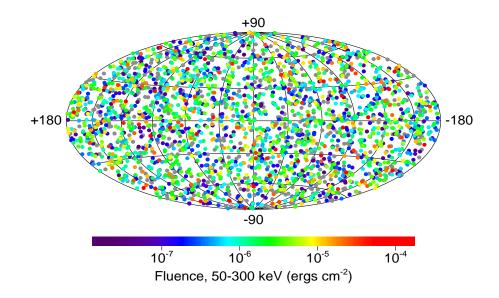
Magneto Hydro Dynamics of Gamma-Ray Burst Jets



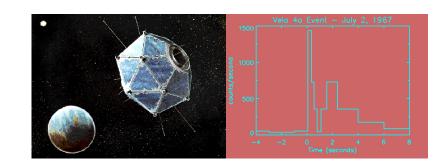
Nektarios Vlahakis

mailto: vlahakis@jets.uchicago.edu

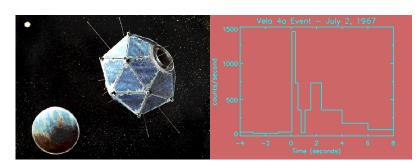
Outline

- GRBs and their afterglows
 - observations
 - our understanding
- the MHD description
 - general theory
 - the model
 - results
- Crab-like pulsar winds
 - a solution to the σ -problem

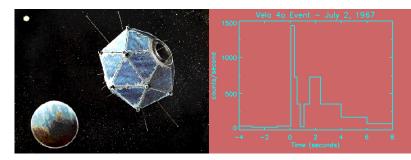
1967: the first GRB
 Vela satellites
 (first publication on 1973)



1967: the first GRB
 Vela satellites
 (first publication on 1973)

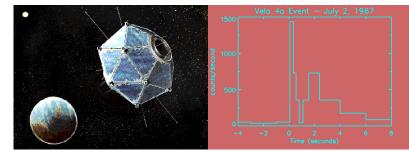


1967: the first GRB
 Vela satellites
 (first publication on 1973)

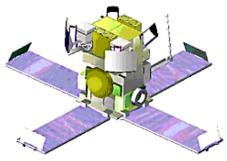


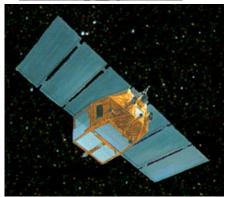
- 1991: launch of ComptonGammaRayObservatory
 Burst and Transient Experiment (BATSE)
 2704 GRBs (until May 2000)
 isotropic distribution (cosmological origin)
- 1997: Beppo(in honor of Giuseppe Occhialini) Satellite per Astronomia X X-ray afterglow arc-min accuracy positions optical detection
 GRB afterglow at longer wavelengths identification of the host galaxy measurement of redshift distances

1967: the first GRB
 Vela satellites
 (first publication on 1973)

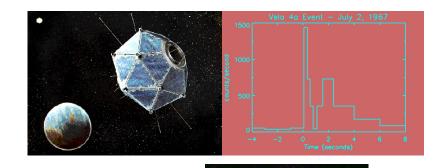


- 1991: launch of ComptonGammaRayObservatory
 Burst and Transient Experiment (BATSE)
 2704 GRBs (until May 2000)
 isotropic distribution (cosmological origin)
- 1997: Beppo(in honor of Giuseppe Occhialini) Satellite per Astronomia X
 X-ray afterglow
 arc-min accuracy positions
 optical detection
 GRB afterglow at longer wavelengths
 identification of the host galaxy
 measurement of redshift distances
- HighEnergyTransientExplorer-2





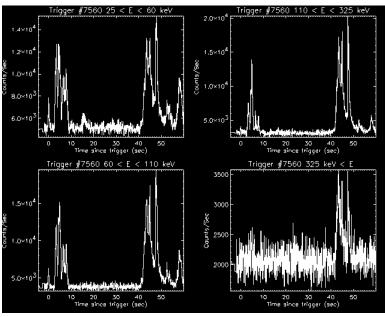
1967: the first GRB
 Vela satellites
 (first publication on 1973)

