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Jet speed

Superluminal Motion in the M87 Jet
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On the bulk acceleration

e More distant components have higher apparent speeds

e Brightness temperature increases with distance (Lee,
Lobanov, et al)

e A more general argument on the acceleration (Sikora et al):

lack of bulk-Compton features — small (v < 5) bulk Lorentz
factor at < 10°r,

the ~ saturates at values ~ a few 10 around the blazar zone
(102 — 10%*r,)

So, relativistic AGN jets undergo the bulk of their acceleration
on parsec scales (> size of the central black hole)

Sikora et al also argue that the protons are the dynamically
important component in the outflow.
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Polarization
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Faraday RM gradients across the jet
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helical field surrounding the emitting region (Gabuzda)
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What magnetic fields can do

* extract energy (Poynting flux)

* extract angular momentum

~ transfer energy and angular momentum to matter
* explain relatively large-scale acceleration

» self-collimation

* synchrotron emission

» polarization and RM maps
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B field from advection, or dynamo, or cosmic battery
(Poynting-Robertson drag).
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A unipolar inductor

current <~ By

Poynting flux ~FEB; s
extracted (angular momentum
as well)
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The Faraday disk could be the rotating accretion disk, or the frame dragging if
energy is extracted from the ergosphere of a rotating black hole (Blandford &
Znajek mechanism)
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How to model magnetized outflows?

* as pure electromagnetic energy (force-free, magnetodynamics,
electromagnetic outflows):
— ignore matter inertia (reasonable near the origin)
— this by assumption does not allow to study the transfer of
energy form Poynting to kinetic
— wave speed = ¢ — no shocks
— there may be some dissipation (e.g. reconnection) —
radiation

* as magneto-hydro-dynamic flow
— the force-free case is included as the low inertia limit
— the back reaction from the matter to the field is included
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jet

(matter + EM figld) —

Magnetized outflows

Extracted energy per time &
mainly in the form of Poynting flux
(magnetic fields tap the rotational energy
of theccompact object or disk)

£=__ —B B, x ( area ~ S B2?
4 Tlc ( ) 2

E

Ejected mass per time M

The 1 = £/Mc? gives the maximum
possible bulk Lorentz factor of the flow

Magnetohydrodynamics:
matter (velocity, density, pressure)
+ large scale electromagnetic field
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Basic questions

iz pulk acceleration

e thermal (due to VP) — velocities up to C,
e magnetocentrifugal — velocities up to Vy,

enthalpy )
5 .

e relativistic thermal (thermal fireball) gives v ~ (
mass x c

e magnetic (J x B force)
acceleration efficiency v/ = ?
terminal v, ?

= collimation
hoop-stress + electric force
degree of collimation ?
jet opening angle ?
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some key steps on MHD modeling

e Michel 1969: assuming monopole flow (crucial) — inefficient
acceleration with ., ~ /3 < 1

e Li, Chiueh & Begelman 1992; Contopoulos 1994: cold
self-similar model — ~., = /2 (50% efficiency)

e Vlahakis & Konigl 2003: generalization of the self-similar
model (including thermal and radiation effects) — v, ~ 1/2
(50% efficiency)

e VIahakis 2004: complete asymptotic transfield force-balance
connect the flow-shape (collimation) with acceleration
explain why Michel's model is inefficient

e Beskin & Nokhrina 2006: parabolic jet with v, ~ /2
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some key steps (cont’d)

e Komissarov, Barkov, Vlahakis & Konigl 2007 and
Komissarov, Vlahakis, Konigl & Barkov 2009:
possible for the first time to simulate high v MHD flows and
follow the acceleration up to the end
+ analytical scalings
+ role of causality, role of external pressure

e Tchekhovskoy, McKinney & Narayan, 2009: simulations of
nearly monopolar flow (more detailed than in Komissarov et al
2009)

Even for nearly monopolar flow the acceleration is efficient
near the rotation axis

e Lyubarsky 2009:
generalization of the analytical results of Vlahakis 2004 and
Komissarov et al 2009
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“Standard” model for magnetic acceleration

