Dynamics of astrophysical magnetized jets

Nektarios Vlahakis University of Athens

Outline

- introduction (observed jet characteristics)
- magnetohydrodynamics (collimation-acceleration)
- linear jet stability (resulting growth rates)

Examples of astrophysical jets

(scale =1000 AU, $V_{\infty} = a few 100$ km/s)

PRINCETON ATHENS CENTER

The jet from the M87 galaxy

(from Blandford+2018)

Image Credit: The EHT Multi-wavelength Science Working Group; the EHT Collaboration; ALMA (ESO/NAOJ/NRAO); the EVN; the EAVN Collaboration; VLBA (NRAO); the GMVA; the Hubble Space Telescope; the Neil Gehrels Swift Observatory; the Chandra X-ray Observatory; the Nuclear Spectroscopic Telescope Array; the Fermi-LAT Collaboration; the H.E.S.S collaboration; the MAGIC collaboration; the VERITAS collaboration; NASA and ESA. Composition by J. C. Algaba

(Park+2021)

X-ray binaries

γ -ray bursts

mildly relativistic

 $\gamma = a \text{ few } 100$

Basic questions

- source of matter/energy?
- bulk acceleration?
- collimation?
- role of environment?

Theoretical modeling

if energy source = thermal energy:

thermal acceleration is an efficient mechanism

gives terminal speed $\frac{m_p V_{\infty}^2}{2} \sim k_{\rm B} T_i$ for YSO jets or terminal Lorentz factors $\gamma_{\infty} m_p c^2 \sim k_{\rm B} T_i$ for relativistic jets

in both cases needs high initial temperatures T_i to explain the observed motions

magnetic acceleration more likely

Polarization

(Marscher et al 2008, Nature)

observed $E_{rad} \perp B_{\perp los}$ (modified by Faraday rotation and relativistic effects)

Faraday RM gradients across the jet

helical field surrounding the emitting region (Gabuzda)

Role of magnetic field

- * extract energy (Poynting flux)
- ★ extract angular momentum
- ★ transfer energy and angular momentum to matter
- ★ explain relatively large-scale acceleration
- ★ self-collimation
- ★ synchrotron emission
- polarization and Faraday RM maps

How MHD acceleration works

A unipolar inductor (Faraday disk)

magnetic field + rotation

current $\leftrightarrow B_{\phi}$ Poynting flux $\frac{c}{4\pi}EB_{\phi}$ is extracted (angular momentum as well)

The Faraday disk could be the rotating accretion disk, or the frame dragging if energy is extracted from the ergosphere of a rotating black hole (Blandford & Znajek mechanism)

The ideal MHD equations

Maxwell: $\boldsymbol{\nabla} \cdot \boldsymbol{B} = 0 = \boldsymbol{\nabla} \times \boldsymbol{E} + \frac{\partial \boldsymbol{B}}{c\partial t}, \boldsymbol{\nabla} \times \boldsymbol{B} = \frac{\partial \boldsymbol{E}}{c\partial t} + \frac{4\pi}{c} \boldsymbol{J}, \boldsymbol{\nabla} \cdot \boldsymbol{E} = \frac{4\pi}{c} J^0$ Ohm: $E = -\frac{V}{c} \times B$ mass conservation (continuity): $\frac{d(\gamma \rho_0)}{dt} + \gamma \rho_0 \nabla \cdot \boldsymbol{V} = 0, \quad \text{where} \quad \frac{d}{dt} = \frac{\partial}{\partial t} + \boldsymbol{V} \cdot \nabla$ **ENERGY** $U_{\mu}T^{\mu\nu}_{,\nu} = 0$ (or specific entropy conservation, or first law for thermodynamics): $\frac{d\left(P/\rho_0^{\Gamma}\right)}{dt} = 0$

momentum
$$T_{,\nu}^{\nu i} = 0$$
: $\gamma \rho_o \frac{d(\xi \gamma V)}{dt} = -\nabla P + \frac{J^0 E + J \times B}{c}$

magnetic acceleration

• simplified momentum equation along the flow

$$\gamma \rho_0 \frac{d(\gamma V)}{dt} = -\frac{B_{\phi}}{4\pi \varpi} \frac{\partial(\varpi B_{\phi})}{\partial \ell} = \boldsymbol{J} \times \boldsymbol{B} \text{ force}$$

(ϖ = cylindrical distance, ℓ = arclength along flow)