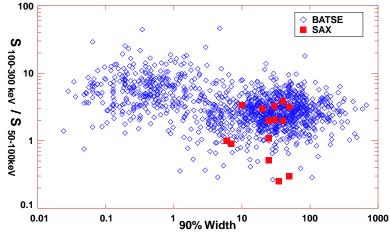


- 1991: launch of ComptonGammaRayObservatory
 Burst and Transient Experiment (BATSE)
 2704 GRBs (until May 2000)
 isotropic distribution (cosmological origin)
- 1997: Beppo(in honor of Giuseppe Occhialini) Satellite per Astronomia X X-ray afterglow arc-min accuracy positions optical detection
 GRB afterglow at longer wavelengths identification of the host galaxy measurement of redshift distances

 $\bullet \quad INTErnational Gamma-Ray A st\underline{rop} hysics Laboratory$

GRB prompt emission





(from Djorgovski et al. 2001)

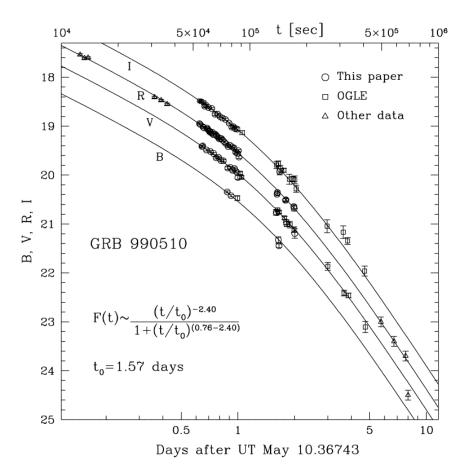
Fluence $F_{\gamma}=10^{-8}-10^{-3} {\rm ergs/cm^2}$ energy

$$E_{\gamma} = 10^{53} \left(\frac{D}{3~\rm Gpc}\right)^2 \left(\frac{F_{\gamma}}{10^{-4}~\frac{\rm ergs}{\rm cm}^2}\right) \left(\frac{\Delta \omega}{4\pi}\right) {\rm ergs}$$
 collimation
$$\left\{\begin{array}{c} {\rm reduces}~E_{\gamma}\\ {\rm increases}~{\rm the}~{\rm rate}~{\rm of}~{\rm events} \end{array}\right.$$

- non-thermal spectrum
- Duration $\Delta t = 10^{-3} 10^3 \text{s}$ long bursts > 2 s, short bursts < 2 s
- Variability $\delta t = \Delta t/N$, N = 1-1000 compact source $R < c \ \delta t \sim 1000$ km not a single explosion huge optical depth for $\gamma \gamma \to e^+ e^-$ compactness problem: how the photons escape?

relativistic motion
$$\gamma \gtrsim 100 \ \begin{cases} R < \gamma^2 c \ \delta t \\ \text{blueshifted photon energy} \\ \text{beaming} \\ \text{optically thin} \end{cases}$$

Afterglow



(from Stanek et al. 1999)

- from X-rays to radio
- ullet fading broken power law panchromatic break $F_
 u \propto \left\{egin{array}{l} t^{-a_1}\,,\,t < t_o \ t^{-a_2}\,,\,t > t_o \end{array}
 ight.$
- non-thermal spectrum
 (synchrotron + inverse Compton with power law electron energy distribution)

The internal-external shocks model

mass outflow (pancake)

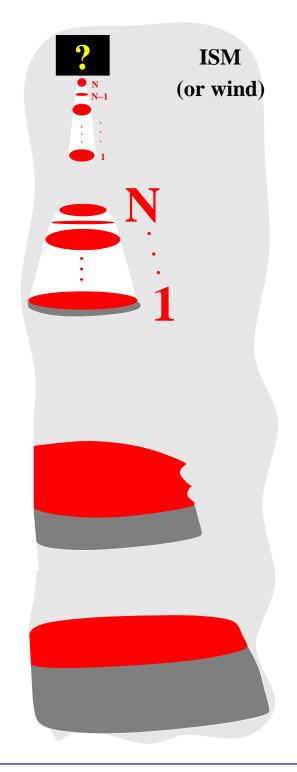
N shells (moving with different $\gamma\gg 1$) Frozen pulse (if ℓ the path's arclength, $s\equiv ct-\ell=const$ for each shell, $\delta s=const$ for two shells)

