Magnetized astrophysical jets

Nektarios Vlahakis University of Athens

Outline

- linear stability analysis of cylindrical jets
 - kink instability in relativistic, cold, magnetized flows
 - growth rate and its dependence on σ and B_{ϕ}/B_z
- Rarefaction acceleration
 - the 2D relativistic magnetized case
 - * simple waves
 - * steady-state flow around a corner
 - the 3D axisymmetric case

Observations: jet speed

Superluminal Motion in the M87 Jet

Polarization

(Marscher et al)

helical motion and field rotate the EVPA as the blob moves

observed $E_{rad} \perp B_{rad}$ and B_{rad} is $\parallel B_{\perp los}$ (modified if the jet is relativistic)

Faraday RM gradients across the jet

(from Asada et al)

helical field surrounding the emitting region

Relativistic motion in GRB jets

the only solution to the "compactness problem"

Linear stability of relativistic jets

Unperturbed relativistic cylindrical jet

helical, axisymmetric, cylindrically symmetric and steady flow

$$V_{0} = V_{0z}(\varpi)\hat{z} + V_{0\phi}(\varpi)\hat{\phi}, \quad \gamma_{0} = \gamma_{0}(\varpi) = (1 - V_{0z}^{2} - V_{0\phi}^{2})^{-1/2},$$
$$B_{0} = B_{0z}(\varpi)\hat{z} + B_{0\phi}(\varpi)\hat{\phi}, \quad E_{0} = (V_{0z}B_{0\phi} - V_{0\phi}B_{0z})\hat{\varpi},$$
$$\rho_{00} = \rho_{00}(\varpi), \quad \xi_{0} = \xi_{0}(\varpi), \quad \Pi_{0} = \frac{\Gamma - 1}{\Gamma} (\xi_{0} - 1) \rho_{00} + \frac{B_{0}^{2} - E_{0}^{2}}{2}$$

Equilibrium condition
$$\frac{B_{0\phi}^2 - E_0^2}{\varpi} - \xi_0 \rho_{00} \frac{\gamma_0^2 V_{0\phi}^2}{\varpi} + \frac{d\Pi_0}{d\varpi} = 0.$$

The jet is expected to be unstable to current-driven instabilities (Kruskal-Shafranov) — role of inertia?

GINZBURG CONFERENCE ON PHYSICS

Moscow, 29 May 2012

Linearized equations

reduces to (4 equations in real space)

$$\frac{d}{d\varpi} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \frac{1}{\mathcal{D}} \begin{pmatrix} \mathcal{F}_{11} & \mathcal{F}_{12} \\ \mathcal{F}_{21} & \mathcal{F}_{22} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = 0,$$

where the (complex) unknowns are

$$y_1 = i \frac{\varpi V_{1\varpi}}{\omega_0}, \qquad y_2 = \Pi_1 + \frac{y_1}{\varpi} \frac{d\Pi_0}{d\varpi}$$

 $(\mathcal{D}, \mathcal{F}_{ij} \text{ are determinants of } 10 \times 10 \text{ arrays}).$

Equivalently

$$y_2'' + \left[\frac{\mathcal{F}_{11} + \mathcal{F}_{22}}{\mathcal{D}} + \frac{\mathcal{F}_{21}}{\mathcal{D}}\left(\frac{\mathcal{D}}{\mathcal{F}_{21}}\right)'\right]y_2' + \left[\frac{\mathcal{F}_{11}\mathcal{F}_{22} - \mathcal{F}_{12}\mathcal{F}_{21}}{\mathcal{D}^2} + \frac{\mathcal{F}_{21}}{\mathcal{D}}\left(\frac{\mathcal{F}_{22}}{\mathcal{F}_{21}}\right)'\right]y_2 = 0,$$

which for uniform flows with $V_{0\phi} = 0$, $B_{0\phi} = 0$, reduces to Bessel.

