star explain relatively large-scale acceleration
- \star self-collimation
- \star synchrotron emission
- \star polarization and Faraday RM maps

How MHD acceleration works

Beam¹ B_{p} \overline{E} Black hole \boldsymbol{E} J_{p} B_{φ}

A unipolar inductor (Faraday disk)

m agnetic field $+$ rotation

current $\leftrightarrow B_{\phi}$ Poynting flux $\frac{c}{4\pi}EB_{\phi}$ is extracted (angular momentum as well)

The Faraday disk could be the rotating accretion disk, or the frame dragging if energy is extracted from the ergosphere of a rotating black hole (Blandford & Znajek mechanism)

The ideal MHD equations

Maxwell: $\nabla \cdot \boldsymbol{B} = 0 = \boldsymbol{\nabla} \times \boldsymbol{E} +$ $\partial \boldsymbol{B}$ $\frac{\partial \mathbf{B}}{\partial t}, \nabla \times \mathbf{B} =$ $\partial \bm{E}$ $\frac{\partial \mathbf{E}}{\partial t} +$ 4π \overline{c} $\boldsymbol{J} \,, \boldsymbol{\nabla} \cdot \boldsymbol{E} = % \hbox{\boldmath $ \boldsymbol{J} \, \boldsymbol{J} \, \boldsymbol{J} \, \boldsymbol{J} } \, ,$ 4π $\mathcal{C}_{0}^{(n)}$ J^0 Ohm: $E = -$ V \overline{c} $\times B$ mass conservation (continuity): $\displaystyle{\frac{d(\gamma\rho_0)}{dt}+\gamma\rho_0\bm{\nabla}\cdot\bm{V}=0\,,\quad\hbox{where}\quad \displaystyle{\frac{d}{dt}}$ = ∂ $\frac{\partial}{\partial t} + \bm{V} \cdot \bm{\nabla}$ **energy** $U_{\mu}T^{\mu\nu}_{,\nu}=0$ (or specific entropy conservation, or first law for thermodynamics): $d\left(P/\rho_0^{\Gamma}\right)$ $\frac{\partial^2 f''(0)}{\partial t^2} = 0$

$$
\text{momentum }_{T,\nu}^{\nu i} = 0: \;\; \gamma \rho_o \frac{d\left(\xi \gamma \boldsymbol{V}\right)}{dt} = - \boldsymbol{\nabla} P + \frac{J^0 \boldsymbol{E} + \boldsymbol{J} \times \boldsymbol{B}}{c}
$$

magnetic acceleration

• simplified momentum equation along the flow

$$
\gamma \rho_0 \frac{d(\gamma V)}{dt} = -\frac{B_\phi}{4\pi \varpi} \frac{\partial (\varpi B_\phi)}{\partial \ell} \quad = \textbf{J} \times \textbf{B} \text{ force}
$$

 $(\varpi=$ cylindrical distance, $\ell=$ arclength along flow)

• simplified Ferraro's law (ignore V_{ϕ} – small compared to $\varpi\Omega$)

$$
V_{\phi} = \varpi \Omega + VB_{\phi}/B_p \quad \Leftrightarrow \quad B_{\phi} \approx -\frac{\varpi \Omega B_p}{V} \quad \text{``Parker spiral''}
$$
\n• combine the two, use the mass-to-magnetic flux $\Psi_A = \frac{4\pi \gamma \rho_0 V}{B_p}$ (constant due to flux-freezing)

$$
m\frac{d(\gamma V)}{dt} = -\frac{\partial}{\partial \ell} \left(\frac{S}{V} \right) , \quad m = \frac{\Psi_A}{A\Omega^2} , \quad S = \frac{\varpi^2 B_p}{A}
$$

$$
(A is the magnetic flux-integral)
$$

PRINCETON ATHENS CENTER 2 July 2024

toy model

$$
m\frac{d(\gamma V)}{dt} = -\frac{\partial}{\partial \ell} \left(\frac{S}{V}\right)
$$

motion of a mass $m = \frac{\Psi_A}{A\Omega^2}$ in a velocity-dependent potential $\frac{S}{V}$
corresponding energy integral = Bernoulli $\gamma mc^2 + \frac{S}{V} = E$
The equation of particle motion can be written as a de-Laval
nozzle equation
$$
\frac{dS}{dV} = \frac{dS}{dV}
$$

$$
\frac{dV}{d\ell} = \frac{d\ell}{E - \gamma^3 mc^2}
$$

bunching function $S = \varpi^2 B_p/A$ using the definition of $A, S =$ $2\pi\varpi^2B_p$ Z $\boldsymbol{B}_p \cdot d\boldsymbol{a}$