internal shocks

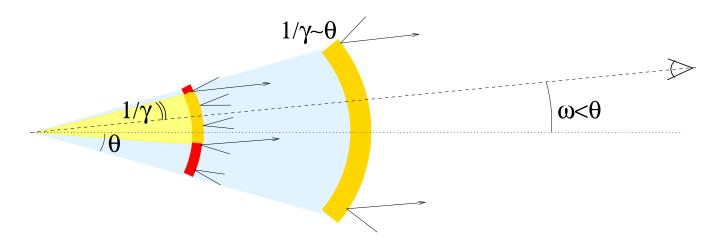
 $(\sim 10\% \text{ of kinetic energy} \rightarrow \mathbf{GRB})$

external shock

interaction with ISM (or wind) (when the flow accumulates $M_{ISM}=M/\gamma$) As γ decreases with time, kinetic energy \to X-rays . . . radio \to Afterglow



Beaming – Collimation

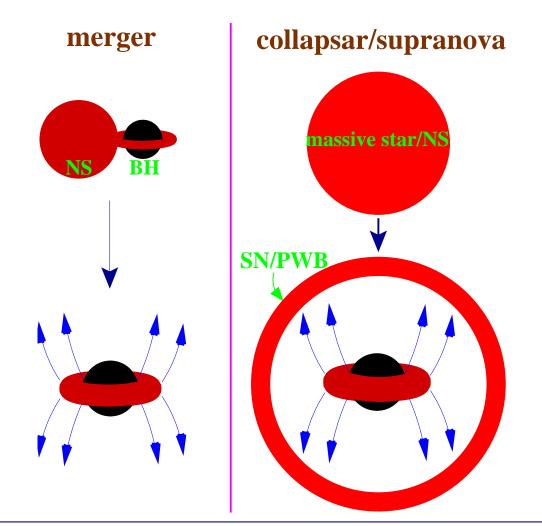


- During the afterglow γ decreases When $1/\gamma > \vartheta$ the F(t) decreases faster The broken power-law justifies collimation
- orphan afterglows ? (for $\omega > \vartheta$)

$$\bullet \quad \text{afterglow fits} \quad \to \left\{ \begin{array}{l} \text{opening half-angle } \vartheta = 1^{\rm o} - 10^{\rm o} \\ \text{energy } E_{\gamma} = 10^{50} - 10^{51} \text{ergs (Frail et al. 2001)} \\ E_{\rm afterglow} = 10^{50} - 10^{51} \text{ergs (Panaitescu \& Kumar 2002)} \end{array} \right.$$

Imagine a Progenitor ...

- acceleration and collimation of matter ejecta
- ullet $E\sim$ 1% of the binding energy of a solar-mass compact object
- small $\delta t \rightarrow$ compact object
- highly relativistic → compact object
- ullet two time scales $(\delta t\,,\Delta t)$ + energetics suggest accretion



The BH – debris-disk system

Energy reservoirs:

- ① binding energy of the orbiting debris
- 2 spin energy of the newly formed BH

The BH – debris-disk system

Energy reservoirs:

- ① binding energy of the orbiting debris
- 2 spin energy of the newly formed BH

Energy extraction mechanisms:

- riangleq viscous dissipation \Rightarrow thermal energy $\Rightarrow \nu \bar{\nu} \rightarrow e^+ e^- \Rightarrow e^\pm$ /photon/baryon fireball
 - unlikely that the disk is optically thin to neutrinos (Di Matteo, Perna, & Narayan 2002)
 - hot, luminous photosphere ⇒ detectable thermal emission (Daigne & Mochkovitch 2002)
 - collimation?
 - highly super-Eddington $L\Rightarrow M_{\rm baryon}\uparrow \Rightarrow \gamma pprox rac{\mathcal{E}}{M_{\rm baryon}c^2}\downarrow$

The BH – debris-disk system

Energy reservoirs:

- ① binding energy of the orbiting debris
- 2 spin energy of the newly formed BH

Energy extraction mechanisms:

