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Outline

• linear stability analysis of cylindrical jets
– kink instability in relativistic, cold, magnetized flows
– growth rate and its dependence on σ and Bφ/Bz

• Rarefaction acceleration
– the 2D relativistic magnetized case
∗ simple waves
∗ steady-state flow around a corner

– the 3D axisymmetric case



Observations: jet speed
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Polarization

(Marscher et al)

helical motion and field rotate the EVPA as the blob moves

observed Erad⊥Brad and Brad is ‖ B⊥los

(modified if the jet is relativistic)
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Faraday RM gradients across the jet

(from Asada et al)

helical field surrounding the emitting region
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Relativistic motion in GRB jets

the only solution to the “compactness problem”
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Linear stability of relativistic jets

Unperturbed relativistic cylindrical jet
helical, axisymmetric, cylindrically symmetric and steady flow

V 0 = V0z($)ẑ + V0φ($)φ̂ , γ0 = γ0($) = (1− V 2
0z − V 2

0φ)−1/2 ,

B0 = B0z($)ẑ + B0φ($)φ̂ , E0 = (V0zB0φ − V0φB0z)$̂ ,

ρ00 = ρ00($) , ξ0 = ξ0($) , Π0 =
Γ− 1

Γ
(ξ0 − 1) ρ00 +

B2
0 − E2

0

2
.

Equilibrium condition
B2
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$
− ξ0ρ00

γ2
0V
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0φ

$
+

dΠ0

d$
= 0 .

The jet is expected to be unstable to current-driven instabilities
(Kruskal-Shafranov) — role of inertia?

GINZBURG CONFERENCE ON PHYSICS Moscow, 29 May 2012



Linearized equations

Q($ , z , φ , t) = Q0($) + Q1($) exp [i(mφ + kz − ωt)]

10× 12 array
function of $ ,ω , k
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= 0
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reduces to (4 equations in real space)

d

d$

(
y1

y2

)
+

1
D

(
F11 F12

F21 F22

)(
y1

y2

)
= 0 ,

where the (complex) unknowns are

y1 = i
$V1$

ω0
, y2 = Π1 +

y1

$

dΠ0

d$

(D ,Fij are determinants of 10× 10 arrays).

Equivalently

y′′2 +

[
F11 + F22

D
+
F21

D

(
D
F21

)′]
y′2+

[
F11F22 −F12F21

D2
+
F21

D

(
F22

F21

)′]
y2 = 0 ,

which for uniform flows with V0φ = 0, B0φ = 0, reduces to Bessel.
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Eigenvalue problem
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jet
(matter + EM field)

jr

ξ

• solve the problem inside the jet
(attention to regularity condition on
the axis)

• similarly in the environment
(solution vanishes at ∞)

• Match the solutions at rj:
[[y1]] = 0 , [[y2]] = 0 −→
dispersion relation
? spatial approach: ω = <ω and
<k = <k(ω),=k = =k(ω)
Q = Q0($) + Q1($)e−=kzei(mφ+<kz−ωt)

? temporal approach: k = <k and
<ω = <ω(k),=ω = =ω(k)
Q = Q0($) + Q1($)e=ωtei(mφ+kz−<ωt)
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Unperturbed jet solutions
Try to mimic the Komissarov et al simulation results

(for AGN and GRB jets)

• cold, nonrotating jet

V 0 = V0($)ẑ , γ0 = γ0($) = (1− V 2
0 )−1/2 ,

B0 = B0z($)ẑ + B0φ($)φ̂ , E0 = V0B0φ$̂ ,

ρ00 = ρ00($) , ξ0 = 1 .

• Equilibrium condition

B2
0φ/γ2

0

$
+

d

d$

(
B2

0z + B2
0φ/γ2

0

2

)
= 0 ,

relates B0z with B0φ/γ0.
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A cold, nonrotating solution:

B0z = Bj

[1+($/$0)
2]ζ

, B0φ = −γ0B0z

√
[1+($/$0)

2]2ζ
−1−2ζ($/$0)

2

(2ζ−1)($/$0)
2 .

$0 , ζ free parameters, γ0 , ρ00 free functions.

• choice of ζ:

B0z ∝ $−1.2

ζ = 0.6
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Formation of core crucial for the acceleration.

