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O bse rvati O nS : Y . S . Vela 4a Event — July 2, 1967

e 1967: the first GRB
Vela satellites

(first publication on 1973)
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Burst and Transient Experiment (BATSE)
2704 GRBs (until May 2000)
isotropic distribution (cosmological origin)
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http://swift.gsfc.nasa.gov

Gamma-ray Burst Real-time Sky Map @ http://grb.sonoma.edu/
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GRB prompt emission

e Fluence F, =10~° — 10~ %ergs/cm?
energy

E., = 10> D \° ol A ergs
T 3 Gpc 104 e am )

cm
reduces E,,
Increases the rate of events

e non-thermal spectrum

e Duration At = 107 — 10°s

long bursts > 2 s, short bursts < 2 s
e Variability 6t = At/N,N =1 — 1000
R coass | compact source R < ¢ 6t ~ 1000 km
: not a single explosion
huge optical depth for vy — ete™
compactness problem: how the photons

collimation {

100 =
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1 escape?
: | (R < ~v%c §t
oal | | | | | relativistic motion blueshifted photon energy
0.01 0.1 1 90%Width10 100 1000 "Y 2 100 < beamlng
(from Djorgovski et al. 2001) | optically thin
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e from X-rays to radio

e fading — broken power law
anchromatic break F, o bt <ty
P v t72 .t > t,
e non-thermal spectrum
(synchrotron + inverse Compton

with power law electron energy distribution)

MAGNETIC DRIVING OF GRB OUTFLOWS

NOA / 19 May 2005



The internal-external shocks model ISM
(or wind)

mass outflow (pancake) al

N shells (moving with different v > 1)

Frozen pulse —— N

(if £ the path’s arclength, a»>

s = ct — £ = const for each shell, : B}

ds = const for two shells) - 1

iInternal shocks
(a few tens of kinetic energy — GRB)

external shock

interaction with ISM (or wind)

(when the flow accumulates Mgy, = M /)

As ~ decreases with time, kinetic energy — X-rays ... radio
— Afterglow
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Beaming — Collimation

e During the afterglow + decreases
When 1/v > ¢ the F(t) decreases faster
The broken power-law justifies collimation

e orphan afterglows ?
(for w > V)
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opening half-angle ¥ = 1° — 10°
e afterglow fits — ¢ energy £, = 10°° — 10°'ergs (Frail et al. 2001)
Eatterglow = 10°°0 — 1051ergs (Panaitescu & Kumar 2002)
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Imagine a Progenitor ...

e acceleration and collimation of matter ejecta

e I/ ~ 1% of the binding energy of a solar-mass compact object
e small 4t — compact object

¢ highly relativistic — compact object

e two time scales (6t , At) + energetics suggest accretion

merger collapsar

Qf

]
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The supernova connection
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Left: Spectrum evolution, from 2.64 to 9.64 days after the burst.
Right: Spectrum of April 8 with the smoothed spectrum of April 1 scaled and
subtracted. (From Stanek et al. 2003)

The SN exploded within a few days of the GRB (Hjorth et al. Nature 2003).
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The BH — debris-disk system

e Energy reservoirs:

[1 binding energy of the orbiting debris
[] spin energy of the newly formed BH
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The BH — debris-disk system

e Energy reservoirs:

[1 binding energy of the orbiting debris
[1 spin energy of the newly formed BH

e Energy extraction mechanisms:

[0 viscous dissipation = thermal energy = viv — eTe™ = e*/photon/baryon fireball
— unlikely that the disk is optically thin to neutrinos (Di Matteo, Perna, & Narayan 2002)
— strong photospheric emission would have been detectable (Daigne & Mochkovitch 2002)
— difficult to explain the collimation
— highly super-Eddington luminosity usually implies high baryonic mass — small ~
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The BH — debris-disk system

e Energy reservoirs:

[1 binding energy of the orbiting debris
[1 spin energy of the newly formed BH

e Energy extraction mechanisms:

[0 viscous dissipation = thermal energy = viv — eTe™ = e*/photon/baryon fireball
— unlikely that the disk is optically thin to neutrinos (Di Matteo, Perna, & Narayan 2002)
— strong photospheric emission would have been detectable (Daigne & Mochkovitch 2002)
— difficult to explain the collimation
— highly super-Eddington luminosity usually implies high baryonic mass — small ~