- riangleq viscous dissipation \Rightarrow thermal energy $\Rightarrow
 u \bar{\nu} \rightarrow e^+ e^- \Rightarrow e^\pm$ /photon/baryon fireball
 - unlikely that the disk is optically thin to neutrinos (Di Matteo, Perna, & Narayan 2002)
 - hot, luminous photosphere ⇒ detectable thermal emission (Daigne & Mochkovitch 2002)
 - collimation?
 - highly super-Eddington $L\Rightarrow M_{\rm baryon}\uparrow\Rightarrow\gamma\approx rac{\mathcal{E}}{M_{\rm baryon}c^2}\downarrow$
- dissipation of magnetic fields generated by the differential rotation in the torus $\Rightarrow e^{\pm}$ /photon/baryon "magnetic" fireball
 - collimation?
 - hot, luminous photosphere ⇒ detectable thermal emission

MHD extraction (**Poynting** jet)

$$\begin{array}{l} \bullet \;\; \mathcal{E} = \frac{c}{4\pi} \; \frac{\varpi\Omega}{\underbrace{c}} B_p \;\; B_\phi \; \times \; \text{area} \;\; \times \; \text{duration} \;\; \Rightarrow \\ \\ \frac{B_p B_\phi}{\left(2 \times 10^{14} \text{G}\right)^2} = \left[\frac{\mathcal{E}}{5 \times 10^{51} \text{ergs}} \right] \left[\frac{\text{area}}{4\pi \times 10^{12} \text{cm}^2} \right]^{-1} \left[\frac{\varpi\Omega}{10^{10} \text{cm s}^{-1}} \right]^{-1} \left[\frac{\text{duration}}{10 \text{s}} \right]^{-1} \end{aligned}$$

- from the BH: $B_p \gtrsim 10^{15} {\rm G}$ (small B_ϕ , small area)
- from the disk: smaller magnetic field required $\sim 10^{14} {\rm G}$
- Is it possible to "use" this energy and accelerate the matter ejecta? Important to solve the transfield force-balance equation (ignoring the transfield and assuming radial flow \rightarrow tiny efficiency; Michel 1969)
- * force-free electrodynamics (massless limit of the ideal MHD) outgoing wave (Lyutikov & Blandford): the energy remains Poynting – they ignore the transfield – no outflowing matter is needed for the GRB

 * Does the dissipation stops the acceleration?
- dissipation → acceleration! (Drenkhahn & Spruit 2002)

Ideal MHD

- Only one exact solution known: the steady-state, cold, r self-similar model found by Li, Chiueh, & Begelman (1992) and Contopoulos (1994).
- Generalization for non-steady GRB outflows, including radiation and thermal effects.

MHD of GRB JETS IAS / February 13, 2003

Ideal Magneto-Hydro-Dynamics

in collaboration with Arieh Königl (U of Chicago)

- Outflowing matter:
 - baryons (rest density ρ_0)
 - ambient electrons (neutralize the protons)
 - e^{\pm} pairs (Maxwellian distribution)
- photons (blackbody distribution)
- large scale electromagnetic field E, B

 $\tau\gg 1$ ensure local thermodynamic equilibrium charge density $\frac{J^0}{c}\ll \frac{\rho_0}{mp}e$ current density $J\ll \frac{\rho_0}{mp}ec$ } one fluid approximation

V bulk velocity

P = total pressure (matter + radiation)

 $\xi c^2 = \text{specific enthalpy (matter + radiation)}$

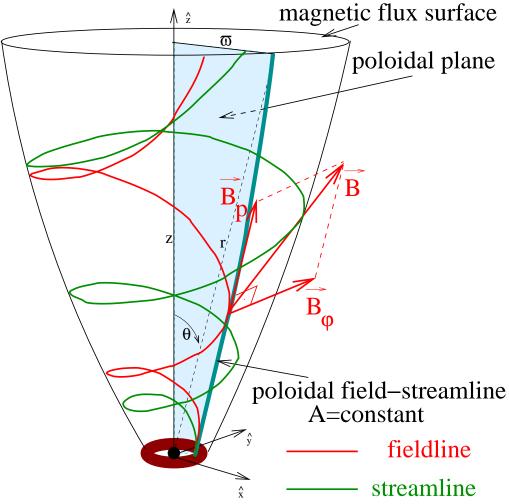
Assumptions

- axisymmetry
- highly relativistic poloidal motion
- $oldsymbol{3}$ quasi-steady poloidal magnetic field $\Leftrightarrow E_{\phi} = 0 \Leftrightarrow \mathbf{B}_p \parallel \mathbf{V}_p$

