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e observations and their implications
e MHD models (semi-analytical — simulations)



Observations: jet speed

Superluminal Motion in the M87 Jet
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e Superluminal apparent motion: 3,,, is a lower limit of real ~

(3 sin 6, 1

1 — Bcosb, and 0 = v (1 — Bcosb,)

we find 5(tobs)= W(tobs)s Hn(tobs)

Rough estimates of § from:

— comparison of radio and high energy emission (SSC)
e.g., for the C7 component of 3C 345 Unwin et al 1997 argue
that 6 changes from ~ 12 to =~ 4 (t,p,s = 1992 — 1993) —
acceleration from v ~ 5to v ~ 10 over ~ 3 — 20 pc from the
core (#,, changes from ~ 2 to =~ 10°)
Similarly Piner et al (2003) inferred an acceleration from
v=8at R<58pctoy=13at R~ 17.4pc in 3C 279

— variability timescale (compared to the light crossing time),

Jorstad, Marscher et al.

e If we know both Bapp =

IERAPETRA 5 June 2008



On the bulk acceleration

e More distant components have higher apparent speeds

e A more general argument on the acceleration (Sikora et al
2005):

lack of bulk-Compton features — small (v < 5) bulk Lorentz
factor at < 10°r,

the ~ saturates at values ~ a few 10 around the blazar zone
(102 — 10%*r,)

So, relativistic AGN jets undergo the bulk of their acceleration
on parsec scales (> size of the central black hole)

Sikora et al 2005 also argue that the protons are the
dynamically important component in the outflow.

IERAPETRA 5 June 2008



On the collimation

(left Global VLBI + VSOP, right Global VLBI)

Collimation in action (at approximately 100r,) in M87. In the
formation region, the jet is seen opening widely, at an angle of
about 60 degrees, nearest the black hole, but is squeezed down
to only 6 degrees a few light-years away (Junor, Biretta, & Livio
1999; see also Krichbaum et al 2006).
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Curved trajectories

The Quasar 3C345
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ney change their strength.
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ne plasma components travel on curved trajectories.

ne trajectories differ from one component to the other.
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Polarization
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Faraday RM gradients across the jet
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Theory: Hydro-Dynamics

e In case n. ~ ny, Ymax ~ kT;/myc* ~ 1 even with T; ~ 102K
o If ne # nyp, Ymax ~ (ne/nyp) X (KT;/my,c?) could be > 1
e With some heating source, vi,.x > 1 1S In principle possible

However, even in the last two cases, HD is unlikely to work
because the HD acceleration saturates at distances comparable
to the sonic surface where gravity is still important, i.e., very
close to the disk surface (certainly at < 10°r,)

Collimation is another problem for HD
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What magnetic fields can do

* extract energy (Poynting flux)

* extract angular momentum

~ transfer energy and angular momentum to matter
* explain relatively large-scale acceleration

» collimate outflows and produce jets

*» needed for synchrotron emission

» explain polarization and RM maps
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How to model magnetized outflows?

* as pure electromagnetic energy (force-free, magnetodynamics,
electromagnetic outflows, Blandford & Znajek):
— Ignore matter inertia (reasonable near the origin)
— this by assumption does not allow to study the transfer of
energy form Poynting to kinetic

* as magneto-hydro-dynamic flow ("Blandford & Payne’—type)
— the force-free limit is included (low inertia limit of the MHD
theory)

— MHD can also describe the back reaction from the matter to
the field (this is important even in the superfast part of the
regime where o > 1)

It doesn’t matter if the flow is disk-driven or BH-driven. What
matters is £/Mc* and the field distribution.
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Relativistic Magneto-Hydro-Dynamics

e Outflowing matter
e large scale electromagnetic field
e thermal pressure

We need to solve:

— Maxwell + Ohm equations
— mass + entropy conservation
— momentum equation
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Helical mognetic field
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Basic questions: bulk acceleration

e thermal (due to VP) — velocities up to C,
e magnetocentrifugal (beads on wire - Blandford & Payne)

— initial half-opening angle v > 30°
— the ¥ > 30° not necessary for nonnegligible P
— velocities up to ({2

e relativistic thermal (thermal fireball) gives v ~ &;,

enthal
where £ = pp— XpZQ.