thus S measures the ratio of the local over the mean poloidal magnetic field

it measures how bunched are the fieldlines at a given point

its variation along the flow measures the expansion of the flow, $S \propto \frac{B_p \, 2 \pi \varpi \delta \ell_{\perp}}{2}$ ${\delta A}$ $\overline{\omega}$ $\delta\ell_\perp$ ∝ $\frac{1}{\omega}$ $\delta\ell_\perp$

if $\delta\ell_{\perp}/\varpi$ increases, S decreases if $\delta\ell_{\perp}/\varpi$ decreases, S increases ϖ $\delta\ell$ δ $\boldsymbol{\overline{\omega}}$

PRINCETON ATHENS CENTER 2 2 July 2024

Vlahakis+2000 nonrelativistic solution

Vlahakis & Königl 2003, 2004 relativistic solutions

acceleration efficiency $\gtrsim 50\%$

Simulations of special relativistic jets (e.g. Komissarov+2009)

energy flux ratios:

PRINCETON ATHENS CENTER 2 July 2024

left: density/field lines, right: Lorentz factor/current lines (jet shape $z\propto r^{1.5})$

Even in general relativistic MHD jet simulations (Chatterjee+2019 - review Mizuno 2022)

Basic questions: collimation

hoop-stress:

+ electric force (acts in the opposite way in the core of the jet) degree of collimation ? Role of environment?

pressure equilibrium at the boundary $\frac{B^2 - E^2}{2}$ 8π $= P_{\text{ext}}$

ideal conductor $\boldsymbol{E} = -\boldsymbol{V} \times \boldsymbol{B}/c \Rightarrow E \approx V B_{\phi}/c$ $B \approx B_{\phi} \propto 1/\varpi$ (from Ampére with approximately constant *I*) knowing $P_{\rm ext}(z)$ we find $\gamma=\sqrt{B^2/8\pi P_{\rm ext}}$

PRINCETON ATHENS CENTER 2 July 2024

☞ transfield component of the momentum equation for relativistic jets simplifies to $\mathcal{R}\approx \gamma^2\varpi$

since $\mathcal{R}^{-1} \approx -\frac{d^2\varpi}{dz^2}$ $\frac{z}{dz^2} \approx$ $\overline{\omega}$ $\frac{\varpi}{z^2}$ it gives power-law $\gamma \approx z/\varpi$ (for parabolic shapes $z \propto \varpi^a$, γ is a power of ϖ)

- ☞ role of external pressure combining $\mathcal{R} \approx \gamma^2 \varpi$ with $\gamma = \sqrt{B^2/8\pi P_{\rm ext}}$:
	- if the pressure drops slower than z^{-2} then
		- **★ shape more collimated than** $z \propto \omega^2$
		- \star linear acceleration $\gamma \propto \varpi$
	- if the pressure drops as z^{-2} then
		- ★ parabolic shape $z \propto \varpi^a$ with $1 < a < 2$
		- \star first $\gamma \propto \varpi$ and then power-law acceleration $\gamma \sim z/\varpi \propto \varpi^{a-1}$
	- if pressure drops faster than z^{-2} then
		- \star conical shape
	- \star linear acceleration $\gamma \propto \varpi$ (small efficiency)

Basic questions

• source of matter/energy? disk or central object, rotation+magnetic field

• bulk acceleration \checkmark

• collimation √

• role of environment? \checkmark

2nd level of understanding

credit: Boston University Blazar Group

☞ jet stability (Kelvin-Helmholtz? current driven? centrifugal?)

- ☞ nonthermal radiation particle acceleration shocks or reconnection ? connection with instabilities ?
- ☞ polarization maps and comparison with observations
- ☞ role of resistivity?
- ☞ kinetic description ? (combination with magnetohydrodynamics)

Current-driven instabilities

(sketch from Yager-Elorriaga 2017)

Role of B_z ? of inertia?