• simplified Ferraro's law (ignore V_{ϕ} – small compared to $\varpi \Omega$)

$$V_{\phi} = \varpi \Omega + V B_{\phi}/B_p \quad \Leftrightarrow \quad B_{\phi} \approx -\frac{\varpi \Omega B_p}{V} \quad$$
 "Parker spiral"
• combine the two, use the mass-to-magnetic flux $\Psi_A = \frac{4\pi \gamma \rho_0 V}{B_p}$
(constant due to flux-freezing)

$$m\frac{d(\gamma V)}{dt} = -\frac{\partial}{\partial \ell} \left(\frac{S}{V}\right), \quad m = \frac{\Psi_A}{A\Omega^2}, \quad S = \frac{\varpi^2 B_p}{A}$$

$$(A \text{ is the magnetic flux} - \text{integral})$$

PRINCETON ATHENS CENTER

toy model

$$m\frac{d(\gamma V)}{dt} = -\frac{\partial}{\partial \ell} \left(\frac{S}{V}\right)$$

motion of a mass $m = \frac{\Psi_A}{A\Omega^2}$ in a velocity-dependent potential $\frac{S}{V}$
corresponding energy integral = Bernoulli $\gamma mc^2 + \frac{S}{V} = E$
The equation of particle motion can be written as a de-Laval
nozzle equation

$$\frac{dV}{d\ell} = \frac{\overline{d\ell}}{E - \gamma^3 mc^2}$$

bunching function $S = \varpi^2 B_p / A$ using the definition of A, $S = \frac{2\pi \varpi^2 B_p}{\int B_p \cdot da}$

thus S measures the ratio of the local over the mean poloidal magnetic field

it measures how bunched are the fieldlines at a given point

its variation along the flow measures the expansion of the flow, $S \propto \underbrace{B_p 2\pi \varpi \delta \ell_{\perp}}_{\delta A} \frac{\varpi}{\delta \ell_{\perp}} \propto \frac{\varpi}{\delta \ell_{\perp}}$

PRINCETON ATHENS CENTER

Vlahakis+2000 nonrelativistic solution

Vlahakis & Königl 2003, 2004 relativistic solutions

acceleration efficiency $\gtrsim 50\%$

Simulations of special relativistic jets (e.g. Komissarov+2009)

energy flux ratios:

PRINCETON ATHENS CENTER

left: density/field lines, right: Lorentz factor/current lines (jet shape $z \propto r^{1.5}$)

Even in general relativistic MHD jet simulations (Chatterjee+2019 - review Mizuno 2022)

PRINCETON ATHENS CENTER

Basic questions: collimation

hoop-stress:

+ electric force (acts in the opposite way in the core of the jet)

degree of collimation ? Role of environment?

pressure equilibrium at the boundary $\frac{B^2 - E^2}{8\pi} = P_{\text{ext}}$

ideal conductor $E = -V \times B/c \Rightarrow E \approx VB_{\phi}/c$ $B \approx B_{\phi} \propto 1/\varpi$ (from Ampére with approximately constant I) knowing $P_{\rm ext}(z)$ we find $\gamma = \sqrt{B^2/8\pi P_{\rm ext}}$

PRINCETON ATHENS CENTER

 $^{\tiny \hbox{\tiny INS}}$ transfield component of the momentum equation for relativistic jets simplifies to $\mathcal{R}\approx\gamma^2\varpi$

since $\mathcal{R}^{-1} \approx -\frac{d^2 \varpi}{dz^2} \approx \frac{\varpi}{z^2}$ it gives power-law $\gamma \approx z/\varpi$ (for parabolic shapes $z \propto \varpi^a$, γ is a power of ϖ)

- role of external pressure combining $\mathcal{R} \approx \gamma^2 \varpi$ with $\gamma = \sqrt{B^2/8\pi P_{\text{ext}}}$:
 - if the pressure drops slower than z^{-2} then
 - $\star\,\,$ shape more collimated than $z\propto arpi^2$
 - $\star~$ linear acceleration $\gamma\propto\varpi$
 - if the pressure drops as z^{-2} then
 - $\star~$ parabolic shape $z \propto \varpi^a$ with $1 < a \leq 2$
 - $\star~~{\rm first}~\gamma\propto\varpi$ and then power-law acceleration $\gamma\sim z/\varpi\propto\varpi^{a-1}$
 - if pressure drops faster than z^{-2} then
 - \star conical shape
 - \star linear acceleration $\gamma \propto \varpi$ (small efficiency)

Basic questions

source of matter/energy?
disk or central object,
rotation+magnetic field

• bulk acceleration \checkmark

• collimation \checkmark

role of environment?

2nd level of understanding

credit: Boston University Blazar Group

is jet stability (Kelvin-Helmholtz? current driven? centrifugal?)

- nonthermal radiation particle acceleration shocks or reconnection ? connection with instabilities ?
- polarization maps and comparison with observations
- Image of resistivity?
- kinetic description ?(combination with magnetohydrodynamics)

Current-driven instabilities

(sketch from Yager-Elorriaga 2017)

Role of B_z ? of inertia?