e magnetic

IERAPETRA 5 June 2008



All acceleration mechanisms can be seen in the energry
conservation equation

dF

dSdt
dM

dSdt’

p=2~&y+ r|By| | where p =

\IJACQ

So v 1T when ¢ | (thermal, relativistic thermal), or,
r|By| |< I, | (magnetocentrifugal, magnetic).

acceleration efficiency vo. /1 = ?
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Basic questions: collimation

hoop-stress:

+ electric force

degree of collimation ?
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Self-similar relativistic models

e axisymmetry
e steady-state
e ideal MHD (zero resistivity)

e special relativity

The problem reduces to the two components of the momentum
equation: one along the flow (gives ~) and one in the transfield
direction (gives the field- and stream-line shape).

e boundary conditions of the form »* x f(6) lead to separation of
variables (radial self-similarity)

— similar to the nonrelativistic model of Blandford & Payne 1982

— cold versions of the model: Li et al 1992, Contopoulos 1994
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Beskin & Nokhrina 2006
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Simulations of relativistic jets
Komissarov, Barkov, Vlahakis, & Konigl (2007)

Left panel shows density (colour) and magnetic field lines.
Right panel shows the Lorentz factor (colour) and the current lines.
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Note the difference in v(r) for constant z.

It depends on the current I, which is related to Q: I ~r*B,Q/2
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(without a wall)
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e.g. for ¥ =10, 9 = 57° — 40°
while for ¥ = 5, 9 = 40° — 15°
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Komissarov, Vlahakis, Konigl, & Barkov, in preparation

|

left: density/field lines, right: Lorentz factor/current lines (wall shape z o« r!-°)
Differential rotation — slow envelope
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6, = jet opening angle, 6,, = Mach-cone opening angle
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causal connection — collimation — acceleration
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B, 17|V i
[B-dS 2 VU :

where\If:/B-dS

0.5
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Jet kinematics

e due to precession? (e.g., Lobanov & Roland)

e instabilities? (e.g., Hardee, Meier)

bulk jet flow may play at least a partial role

to explore this possibility, we used the relativistic self-similar model (VIahakis
& Konigl 2004)

since the model gives the velocity (3D) field, we can follow the motion of a part
of the flow
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For 0,,s = 1° and ¢,

apparent trajectory
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apparent trajectory
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Angular momentum extraction

dE

L= MQTi where p = j]\%dt = maximum Lorentz factor
2

dSdt"

So rate of angular momentum = pQr3 M,
(initially carried by the field).

In the disk, rate = QgrgM,.

M 2 QO
If these are equal, —2 = —0 ~ X
M, pry S .
. : dE : GMDM, )
(This is equivalent to — = uM;c? = =)
dt To Q)

e in YSO confirmed by HST observations! (Woitas et al 2005)
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Polarization maps
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Summary

» Magnetic driving provides a viable explanation of the dynamics
of relativistic jets:

e bulk acceleration up to Lorentz factors corresponding to
rough equipartition between kinetic and Poynting fluxes

e ,% 0',5M(32

e collimation
parabolic shape z o r7*1

e the Intrinsic rotation of jets could be related to the observed
kinematics and to the rotation of EVPA (Marscher et al 2008,

Nature)

» The paradigm of MHD jets works in a similar way in all
astrophysical jets
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The ideal MHD equations

Maxwell: 9B ) IE "
V- B=0,VXxE=-2"VxB=—J+2 v.E=_)0
cot C cot C

Ohm:E+X><B:O
c

. 0
mass conservation: (— +V. V) (o) +vpoV -V =0,

ot
0 P
energy U, 1" =0: | =+ V- — |dt =0
or v =0 (54 v-7) ()
momentum 7%, = 0:
9, J'E+J x B
Y Po (a + V. V> (€YV) = -VP+ .
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The ideal, steady, GRMHD equations

Maxwell: A A
V-B:O,Vx(hE):O,Vx(hB):%J,V-E:—ﬁJO

C

Ohm:E+Z><B:O
c

mass conservation: V- (hynV) =0,
energy U,/ 1" =0:nV -Vw =V - VP
momentum 7%} = 0:

Vv J'E +J x B
(V- V) (MU ) = —~v’nwVinh — VP + T

C

2
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