At large distances distances the field is mainly toroidal (since $B_p \propto 1/\varpi^2$, $B_\phi \propto 1/\varpi)$

Kinetic instabilities

Relative motion drives Kelvin-Helmholtz instability

For astrophysical jets we need to combine

- magnetic field
- compressibility
- relativity (in bulk speed, sound speed, Alfvén speed)
- cylindrical geometry

Linear stability analysis Charis Sinnis' PhD work

Unperturbed state:

• Cylindrical jet, cold, with constant speed $V_0\hat{z}$, constant density ρ_0 , and helical magnetic field

 $B_{0z} =$ $B_{\rm 0}$ $\frac{D_0}{1 + \left(\varpi / \varpi_0\right)^2}, \quad B_{0\phi} = B_{0z}\gamma$ ϖ ϖ_0 (satisfying the force balance equation). B_0 controls the magnetization $\sigma =$ $B_{\rm co}^2$ $\frac{B_{\rm{co}}^2}{4\pi\rho_0c^2},~~\varpi_0$ controls the $\frac{B_{\phi}}{B_z}$ B_z • Environment: uniform, static, with density $\eta \rho_{0 jet}$, either hydrodynamic or cold with uniform B_{0z}

• Add perturbations in all quantities $Q(\varpi\,,z\,,\phi\,,t)=Q_0(\varpi)+Q_1(\varpi)e^{i(kz+m\phi-\omega t)}$ with integer m , real k , and complex ω (temporal approach), i.e. $Q=Q_0(\varpi)+Q_1(\varpi)e^{\Im\omega t}e^{i(kz+m\phi-\Re\omega t)}$ (instability corresponds to $\Im \omega > 0$)

Linearization of the ideal relativistic magnetohydrodynamic equations reduces to two equations with (complex) unknowns:

• the Lagrangian displacement of each fluid element in the radial direction y_1

• the perturbation of the total pressure at the displaced position y_2

These should be continuous everywhere (at the interface as well)

Eigenvalue problem

• integrate the equations inside the jet (attention to regularity condition on the axis)

• integrate the equations in the environment (solution vanishes at $\varpi \gg \varpi_i$

• Match the solutions at ϖ_i . find ω for which y_1 and y_2 are $\text{continuous} \longrightarrow \text{dispersion relation}$

• The solution depends on γ , σ , ϖ_0 , η , and the wavenumbers k, m

Result for the dispersion relation (Re=solid, Im=dashed), for $\gamma=2, \sigma=1$ (at ϖ_j), $\varpi_0=0.1, \eta=10$, and $m=0$. K-H is the most unstable mode.

We explore in the following a fiducial case with $k = \pi$

PRINCETON ATHENS CENTER 2 July 2024

For small speeds $\Im\omega \propto V$ while sufficiently large $M_{\rm fast}$ stabilizes

Dependence on the jet magnetization (at ϖ_j)

Locality of the eigenfunction y_1 (Lagrangian displacement)

Nonlinear evolution Thodoris Nousias' master thesis

Simulation using the PLUTO code, with initial condition eigenfunction of the linear analysis (fiducial case).

Resolution effects

- for kinetic instabilities growth rate increases with k
- cannot be fully resolved
- numerical errors mimic physical diffusion effects

Numerical magnetic diffusivity Argyris Loules' PhD thesis

Estimation from "Ohm's law" $\langle J \rangle =$ c^2 $4\pi\eta$ $\langle E \rangle$

(using a numerical experiment of a blast wave in a homogeneous magnetic field)

The cell size defines the magnetic diffusivity $(\eta_{\text{num}} \propto 1/N)$. Effects of physical resistivity cannot be seen if $\eta < \eta_{\rm num}$

Physical magnetic diffusivity Argyris Loules' PhD thesis

Magnetic diffusivity affects magnetic field through

the diffusion equation $\frac{\partial \boldsymbol{B}}{\partial \boldsymbol{\beta}}$ ∂t $= \nabla \times (\boldsymbol{V} \times \boldsymbol{B} - \eta \nabla \times \boldsymbol{B})$ corresponding Reynolds number $\mathcal{R}_m =$ UL η

but also through the Joule heating in the energy equation de $\frac{dC}{dt} + P$ $d(1/\rho)$ dt = η $4\pi\rho$ $(\nabla \times \boldsymbol{B})^2$

corresponding Reynolds number $\mathcal{R}_{\beta}=$ β 2 \mathcal{R}_m (Čemeljić+2008) Similarly in RMHD.

Analytical results

(based on expansion wrt polar angle θ near the symmetry axis of the jet)

the Joule heating temporarily compensates adiabatic cooling

Summary

 \star magnetic field + rotation \to Poynting flux extraction

- \star the collimation-acceleration mechanism is very efficient $$ provides a viable explanation for the bulk jet acceleration
- \star environment significantly affects jet dynamics in the acceleration-collimation zone (jet-shape, spatial scale of γ)
- \star Kelvin-Helmholtz is the most unstable mode for heavy jets with mildly relativistic speeds, high magnetizations
- \star interesting to analyze the nonlinear evolution via simulations but also analytically isolating features

Thank you for your attention