[1 dissipation of magnetic fields
generated by the differential rotation in the torus = e*/photon/baryon “magnetic”
— collimation
— strong photospheric emission =- detectable thermal emission
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[1 MHD extraction ( jet)

c wf .
o £ =— —B, By x area X duration =
m ¢
E
B,By £ ] [ area ]_1 [ w ]_1 [duration] !
(2 x 1014G)* |5 x 10%ergs| |4m x 10'2cm? 10%0cm s~1 10s

— from the BH: B, > 10'°G (small By, small area)
— from the disk: smaller magnetic field required ~ 10'*G

— Ifinitially B,/ B4 > 1, a trans-Alfv énic outflow is produced.

— Ifinitially B,/ B4 < 1, the outflow is super-Alfv énic from the start.

e IS it possible to “use” this energy and accelerate the matter ejecta?
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ldeal Magneto-Hydro-Dynamics
in collaboration with Arieh Konigl (U of Chicago)

e Outflowing matter:

— baryons (rest density pg)
— ambient electrons (neutralize the protons)
— e* pairs (Maxwellian distribution)

e photons (blackbody distribution)
e large scale electromagnetic field E, B

7 > 1 ensure local thermodynamic equilibrium

i, JO PO
charge density ~—~ < “Le _ .
¢ P one fluid approximation
current density J < m—%ec

V bulk velocity
P = total pressure (matter + radiation)
£c? = specific enthalpy (matter + radiation)

MAGNETIC DRIVING OF GRB OUTFLOWS NOA / 19 May 2005



Assumptions

[] axisymmetry
[1 highly relativistic poloidal motion
[ quasi-steady poloidal magnetic field < Ey =0« B, || V,

: magnetic flux surface

Introduce the magnetic flux function A
B=B,+B,, B,=V x (A%)
Faraday + Ohm — V, || B,

poloidal plane

—

B . R AR .

A=constant
- fieldline

’
c><
O poI0|dal field—streamlin

% streamline

MAGNETIC DRIVING OF GRB OUTFLOWS NOA / 19 May 2005



The frozen-pulse approximation

e The arclength along a poloidal fieldline

'
€z/%dt%ct—s:>3:ct—€

C

»

e s Is constant for each ejected shell. Moreover, the distance between two
different shells /5, — /1 = s; — s; remains the same (even if they move with

Y1 7# V2).

e Eliminating ¢ in terms of s, we show that all terms with 9/0s are O(1/v) x
remaining terms (generalizing the HD case examined by Piran, Shemi, &
Narayan 1993). Thus we may examine the motion of each shell using

steady-state equations.

d 0
(e.g.,az(c—Vp)$+V-V3wV-V5

(also E = |B x V/c| =~ |B x V,/c| = |By|)
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Integration

The full set of ideal MHD equations can be partially integrated to yield five

fieldline constants (functions of A and s = ¢t — /).

[1 the mass-to-magnetic flux ratio
[I the field angular velocity
[1 the specific angular momentum

[ the total energy-to-mass flux ratio uc?

[ the adiabat P/pé/?’

Two integrals remain to be performed, involving the
Bernoulli and transfield force-balance equations.
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Known solutions of the ideal MHD equations

Michel’s solution gives v., = u/? and oo, = p?/3 >> 1
(uc? = total energy flux.
e = " mass flux

1t 1S the maximum possible ~).

BUT, it does not satisfy the transfield equation.
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Known solutions of the ideal MHD equations

Michel’s solution gives 7., = u'/3 and oo = /3 >> 1

(uc? = totarlnzggrﬁgxﬂux; 1 is the maximum possible ).

BUT, it does not satisfy the transfield equation.

Necessary to solve the transfield because the line shape controls the
acceleration:

7 A A+0A

Poynting-to-mass flux ratio o< w|By| —
v T when @|By| |
E=|V/ecxB|~|By|, E=(wl/c)B,
So, @w|By| x w?B, = (w?/§S)5 A

(A = magnetic flux function).
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Trying to solve the transfield
Bernoulli is algebraic

The transfield is a 2nd order PDE of the form

0* A 0% A 0* A . 0A 0A
2 +2bawaz tegg = d, a,b,c,d=functions of 5 B, A, w

a

e Mmixed type — extremelly difficult numerical work (no solution at present)

e easier to solve numerically the time-dependent flow (only a few rotational
periods)

e mixed (Bogovalov)

e analytical solutions: Only one exact solution known: the steady-state, cold,
r self-similar model found by Li, Chiueh, & Begelman (1992) and
Contopoulos (1994).