GINZBURG CONFERENCE ON PHYSICS

Moscow, 29 May 2012

Eigenvalue problem

- solve the problem inside the jet (attention to regularity condition on the axis)
- \bullet similarly in the environment (solution vanishes at $\infty)$

• Match the solutions at r_j : $\llbracket y_1 \rrbracket = 0$, $\llbracket y_2 \rrbracket = 0 \longrightarrow$ dispersion relation * spatial approach: $\omega = \Re \omega$ and $\Re k = \Re k(\omega), \Im k = \Im k(\omega)$ $Q = Q_0(\varpi) + Q_1(\varpi)e^{-\Im kz}e^{i(m\phi + \Re kz - \omega t)}$ * temporal approach: $k = \Re k$ and $\Re \omega = \Re \omega(k), \Im \omega = \Im \omega(k)$ $Q = Q_0(\varpi) + Q_1(\varpi)e^{\Im \omega t}e^{i(m\phi + kz - \Re \omega t)}$

Unperturbed jet solutions

Try to mimic the Komissarov et al simulation results (for AGN and GRB jets)

• cold, nonrotating jet

$$\begin{split} \boldsymbol{V}_{0} &= V_{0}(\varpi)\hat{z} \,, \quad \gamma_{0} = \gamma_{0}(\varpi) = (1 - V_{0}^{2})^{-1/2} \,, \\ \boldsymbol{B}_{0} &= B_{0z}(\varpi)\hat{z} + B_{0\phi}(\varpi)\hat{\phi} \,, \quad \boldsymbol{E}_{0} = V_{0}B_{0\phi}\hat{\varpi} \,, \\ \rho_{00} &= \rho_{00}(\varpi) \,, \quad \xi_{0} = 1 \,. \end{split}$$

Equilibrium condition

$$\frac{B_{0\phi}^2/\gamma_0^2}{\varpi} + \frac{d}{d\varpi} \left(\frac{B_{0z}^2 + B_{0\phi}^2/\gamma_0^2}{2} \right) = 0 \,,$$

relates
$$B_{0z}$$
 with $B_{0\phi}/\gamma_0$.

GINZBURG CONFERENCE ON PHYSICS

A cold, nonrotating solution:

Formation of core crucial for the acceleration.

The bunching function $S \equiv \frac{\overbrace{\pi \varpi^2}^S B_{0z}}{\int_0^{\varpi} B_{0z} 2\pi \varpi d\varpi}$ is related to the acceleration efficiency $\sigma = \frac{1}{\frac{S_f}{S} - 1}$, where S_f integral of motion ~ 0.9 . Since $S \approx 1 - \zeta$ we get $\sigma = \frac{1 - \zeta}{\zeta - 0.1}$.

• choice of $\gamma_0(\varpi)$:

From Ferraro's law $V_{0\phi} = \varpi \Omega + V_{0z} B_{0\phi}/B_{0z}$, where Ω integral of motion, we get $-B_{0\phi}/B_{0z} \approx \varpi \Omega$, or, $\gamma_0 \approx \varpi \Omega \sqrt{\frac{(2\zeta-1)(\varpi/\varpi_0)^2}{[1+(\varpi/\varpi_0)^2]^{2\zeta}-1-2\zeta(\varpi/\varpi_0)^2}}$.

The choice of ϖ_0 , $\Omega(\varpi)$ control the pitch $B_{0\phi}/(\varpi B_{0z})$, and the values of γ_0 on the axis and the jet surface.