The bunching function S ≡

S︷︸︸︷
π$2 B0z∫$

0
B0z 2π$d$︸ ︷︷ ︸

dS

is related to the

acceleration efficiency σ =
1

Sf

S − 1
, where Sf integral of motion

∼ 0.9.
Since S ≈ 1− ζ we get σ =

1− ζ

ζ − 0.1
.

• choice of γ0($):

From Ferraro’s law V0φ = $Ω + V0zB0φ/B0z, where Ω integral of
motion, we get −B0φ/B0z ≈ $Ω, or,

γ0 ≈ $Ω
√

(2ζ−1)($/$0)
2

[1+($/$0)
2]2ζ

−1−2ζ($/$0)
2
.

The choice of $0, Ω($) control the pitch B0φ/($B0z), and the
values of γ0 on the axis and the jet surface.
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left: density/field lines, right: Lorentz factor/current lines (jet boundary z ∝ r1.5)
Uniform rotation → γ increases with r
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Differential rotation → slow envelope and faster decrease of Bφ
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• choice of ρ00($):

This comes from the mass-to-magnetic flux ratio integral γ0ρ00V0
B0z

,
which is assumed constant in the simulations. So ρ00 ∝ B0z/γ0.
The constant of proportionality from the value of

σ =
B2

0φ/γ2
0

ρ00

∣∣∣∣
$=$j

.

• external medium:

uniform, static, with zero B0φ and V0φ → Bessel.
In all the following a thermal pressure is assumed, ξe = 1.01.
A cold, magnetized environment gives approximatelly same
results.
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Summary – Next steps

? Kink instability in principle is in action.

? Low |Bφ|/Bz and low σ (high γ) stabilize.

? During the acceleration, growth time vs dynamical timescale?

? Jets from accretion disks more stable?

• Explore the parameter space for kink and other modes

• colder/moving environment? other jet equilibrium models?

• comparison with numerical studies.
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Rarefaction acceleration
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Rarefaction acceleration
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Rarefaction simple waves

At t = 0 two uniform states are in contact:

x

left state right state

x=
0

This Riemann problem allows self-similar solutions that depend
only on ξ = x/t.

• when right=vacuum, simple rarefaction wave
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At t > 0:

B

x

ta
il
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magnetized plasma
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V

Vfast
vacuum

for the cold case the Riemann invariants imply

vx =
1
γj

2σ
1/2
j

1 + σj

[
1−

(
ρ

ρj

)1/2
]
, γ =

γj (1 + σj)
1 + σjρ/ρj

, ρ =
4ρj

σj
sinh2

[
1
3
arcsinh

(
σ

1/2
j − µj

2
x

t

)]

Vhead = −
σ

1/2
j

γj
, Vtail =

1
γj

2σ
1/2
j

1 + σj
, ∆ϑ = Vtail < 1/γi
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The colour image in the Minkowski diagrams represents the distribution of the
Lorentz factor and the contours show the worldlines of fluid parcels initially
located at xi = −1,−0.8,−0.6,−0.4,−0.2,−0.02, 0.
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Steady-state rarefaction wave

Sapountzis & Vlahakis (to be submitted)

• “flow around a corner”

• planar geometry

• ignoring Bp (nonzero By)

• similarity variable x/z (angle θ)

• generalization of the nonrelativistic, hydrodynamic rarefaction
(e.g. Landau & Lifshitz)

• in addition, allow for inhomogeneity in the “left” state
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Axisymmetric model

Solve steady-state axisymmetric MHD eqs using the method of
characteristics (Sapountzis & Vlahakis in preparation)
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Summary – Next steps

? The collimation-acceleration paradigm provides a viable
explanation of the dynamics of relativistic jets
(similarly to non-relativistic ones)

(bulk acceleration up to Lorentz factors γ∞ & 0.5
E

Mc2
)

BUT makes narrow jets with ϑ ∼ 1/γ for high γ

? Rarefaction acceleration
• further increases γ
• makes GRB jets with γϑ � 1

? Future work
• clarify the differences between 2D and 3D rarefaction cases
• apply other stratified jet models
• use realistic pressure distributions from stellar-evolution

models
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