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Jet speed
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On the bulk acceleration

• More distant components have higher apparent speeds

• Brightness temperature increases with distance (Lee,
Lobanov, et al)

• A more general argument on the acceleration (Sikora et al):

? lack of bulk-Compton features → small (γ < 5) bulk Lorentz
factor at . 103rg

? the γ saturates at values ∼ a few 10 around the blazar zone
(103 − 104rg)

So, relativistic AGN jets undergo the bulk of their acceleration
on parsec scales (� size of the central black hole)

• Sikora et al also argue that the protons are the dynamically
important component in the outflow.
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Polarization

(Marscher et al 2008, Nature)

observed Erad ⊥ B⊥los

(modified by Faraday rotation and relativistic effects)
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Faraday RM gradients across the jet

(Asada et al)

helical field surrounding the emitting region (Gabuzda)
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What magnetic fields can do

? extract energy (Poynting flux)

? extract angular momentum

? transfer energy and angular momentum to matter

? explain relatively large-scale acceleration

? self-collimation

? synchrotron emission

? polarization and RM maps
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B field from advection, or dynamo, or cosmic battery
(Poynting-Robertson drag).
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A unipolar inductor

current ↔ Bφ

Poynting flux c
4πEBφ is

extracted (angular momentum
as well)

The Faraday disk could be the rotating accretion disk, or the frame dragging if
energy is extracted from the ergosphere of a rotating black hole (Blandford &
Znajek mechanism)
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How to model magnetized outflows?

? as pure electromagnetic energy (force-free, magnetodynamics,
electromagnetic outflows):
– ignore matter inertia (reasonable near the origin)
– this by assumption does not allow to study the transfer of
energy form Poynting to kinetic
– wave speed = c → no shocks
– there may be some dissipation (e.g. reconnection) →
radiation

? as magneto-hydro-dynamic flow
– the force-free case is included as the low inertia limit
– the back reaction from the matter to the field is included
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Magnetized outflows
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jet
(matter + EM field)

base
Γ σ(  ~1,   >>1)

• Extracted energy per time Ė
mainly in the form of Poynting flux
(magnetic fields tap the rotational energy
of the compact object or disk)
Ė =

c

4π

r

rlc
Bp︸ ︷︷ ︸

E

Bφ × ( area ) ≈ c

2
B2r2

• Ejected mass per time Ṁ

• The µ ≡ Ė/Ṁc2 gives the maximum
possible bulk Lorentz factor of the flow

• Magnetohydrodynamics:
matter (velocity, density, pressure)
+ large scale electromagnetic field
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Basic questions

+ bulk acceleration

• thermal (due to ∇P ) → velocities up to Cs

• magnetocentrifugal → velocities up to Vφi

• relativistic thermal (thermal fireball) gives γ ∼
(

enthalpy
mass× c2

)
i

.

• magnetic (J×B force)
acceleration efficiency γ∞/µ = ?
terminal γ∞ ?

+ collimation
hoop-stress + electric force
degree of collimation ?
jet opening angle ?
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some key steps on MHD modeling

• Michel 1969: assuming monopole flow (crucial) → inefficient
acceleration with γ∞ ≈ µ1/3 � µ

• Li, Chiueh & Begelman 1992; Contopoulos 1994: cold
self-similar model → γ∞ ≈ µ/2 (50% efficiency)

• Vlahakis & Königl 2003: generalization of the self-similar
model (including thermal and radiation effects) → γ∞ ≈ µ/2
(50% efficiency)

• Vlahakis 2004: complete asymptotic transfield force-balance
connect the flow-shape (collimation) with acceleration
explain why Michel’s model is inefficient

• Beskin & Nokhrina 2006: parabolic jet with γ∞ ≈ µ/2
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some key steps (cont’d)

• Komissarov, Barkov, Vlahakis & Königl 2007 and
Komissarov, Vlahakis, Königl & Barkov 2009:
possible for the first time to simulate high γ MHD flows and
follow the acceleration up to the end
+ analytical scalings
+ role of causality, role of external pressure

• Tchekhovskoy, McKinney & Narayan, 2009: simulations of
nearly monopolar flow (more detailed than in Komissarov et al
2009)
Even for nearly monopolar flow the acceleration is efficient
near the rotation axis

• Lyubarsky 2009:
generalization of the analytical results of Vlahakis 2004 and
Komissarov et al 2009
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“Standard” model for magnetic acceleration

+ component of the momentum equation

δ S

δ

z

r

γn(V · ∇) (γwV ) = −∇p + J0E + J ×B

along the flow (wind equation): γ ≈ µ−F
where F ∝ r2nγVp = r2× mass flux

since mass flux ×δS = const,
F ∝ r2/δS ∝ r/δ`⊥

acceleration requires the separation between streamlines to
increase faster than the cylindrical radius

the collimation-acceleration paradigm:
F ↓ through stronger collimation of the inner streamlines
relative to the outer ones (differential collimation)

+ external pressure plays important role
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+ transfield component of the momentum equation

γ2r

R
≈

(
2I

ΩBpr2

)2

r∇⊥ln
∣∣∣∣Iγ

∣∣∣∣
1 +

w

ρc2

4πρu2
p

B2
p

r2
lc

r2

− γ2r
2
lc

r2
∇⊥r, with ∇⊥ ∼ 1/r,

simplifies to
γ2r

R︸︷︷︸
inertia

≈ 1︸︷︷︸
EM

− γ2r
2
lc

r2︸ ︷︷ ︸
centrifugal

• if centrifugal negligible then γ ≈ z/r (since R−1 ≈ −d2r
dz2 ≈ r

z2)
power-law acceleration regime
(for parabolic shapes z ∝ ra, γ is a power of r)

• if inetria negligible then γ ≈ r/rlc linear acceleration regime

• if electromagnetic negligible then ballistic regime

MEUDON 4 June 2013



+ role of external pressure
pext = B2

co/8π ' (Bφ̂)2/8πγ2 ∝ 1/r2γ2

Assuming pext ∝ z−αp we find γ2 ∝ zαp/r2.
Combining with the transfield γ2r

R ≈ 1− γ2r2
lc

r2 we find the funnel
shape (we find the exponent a in z ∝ ra).