GINZBURG CONFERENCE ON PHYSICS

left: density/field lines, right: Lorentz factor/current lines (jet boundary $z \propto r^{1.5}$) Uniform rotation $\rightarrow \gamma$ increases with r

Differential rotation \rightarrow slow envelope and faster decrease of B_{ϕ}

• choice of $ho_{00}(arpi)$:

This comes from the mass-to-magnetic flux ratio integral $\frac{\gamma_0 \rho_{00} V_0}{B_{0z}}$, which is assumed constant in the simulations. So $\rho_{00} \propto B_{0z}/\gamma_0$. The constant of proportionality from the value of

$$\sigma = \frac{B_{0\phi}^2/\gamma_0^2}{\rho_{00}}\Big|_{\varpi = \varpi_j}$$

• external medium:

uniform, static, with zero $B_{0\phi}$ and $V_{0\phi} \rightarrow$ Bessel. In all the following a thermal pressure is assumed, $\xi_e = 1.01$. A cold, magnetized environment gives approximatelly same results.

Ω=const, -B_{ϕ}/B_z=85.2 r /r_j

m=1, Ω =const

Ω=const, -B_{$$\phi$$}/B_z=20.75 r /r_j

m=1, Ω =const

variable Ω

Summary – Next steps

- \star Kink instability in principle is in action.
- * Low $|B_{\phi}|/B_z$ and low σ (high γ) stabilize.
- ★ During the acceleration, growth time vs dynamical timescale?
- ★ Jets from accretion disks more stable?
- Explore the parameter space for kink and other modes
- colder/moving environment? other jet equilibrium models?
- comparison with numerical studies.

Rarefaction acceleration

Rarefaction acceleration

Rarefaction simple waves

At t = 0 two uniform states are in contact:

This Riemann problem allows self-similar solutions that depend only on $\xi = x/t$.

when right=vacuum, simple rarefaction wave

GINZBURG CONFERENCE ON PHYSICS

for the cold case the Riemann invariants imply

$$v_x = \frac{1}{\gamma_j} \frac{2\sigma_j^{1/2}}{1 + \sigma_j} \left[1 - \left(\frac{\rho}{\rho_j}\right)^{1/2} \right], \ \gamma = \frac{\gamma_j \left(1 + \sigma_j\right)}{1 + \sigma_j \rho/\rho_j}, \ \rho = \frac{4\rho_j}{\sigma_j} \sinh^2 \left[\frac{1}{3} \operatorname{arcsinh} \left(\sigma_j^{1/2} - \frac{\mu_j x}{2 t}\right) \right]$$
$$V_{head} = -\frac{\sigma_j^{1/2}}{\gamma_j}, \qquad V_{tail} = \frac{1}{\gamma_j} \frac{2\sigma_j^{1/2}}{1 + \sigma_j}, \qquad \Delta \vartheta = V_{tail} < 1/\gamma_i$$

The colour image in the Minkowski diagrams represents the distribution of the Lorentz factor and the contours show the worldlines of fluid parcels initially located at $x_i = -1, -0.8, -0.6, -0.4, -0.2, -0.02, 0$.

Steady-state rarefaction wave

Sapountzis & Vlahakis (to be submitted)

- "flow around a corner"
- planar geometry
- ignoring B_p (nonzero B_y)
- similarity variable x/z (angle θ)

- generalization of the nonrelativistic, hydrodynamic rarefaction (e.g. Landau & Lifshitz)
- in addition, allow for inhomogeneity in the "left" state

Axisymmetric model

Solve steady-state axisymmetric MHD eqs using the method of characteristics (Sapountzis & Vlahakis in preparation)

Summary – Next steps

- * The collimation-acceleration paradigm provides a viable explanation of the dynamics of relativistic jets (similarly to non-relativistic ones) (bulk acceleration up to Lorentz factors $\gamma_{\infty} \gtrsim 0.5 \frac{\mathcal{E}}{Mc^2}$) BUT makes narrow jets with $\vartheta \sim 1/\gamma$ for high γ
- ⋆ Rarefaction acceleration
 - further increases γ
 - makes GRB jets with $\gamma\vartheta\gg 1$
- ★ Future work
 - clarify the differences between 2D and 3D rarefaction cases
 - apply other stratified jet models
 - use realistic pressure distributions from stellar-evolution models

Acknowledgments

This research was partially funded by the University of Athens Special Account of Research Grants no 10812, and by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.