Introduce the magnetic flux function A

 $\mathbf{B} = \mathbf{B}_p + \mathbf{B}_\phi \,, \quad \mathbf{B}_p =
abla imes \left(A rac{\hat{\phi}}{arpi}
ight)$

Faraday + Ohm $ightarrow \mathbf{V}_p \parallel \mathbf{B}_{\pmb{p}}$



The frozen-pulse approximation

The arclength along a poloidal fieldline

$$\ell = \int_{\frac{s}{c}}^{t} V_p dt \approx ct - s \Rightarrow s = ct - \ell$$

- s is constant for each ejected shell. Moreover, the distance between two different shells $\ell_2 \ell_1 = s_1 s_2$ remains the same (even if they move with $\gamma_1 \neq \gamma_2$).
- Eliminating t in terms of s, we show that all terms with $\partial/\partial s$ are $\mathcal{O}(1/\gamma) \times$ remaining terms (generalizing the HD case examined by Piran, Shemi, & Narayan 1993). Thus we may examine the motion of <u>each shell</u> using steady-state equations.

$$\left(\text{e.g., } \frac{d}{dt} = (c - V_p) \frac{\partial}{\partial s} + \mathbf{V} \cdot \nabla_s \approx \mathbf{V} \cdot \nabla_s\right)$$

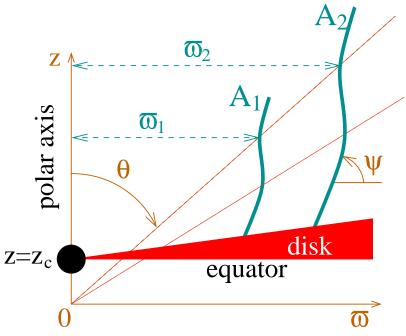
Integration

The full set of ideal MHD equations can be partially integrated to yield five fieldline constants (functions of A and $s = ct - \ell$):

- ① the mass-to-magnetic flux ratio
- 2 the field angular velocity
- 3 the specific angular momentum
- $ext{ } ext{ } ext{ } ext{the total energy-to-mass flux ratio }\mu c^2$
- the adiabat $P/\rho_0^{4/3}$

Two integrals remain to be performed, involving the Bernoulli and transfield force-balance equations.

r self-similarity



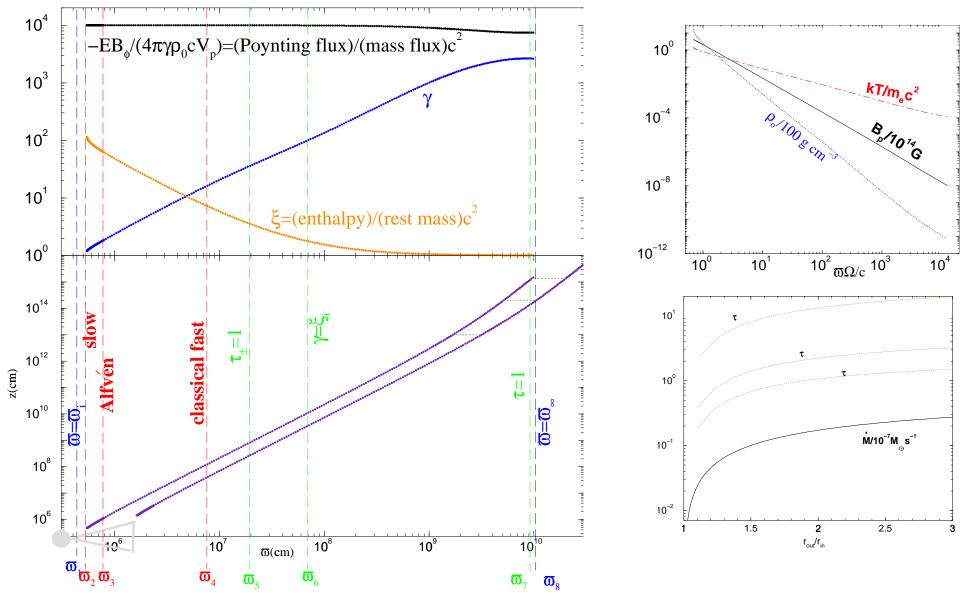
self-similar ansatz $r = \mathcal{F}_1(A) \ \mathcal{F}_2(\theta)$