Generalization for non-steady GRB outflows, including radiation and
thermal effects.
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r self-similarity

Z
o self-similar ansatz r = F;(A) F5(0)
§ For points on the same cone § = const,
Ie) w1 _ " Fi(Aqr)
= w2 T2 .7:1(142)
7Z=7,
0/ o
(Y =(x,M,0),(Bernoulli) )
d . . .
ODEs ¢ = = No(z, M ;1 ,8), (definition of ) > D =0 : singular points
B New.o (Alfvén, modified slow - fast)
= L transfield
| @8 " D, M, u.0) " )
(start the integration from a cone # = 0, and give the boundary conditions By = —Cyr’ 2,

By = —Cor" %, V,/c=C3,Vy/c=—C4, Vy/c=Cs5, po = Cer®" "%, and

P = Cr*F=2)  where F = parameter).
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Trans-Alfv énic Jets (Nv & Kénigl 2001, 2003a)

10

I'c\ut/rin

w1 < w < wg. Thermal acceleration - force free magnetic field
(yxw,ppxw ®, T xw ', wBy = const, parabolic shape of fieldlines: z o w?)

we < w < ws. Magnetic acceleration (v o« w , po x w0~ )
e w = wyg: cylindrical regime - equipartition vo, =~ (—EBy/47vp0Vp) oo
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Super-Alfv énic Jets (Nv & Kanigl 2003b)

1000 ¢
[ . 2
- —EB/(4nyp,cV )=(Poynting flux)/(mass flux)c .
10
100 - .
. 10°
10 - . o
LO?M 6 : 7 : 8 : 9 ‘10 ‘11 12
10 10 10 10 10 10 10
1 L - w(cm)
T
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:E: 3 E 10” -
< 1010 7 .
10° [ -
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i Ll L | Ll ol | | 1 115 é 215 3
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e Thermal acceleration (v o< @w?**, py x @ ** | T x w "%, By x w™ ', 2 x w'?)

e Magnetic acceleration (v o< @

0.4 —24
)

4
y PO X W

e cylindrical regime - equipartition vo. ~ (—EBy/4mvp0V)p) oo
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Collimation

60

40

20 r

1 10 y 100 1000

11

10 10 1012

10° 10
w(cm)

x At w = 10%cm — where v = 10 — the opening half-angle is already ¥ = 10°

x For = > 10%cm, collimation continues slowly (R ~ v?w)
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Time-Dependent Effects

* recovering the time-d

ependence:

1000 ——

100 -

t=30s

t=11s

t=10’s

t=10°s

t=10%s |

1 | | | | | | | | | |
10 10° 10° 10" 10° 10° 10" 10" 10" 10" 10" 10

I(cm)

MAGNETIC DRIVING OF GRB OUTFLOWS

NOA / 19 May 2005



Time-Dependent Effects
* recovering the time-dependence:

1000 ——

t=10%s |
t=10’s

t=10%s
t=30s
t=11s

100 -

1 | | | | | | | | | |
10 10° 10° 10" 10° 10° 10" 10" 10" 10" 10" 10"
I(cm)

* Internal shocks:
The distance between two neighboring shells s;, 5o = 51 + Js

t t t
6€5</Vpdt>535(/(0‘@)&)%58/5(232)6&
c ¢ 0

Different V,, = collision (at ct ~ v?ds — inside the cylindrical regime)
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The baryon loading problem

e Proton mass in jet: My .oton = 3 X 107° (£/10°1ergs) (vo0/200)~1 M.

e The disk would be ~ 10* times more massive even if 10% of its gravitational
potentional energy could be converted into outflow kinetic energy (baryon
loading problem).

A possible resolution (Fuller et al. 2000):

e If the source Is neutron-rich, then the neutrons could decouple from the
flow before the protons attain their terminal Lorentz factor.

e Disk-fed GRB outflows are expected to be neutron-rich, with n/p as high as
~ 20 — 30 (Pruet et al. 2003; Beloborodov 2003; Vlahakis et al. 2003).

