Rarefaction waves in magnetized astrophysical jets

Nektarios Vlahakis University of Athens

Outline

- "standard" magnetic acceleration (related to collimation)
- rarefaction acceleration
- models application to GRBs discussion for AGNs

Magnetized outflows

• Extracted energy per time $\dot{\mathcal{E}}$ mainly in the form of Poynting flux (magnetic fields tap the rotational energy of the compact object or disk) $\dot{\mathcal{E}}=$ \overline{c} 4π $\stackrel{\cdot}{r}$ $r_{\rm lc}$ $\overline{B_p}$ ${\sum\limits_{E}}$ E $B_\phi \times ($ area $) \approx$ \overline{c} 2 B^2r^2

- Ejected mass per time \dot{M}
- The $\mu \equiv \dot{\mathcal{E}}/Mc^2$ gives the maximum possible bulk Lorentz factor of the flow
- Magnetohydrodynamics: matter (velocity, density, pressure) + large scale electromagnetic field

"Standard" model for magnetic acceleration

☞ component of the momentum equation

 $\gamma \rho_{0}(\boldsymbol{V} \cdot \nabla) \left(\gamma w \boldsymbol{V} \right) = - \nabla p + J^0 \boldsymbol{E} + \boldsymbol{J} \times \boldsymbol{B}$ along the flow (wind equation): $\gamma \approx \mu - \mathcal{F}$ where $\mathcal{F} \propto r^2 n \gamma V_p = r^2 \times$ mass flux

since mass flux $\times \delta S = \text{const}$, ${\cal F} \propto r^2/\delta S \propto r/\delta \ell_{\perp}$

acceleration requires the separation between streamlines to increase faster than the cylindrical radius

the collimation-acceleration paradigm: F ↓ **through stronger collimation of the inner streamlines relative to the outer ones (differential collimation)**

☞ transfield component of the momentum equation

- \bullet if centrifugal negligible then $\gamma \approx z/r$ (since ${\cal R}^{-1} \approx -\frac{d^2 r}{dz^2} \approx \frac{r}{z^2}$ $\frac{r}{z^2}$ power-law acceleration regime (for parabolic shapes $z \propto r^a$, γ is a power of r)
- if inetria negligible then $\gamma \approx r/r_{\rm lc}$ linear acceleration regime
- if electromagnetic negligible then ballistic regime

Simulations of relativistic jets Komissarov, Barkov, Vlahakis, & Königl (2007)

Left panel shows density (colour) and magnetic field lines. Right panel shows the Lorentz factor (colour) and the current lines.

 Γ

 $\gamma\sigma$ (solid line), μ (dashed line) and γ (dash-dotted line) along a magnetic field line as a function of cylindrical radius

Caveat: $\gamma \vartheta \sim 1$ **(for high** γ)

During the afterglow γ decreases

When $1/\gamma > \vartheta$ the observed flux decreases faster with time

- with $\gamma\vartheta \sim 1$ very narrow jets $(\vartheta < 1^{\circ}$ for $\gamma > 100) \longrightarrow$ early breaks or no breaks at all
- this is a result of causality (across jet): outer lines need to know that there is space to expand
- equivalent to $\mathcal{R} \approx \gamma^2 r$ (transfield force balance)
- Mach cone half-opening θ_m should be $> \vartheta$ With $\sin\theta_m=$ $\gamma_f c_f$ γV_p \approx $\sigma^{1/2}$ γ the requirement for causality yields $\gamma \vartheta < \sigma^{1/2}.$ For efficient acceleration ($\sigma \sim 1$ or smaller) we always get $\gamma \vartheta \sim 1$

Rarefaction acceleration

Rarefaction acceleration

Rarefaction acceleration

Rarefaction simple waves

At $t = 0$ two uniform states are in contact:

This Riemann problem allows self-similar solutions that depend only on $\xi = x/t$.

• when $\rho_R/\rho_L = 0$ simple rarefaction wave

for the cold case the Riemann invariants imply

$$
v_x = \frac{1}{\gamma_j} \frac{2\sigma_j^{1/2}}{1+\sigma_j} \left[1 - \left(\frac{\rho}{\rho_j}\right)^{1/2} \right], \ \gamma = \frac{\gamma_j \left(1+\sigma_j\right)}{1+\sigma_j \rho/\rho_j}, \ \rho = \frac{4\rho_j}{\sigma_j} \sinh^2 \left[\frac{1}{3} \operatorname{arcsinh}\left(\sigma_j^{1/2} - \frac{\mu_j x}{2t}\right) \right]
$$

$$
V_{head} = -\frac{\sigma_j^{1/2}}{\gamma_j}, \qquad V_{tail} = \frac{1}{\gamma_j} \frac{2\sigma_j^{1/2}}{1+\sigma_j}, \qquad \Delta\vartheta = V_{tail} < 1/\gamma_i
$$

The colour image in the Minkowski diagrams represents the distribution of the Lorentz factor and the contours show the worldlines of various fluid parcels. (see also Aloy & Rezzolla 2006 for HD, Mizuno+2008 for MHD)

Simulation results

Komissarov, Vlahakis & Königl 2010

(see also Tchekhovskoy, Narayan & McKinney 2010)

Steady-state rarefaction wave

Sapountzis & Vlahakis (2013)

- "flow around a corner"
- planar geometry
- ignoring B_p (nonzero B_q)
- similarity variable x/z (angle θ)
- generalization of the nonrelativistic, hydrodynamic rarefaction (e.g. Landau & Lifshitz)

$$
\sigma = (\sigma_j \gamma_j x_i / z)^{2/3}
$$

\n
$$
\sigma = 1 \text{ at } r = \sigma_j \gamma_j |x_i| =
$$

\n
$$
7 \times 10^{11} \sigma_j \left(\frac{|x_i|}{R_{\star}/\gamma_j}\right) \left(\frac{R_{\star}}{10R_{\odot}}\right) \text{cm}
$$

Axisymmetric model

Solve steady-state axisymmetric MHD eqs using the method of characteristics (Sapountzis & Vlahakis in preparation)

(not in scale!)

Reflection of the wave from the axis

Reflection causes sudden deceleration – standing shock (?)

Does it work in AGNs? (Asada & Nakamura 2011)

The role of the environment

• for nonzero ρ_{ext} Riemann problem: rarefaction on the left state / contact discontinuity / shock on the right

- matching of speed and total pressure at the contact discontinuity gives the solution on the left and right (Marti+1994, Lyutikov 2010 for time-dependent problem; Katsoulakos & Vlahakis in preparation for the steady-state)
- time-dependent example: impulsive acceleration (Granot, Komissarov & Spitkovsky 2011)

for $\rho_R/\rho_L=0$ for $\rho_R/\rho_L=10^{-7}$, $P_R=0$

- in AGNs $\rho_{ext}/\rho_j \gg 1$, so rarefaction unlikely to work
- not clear, see Millas' talk

Summary

- \star The collimation-acceleration paradigm provides a viable explanation of the dynamics of relativistic jets
- \star bulk acceleration up to Lorentz factors $\gamma_{\infty} \gtrsim 0.5$ E Mc^2 caveat: in ultrarelativistic GRB jets $\vartheta \sim 1/\gamma$
- \star Rarefaction acceleration
	- further increases γ
	- makes GRB jets with $\gamma \vartheta \gg 1$
	- steady shock creation (?)
	- unlikely to work in AGN jets
- \star The jet-environment interaction is complicated but important to clarify

Acknowledgments

I acknowledge partial support by the Special Account for Research Grants of the National and Kapodistrian University of Athens.