For points on the same cone $\theta = const$,

$$\text{ODEs} \left\{ \begin{array}{l} \frac{\psi = \psi(x\,,M\,,\theta)\,, \text{(Bernoulli)}}{\frac{dx}{d\theta} = \mathcal{N}_0(x\,,M\,,\psi\,,\theta)\,, \text{(definition of }\psi)}{\frac{dM}{d\theta} = \frac{\mathcal{N}(x\,,M\,,\psi\,,\theta)}{\mathcal{D}(x\,,M\,,\psi\,,\theta)}\,, \text{(transfield)} \end{array} \right\} \begin{array}{l} \mathcal{D} = 0: \text{ singular points} \\ \text{(Alfvén, modified slow - fast)} \end{array}$$

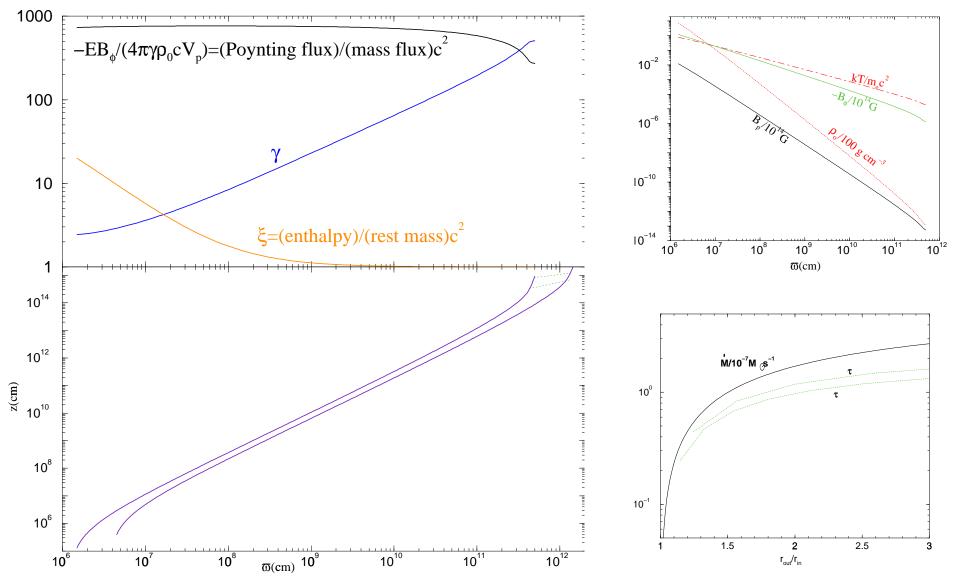
(start the integration from a cone $\theta = \theta_i$ and give the boundary conditions $B_{\theta} = -\mathcal{C}_1 r^{F-2}$, $B_{\phi} = -\mathcal{C}_2 r^{F-2} \,,\, V_r/c = \mathcal{C}_3 \,,\, V_{\theta}/c = -\mathcal{C}_4 \,,\, V_{\phi}/c = \mathcal{C}_5 \,,\, \rho_0 = \mathcal{C}_6 r^{2(F-2)} \,,$ and $P = C_7 r^{2(F-2)}$, where F = parameter).