However, it turns out that the decoupling Lorentz factor ~4 in a thermally
driven, purely hydrodynamic outflow is of the order of the inferred value of ~.
(e.g., Derishev et al. 1999; Beloborodov 2003), which has so far limited the
practical implications of the Fuller at al. (2000) proposal.
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Neutron-rich hydromagnetic flows
(Vlahakis, Peng, & Konigl 2003 ApJL)

e Part of the thermal energy could be converted to electromagnetic (with the
remainder transfered to baryon kinetic).

e The Lorentz factor increases with lower rate compared to the hydrodynamic
case. This makes it possible to attain 74 < v+, as itis shown in the
following solution.

e The energy deposited into the Poynting flux is returned to the matter
beyond the decoupling point.

e Pre-decoupling phase:
e The momentum equation for the whole system

(protons/neutrons/e®/photons/electromagnetic field)
yields the flow velocity.
e The momentum equation for the neutrons alone yields the
neutron-proton collisional drag-force, and the drift velocity.
e When Vi0ton — Vaeutron ~ ¢ the neutrons decouple.

e Post-decoupling phase:
e \We solve for the protons alone (+ electromagnetic field).
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n/p =30
- decoupling at v4 = 15

Yoo = 200
gproton ~ 1051ergs
~ 0.5 gneutron

T

107 100 107 10° 105, qg? 10" 107 10° 10" 10"

(a) The three components of the total energy flux, normalized by the mass flux
2

X C”.

(b) Proton—neutron drift velocity.
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Due to the magnetic collimation Veutron, 1 ~ 0.1c at decoupling.

Thus, a two component outflow is naturally created:

e An inner jet consisting of the protons (with v = 200 and &, = 10°! ergs).

e The decoupled neutrons, after undergoing 5 decay at a distance
~ 4 x 10 (y4/15)cm, form a wider proton component (with v = 15 and
£, =2 x 10°! ergs).

(See Peng, Konigl, & Granot, ApJ (2005) for implications.)
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Evidence for two jets!

10
10’
=
3
= 10°
2
[
o
3
[T
107t ® 15GHz .
- & 44 GHz \ ]
. ® Rband AN
(02 * X-rays (x10% SN 1998bw >~ SO |
./‘/. \\ '\'\
10”" 10° 10’ 10°

Time Since the Burst (days)

Radio to X-ray lightcurves of the afterglow of GRB 030329 (Berger et al.
2003).

A two-component jet model provides a reasonable fit to the data.
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Conclusion
e Trans-Alfvénic flow:

The flow is initially thermally accelerated (¢+ = const.; the magnetic field
only guides the flow), and subsequently magnetically accelerated up to
Lorentz factors corresponding to equipartition between kinetic and
Poynting fluxes, i.e., ~ 50% of the initial total energy is extracted to

baryonic kinetic. v « w Iin both regimes.
The fieldline shape is parabolic, z « w? and becomes asymptotically

cylindrical.

e Super-Alfvénic flow:

Similar results, except that the Lorentz factor increases with lower rate:
v ox w3 < 1. Also z o< wft!

e Neutron decoupling:

In pure-hydro case vq ~ Veo-
Magnetic fields make possible 74 < Yoo.
The decoupled neutrons decay into protons at a distance

~ 4 x 101%(~v4/15)cm. In contrast with the situation in the pure-hydro
case, these two components are unlikely to interact with each other in

the hydromagnetic case since their motions are not collinear.
Observational signatures of the neutron component?
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The ideal MHD equations

Maxwell:
OE 4w AT

0B
V- B=0=VXE+—,V XB= +—J, V- -E=—J
cOt cOt c c

Ohm: E=B x V/c

baryon mass conservation (continuity):

d(vpo) d <
V-V=0, where —=—+V.V
g po ot T

energy U,T"; = 0 (or specific entropy conservation, or first law for thermodynamics):
a(P/py?)
dt

=0

d (EvV) :_VP+JOE+J><B

momentum 7% = 0: vp,
dt C

(VS-E)E+(VS><B)><B+VP_

4gfyp% , Y PO
0 \% O(FE + B,) VA Vil - V,AO(E® — B
(V, — o) (& )Jr (E + By) B _ A ( 5)

0s AmypeOs |VsA| TUOVLAI2Z 8mypeds

Eliminating ¢ in terms of s: (V- V,) (€4V) —
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