• if the pressure drops slower than z−2 then
? shape more collimated than z ∝ r2

? linear acceleration γ ∝ r

• if the pressure drops as z−2 then
? parabolic shape z ∝ ra with 1 < a ≤ 2
? first γ ∝ r and then power-law acceleration γ ∼ z/r ∝ ra−1

• if pressure drops faster than z−2 then
? conical shape
? linear acceleration γ ∝ r (small efficiency)
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Komissarov, Vlahakis, Königl, & Barkov 2009

left: density/field lines, right: Lorentz factor/current lines (wall shape z ∝ r1.5)
Differential rotation → slow envelope
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Uniform rotation → γ increases with r
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energy flux ratios:

γ = kinetic
rest mass

γσ = Poynting
rest mass

(σ = Poynting
kinetic )

µ = γ + γσ

γ (increasing),

γσ (decreasing),

and µ (constant)

efficiency > 50%
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Caveat: γϑ ∼ 1 (for high γ)

• very narrow jets (ϑ < 1◦ for γ > 100) −→ early breaks or no
breaks at all

• this is a result of causality (across jet): outer lines need to
know that there is space to expand

• Mach cone half-opening θm should be > ϑ

With sin θm =
γfcf

γVp
≈ σ1/2

γ
the requirement for causality yields

γϑ < σ1/2.
For efficient acceleration (σ ∼ 1 or smaller) we always get
γϑ ∼ 1
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Rarefaction acceleration
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Rarefaction acceleration
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Rarefaction acceleration
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Rarefaction simple waves

At t = 0 two uniform states are in contact:

x

left state right state

x=
0

This Riemann problem allows self-similar solutions that depend
only on ξ = x/t.

• when right=vacuum, simple rarefaction wave
MEUDON 4 June 2013



At t > 0:

B

x
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magnetized plasma

O

z

V

Vfast
vacuum

for the cold case the Riemann invariants imply

vx =
1
γj

2σ
1/2
j

1 + σj

[
1−

(
ρ

ρj

)1/2
]
, γ =

γj (1 + σj)
1 + σjρ/ρj

, ρ =
4ρj

σj
sinh2

[
1
3
arcsinh

(
σ

1/2
j − µj

2
x

t

)]

Vhead = −
σ

1/2
j

γj
, Vtail =

1
γj

2σ
1/2
j

1 + σj
, ∆ϑ = Vtail < 1/γi
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The colour image in the Minkowski diagrams represents the distribution of the
Lorentz factor and the contours show the worldlines of fluid parcels initially
located at xi = −1,−0.8,−0.6,−0.4,−0.2,−0.02, 0.
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Simulation results

Komissarov, Vlahakis & Königl 2010
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Steady-state rarefaction wave

Sapountzis & Vlahakis (MNRAS submitted)

• “flow around a corner”

• planar geometry

• ignoring Bp (nonzero By)

• similarity variable x/z (angle θ)

• generalization of the nonrelativistic, hydrodynamic rarefaction
(e.g. Landau & Lifshitz)

• in addition, allow for inhomogeneity in the “left” state

e
n
v
ir

o
n
m

e
n
t

MEUDON 4 June 2013



tai
l

environment
outflow

head
vacuum

outflow

θ

θ

z

y
x

θhead = −
σ

1/2
j

γj

θtail =
2σ

1/2
j

γj(1+σj)

σ = (σjγjxi/z)2/3

σ = 1 at r = σjγj|xi| =
7×1011σj

(
|xi|

R?/γj

) (
R?

10R�

)
cm

 0

 100

 200

 300

 400

 500

 600

-0.02 -0.01  0  0.01  0.02

x/ct

Γj=100, σj=5, wj/ρjc
2=1

Γ(w/ρc2)Γσ

(w/ρc2-1)Γ
 0

 100

 200

 300

 400

 500

 600

-0.02 -0.01  0  0.01  0.02

x/z

Γj=100, σj=5, wj/ρjc
2=1

Γ(w/ρc2)Γσ

(w/ρc2-1)Γ

Γ(w/ρc2)Γσ

(w/ρc2-1)Γ

Γ(w/ρc2)Γσ

(w/ρc2-1)Γ

 0

 100

 200

 300

 400

 500

 600

 0

 50

 100

 150

 200

-1 -0.5  0  0.5  1  1.5  2

x

ct

 0

 100

 200

 300

 400

 500

 600

 0

 50

 100

 150

 200

-1 -0.5  0  0.5  1  1.5  2

x

z

time-dependent (left) and steady-state (right)
rarefaction (similar; ct → z)
(distance unit = R?/γj ∼ 1010 cm)

MEUDON 4 June 2013



Axisymmetric model
Solve steady-state axisymmetric MHD eqs using the method of
characteristics (Sapountzis & Vlahakis in preparation)
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Summary

? The collimation-acceleration paradigm provides a viable
explanation of the dynamics of relativistic jets

? bulk acceleration up to Lorentz factors γ∞ & 0.5
E

Mc2

caveat: in ultrarelativistic GRB jets ϑ ∼ 1/γ

? Rarefaction acceleration

• further increases γ

• makes GRB jets with γϑ � 1

? Future work
• apply other stratified jet models
• attention to the shock from reflection on the rotation axis
• use realistic pressure distributions

inside the star (from stellar-evolution models),
and outside – shock formation
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