Trans-Alfvénic Jets (NV & Königl 2001, 2003a)



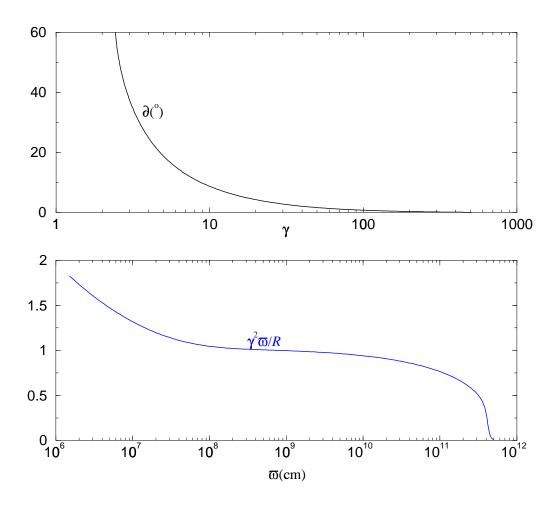
- $\varpi_1 < \varpi < \varpi_6$: Thermal acceleration force free magnetic field $(\gamma \propto \varpi, \rho_0 \propto \varpi^{-3}, T \propto \varpi^{-1}, \varpi B_\phi = const$, parabolic shape of fieldlines: $z \propto \varpi^2$)
- $\varpi_6 < \varpi < \varpi_8$: Magnetic acceleration ($\gamma \propto \varpi \,, \rho_0 \propto \varpi^{-3}$)
- $\varpi=\varpi_8$: cylindrical regime equipartition $\gamma_\infty \approx (-EB_\phi/4\pi\gamma\rho_0 V_p)_\infty$

Super-Alfvénic Jets (NV & Königl 2003b)



- Thermal acceleration ($\gamma \propto \varpi^{0.44}$, $\rho_0 \propto \varpi^{-2.4}$, $T \propto \varpi^{-0.8}$, $B_\phi \propto \varpi^{-1}$, $z \propto \varpi^{1.5}$)
- Magnetic acceleration ($\gamma \propto \varpi^{0.44}$, $\rho_0 \propto \varpi^{-2.4}$)
- cylindrical regime equipartition $\gamma_{\infty} \approx (-EB_{\phi}/4\pi\gamma\rho_{0}V_{p})_{\infty}$

Collimation

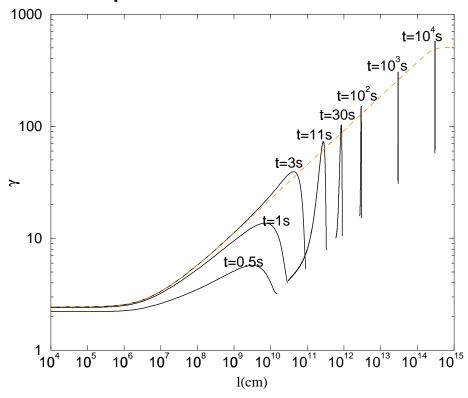


 \star At $\varpi=10^8 {\rm cm}$ – where $\gamma=10$ – the opening half-angle is already $\vartheta=10^o$

 \star For $\varpi > 10^8$ cm, collimation continues slowly ($\mathcal{R} \sim \gamma^2 \varpi$)

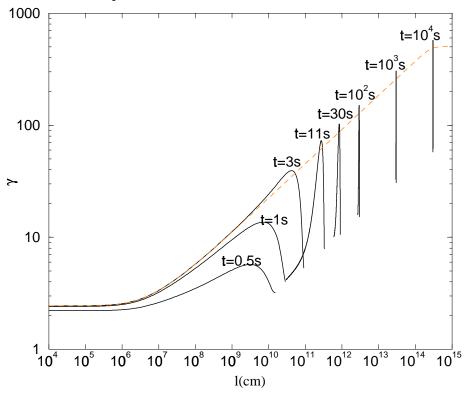
Time-Dependent Effects

* recovering the time-dependence:



Time-Dependent Effects

* recovering the time-dependence:



* internal shocks:

The distance between two neighboring shells $s_1, s_2 = s_1 + \delta s$

$$\delta \ell = \delta \left(\int_{\frac{s}{c}}^{t} V_{p} dt \right) = -\delta s - \delta \left(\int_{\frac{s}{c}}^{t} (c - V_{p}) dt \right) \approx -\delta s - \int_{0}^{t} \delta \left(\frac{c}{2\gamma^{2}} \right) dt$$