= component of the momentum equation

(V- V) (ywV) = -Vp+ J'E+ J x B
along the flow (wind equation): v ~ u — F
where F o r?n~V,, = r*x mass flux

since mass flux xS = const,
F oxr?/6S ocr/dl)

acceleration requires the separation between streamlines to
increase faster than the cylindrical radius

the collimation-acceleration paradigm:
F | through stronger collimation of the inner streamlines
relative to the outer ones (differential collimation)

i external pressure plays important role
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= transfield component of the momentum equation

2
21 I
In |—
: (QB 2) s 2
P p" 5 B —WQEVLT, with V, ~ 1/r,
R L A puzrd r?
pc? Bz r?
vir 2T
g N -
SlmpIIerS to f ~_ 1 — 8% ﬁ
mertia centri fugal
o if centrifugal negligible then ~ ~ -/ (since R® ' ~ —% )

power-law acceleration regime
for parabolic shapes z « r%, v is a power of r
Y

e if inetria negligible then ~ ~ »/r. linear acceleration regime

e if electromagnetic negligible then ballistic regime
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= role of external pressure
Pext = B2 /8™ ~ (B?)?/87~? o 1/r?~?
AssumMing pext o< 2z~ “? we find v* oc 2% /7.
Combining with the transfield ’%’“ ~1— 727;—125 we find the funnel
shape (we find the exponent a in z o< r?).

o if the pressure drops slower than z~2 then
~ shape more collimated than z o 2
* linear acceleration v o< r

o if the pressure drops as 22 then
* parabolic shape z x r* with 1 < a <2

x first v o< r and then power-law acceleration v ~ z/r oc 7¢~1
o if pressure drops faster than =2 then

* conical shape
* linear acceleration v o< r (small efficiency)

MEUDON 4 June 2013



Komissarov, Vlahakis, Konigl, & Barkov 2009
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left: density/field lines, right: Lorentz factor/current lines (wall shape z o r!-°)

Differential rotation — slow envelope
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Caveat: v ~ 1 (for high ~)

very narrow jets (v < 1° for v > 100) — early breaks or no
breaks at all

this is a result of causality (across jet): outer lines need to
know that there is space to expand

Mach cone half-opening 6,,, should be > ¥
51/2
With sin 6, — Y 7 the requirement for causality yields
Wo oo

v9 < ot/2,
For efficient acceleration (¢ ~ 1 or smaller) we always get
v ~ 1
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Rarefaction acceleration
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Rarefaction acceleration
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Rarefaction acceleration
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Rarefaction simple waves

At ¢t = 0 two uniform states are in contact:

o
[
X

|eft state right state

X

This Riemann problem allows self-similar solutions that depend
only on ¢ = x/t.

o when right=vacuum, simple rarefaction wave
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The colour image in the Minkowski diagrams represents the distribution of the
Lorentz factor and the contours show the worldlines of fluid parcels initially
located at x; = —1, —0.8, —0.6, —0.4, —0.2, —0.02, 0.
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Simulation results

Komissarov, Vlahakis & Konigl 2010
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Steady-state rarefaction wave

Sapountzis & Vlahakis (MNRAS submitted)

“flow around a corner”

planar geometry

ignoring B,, (honzero B,))
similarity variable x/z (angle 0)

generalization of the nonrelativistic, hydrodynamic rarefaction
(e.g. Landau & Lifshitz)

in addition, allow for innomogeneity in the “left” state
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Axisymmetric model

Solve steady-state axisymmetric MHD eqgs using the method of
characteristics (Sapountzis & Vlahakis in preparation)
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(Asada & Na.kamura 201 l)
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Summary

* The collimation-acceleration paradigm provides a viable
explanation of the dynamics of relativistic jets

£

* bulk acceleration up to Lorentz factors v, 2 O.5M >
C

caveat: in ultrarelativistic GRB jets 9 ~ 1/~

* Rarefaction acceleration

e further increases ~
e makes GRB jets with v > 1

* Future work

e apply other stratified jet models
e attention to the shock from reflection on the rotation axis
e Use realistic pressure distributions

inside the star (from stellar-evolution models),

and outside — shock formation
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