At large distances distances the field is mainly toroidal (since $B_p \propto 1/\varpi^2$, $B_\phi \propto 1/\varpi$)

Kinetic instabilities

Relative motion drives Kelvin-Helmholtz instability

For astrophysical jets we need to combine

- magnetic field
- compressibility
- relativity (in bulk speed, sound speed, Alfvén speed)
- cylindrical geometry

Linear stability analysis Charis Sinnis' PhD work

Unperturbed state:

• Cylindrical jet, cold, with constant speed $V_0 \hat{z}$, constant density ρ_0 , and helical magnetic field

 $B_{0z} = \frac{B_0}{1 + (\varpi/\varpi_0)^2}, \quad B_{0\phi} = B_{0z}\gamma\frac{\varpi}{\varpi_0}$ (satisfying the force balance equation). $B_0 \text{ controls the magnetization}$ $\sigma = \frac{B_{co}^2}{4\pi\rho_0c^2}, \quad \varpi_0 \text{ controls the } \frac{B_{\phi}}{B_z}$ • Environment: uniform, static, with density $\eta\rho_{0jet}$, either hydrodynamic or cold with uniform B_{0z} • Add perturbations in all quantities $Q(\varpi, z, \phi, t) = Q_0(\varpi) + Q_1(\varpi)e^{i(kz+m\phi-\omega t)}$ with integer *m*, real *k*, and complex ω (temporal approach), i.e. $Q = Q_0(\varpi) + Q_1(\varpi)e^{\Im \omega t}e^{i(kz+m\phi-\Re \omega t)}$ (instability corresponds to $\Im \omega > 0$)

Linearization of the ideal relativistic magnetohydrodynamic equations reduces to two equations with (complex) unknowns:

• the Lagrangian displacement of each fluid element in the radial direction y_1

• the perturbation of the total pressure at the displaced position y_2

These should be continuous everywhere (at the interface as well)

Eigenvalue problem

 integrate the equations inside the jet (attention to regularity condition on the axis)

• integrate the equations in the environment (solution vanishes at $\varpi \gg \varpi_j$)

• Match the solutions at ϖ_j : find ω for which y_1 and y_2 are continuous \longrightarrow dispersion relation

• The solution depends on γ , σ , ϖ_0 , η , and the wavenumbers k, m

Result for the dispersion relation (Re=solid, Im=dashed), for $\gamma = 2$, $\sigma = 1$ (at ϖ_j), $\varpi_0 = 0.1$, $\eta = 10$, and m = 0. K-H is the most unstable mode.

We explore in the following a fiducial case with $k = \pi$

PRINCETON ATHENS CENTER

For small speeds $\Im \omega \propto V$ while sufficiently large M_{fast} stabilizes

Dependence on the jet magnetization (at ϖ_j)

Locality of the eigenfunction y_1 (Lagrangian displacement)

Nonlinear evolution Thodoris Nousias' master thesis

Simulation using the PLUTO code, with initial condition eigenfunction of the linear analysis (fiducial case).

Resolution effects

- for kinetic instabilities growth rate increases with k
- cannot be fully resolved
- numerical errors mimic physical diffusion effects

Numerical magnetic diffusivity Argyris Loules' PhD thesis

Estimation from "Ohm's law" $\langle J \rangle = \frac{c^2}{4\pi\eta} \langle E \rangle$

(using a numerical experiment of a blast wave in a homogeneous magnetic field)

The cell size defines the magnetic diffusivity ($\eta_{num} \propto 1/N$). Effects of physical resistivity cannot be seen if $\eta < \eta_{num}$

Physical magnetic diffusivity Argyris Loules' PhD thesis

Magnetic diffusivity affects magnetic field through

the diffusion equation $\frac{\partial B}{\partial t} = \nabla \times (V \times B - \eta \nabla \times B)$ corresponding Reynolds number $\mathcal{R}_m = \frac{UL}{\eta}$

but also through the Joule heating in the energy equation $\frac{de}{dt} + P \frac{d(1/\rho)}{dt} = \frac{\eta}{4\pi\rho} (\nabla \times B)^2$

corresponding Reynolds number $\mathcal{R}_{\beta} = \frac{\beta}{2}\mathcal{R}_{m}$ (Čemeljić+2008) Similarly in RMHD.

Analytical results

(based on expansion wrt polar angle θ near the symmetry axis of the jet)

the Joule heating temporarily compensates adiabatic cooling

Summary

- \star magnetic field + rotation \rightarrow Poynting flux extraction
- the collimation-acceleration mechanism is very efficient provides a viable explanation for the bulk jet acceleration
- * environment significantly affects jet dynamics in the acceleration-collimation zone (jet-shape, spatial scale of γ)
- Kelvin-Helmholtz is the most unstable mode for heavy jets with mildly relativistic speeds, high magnetizations
- interesting to analyze the nonlinear evolution via simulations but also analytically isolating features

Thank you for your attention