Different $V_p \Rightarrow$ collision (at $ct \approx \gamma^2 \delta s$ – inside the cylindrical regime)

Conclusions

- Solution incorporates:
 - rotation and magnetic effects (important near BH)
 - thermal-radiation effects
- The flow is initially thermally and subsequently magnetically accelerated
- The outflow is largely Poynting flux-dominated:
 - the implied lower radiative luminosity near the origin could alleviate the baryon contamination problem
 - negligible photospheric emission
- The magnetic field:
 - provide the most plausible means of extracting the rotational energy on the burst timescale
 - self-collimation
 - Lorentz acceleration ($\sim 50\%$ efficiency)
 - guiding property (internal shock mechanism)
 - could account for the observed synchrotron emission

Magnetic acceleration in general

• Non-radial flow $\to \gamma_\infty \gg \mu^{1/3}$ (cf. Michel's solution). Also, the classical fast magnetosonic point is located at a finite distance from the origin. Most of the acceleration occurs downstream of the classical fast point.

Other applications:

- AGN outflows: Using the same radially self-similar model, we show that the acceleration in relativistic AGN outflows (e.g., in the recently observed sub-parsec-scale jet in NGC 6251) can be attributed to magnetic driving
- Crab-like pulsar winds

A solution to the pulsar σ -problem

• $\sigma=\frac{\text{Poynting flux}}{\text{matter energy flux}}\approx 10^4$ at the fast surface o $\sigma\approx 10^{-3}$ at $r\approx 3\times 10^{17} \text{cm}$ (Kennel & Coroniti, Arons)

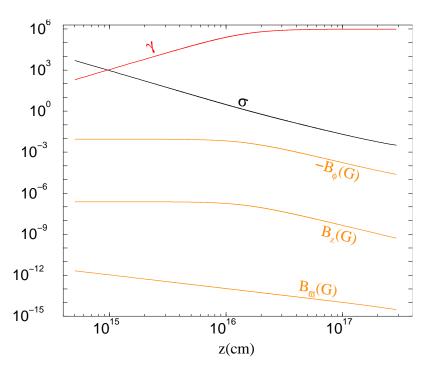
A solution to the pulsar σ -problem

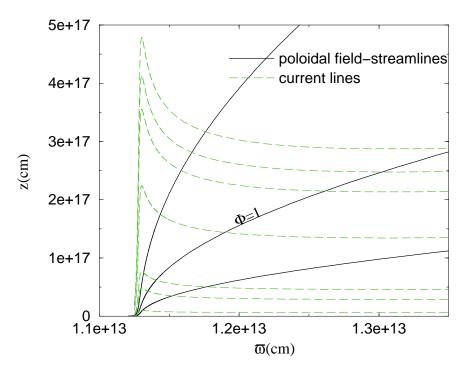
- $\sigma=\frac{\text{Poynting flux}}{\text{matter energy flux}}\approx 10^4$ at the fast surface $\to \sigma\approx 10^{-3}$ at $r\approx 3\times 10^{17} \text{cm}$ (Kennel & Coroniti, Arons)
- logarithmic acceleration
 - $-z=f(A)\varpi^{n(A)}$, Chiueh, Li, & Begelman (1991)
 - perturbed monopole field $A = A_0(1 \cos \theta + \delta)$, Lyubarsky & Eichler (2001)

A solution to the pulsar σ -problem

- $\sigma=\frac{\text{Poynting flux}}{\text{matter energy flux}}\approx 10^4$ at the fast surface $\to \sigma\approx 10^{-3}$ at $r\approx 3\times 10^{17} \text{cm}$ (Kennel & Coroniti, Arons)
- logarithmic acceleration
 - $-z=f(A)\varpi^{n(A)}$, Chiueh, Li, & Begelman (1991)
 - perturbed monopole field $A = A_0(1 \cos \theta + \delta)$, Lyubarsky & Eichler (2001)
- \bullet The z self-similar model: $z=\Phi(A)f(\varpi)$

 $B_z\gg B_{\varpi}$, superAlfvénic regime





Transition from $\sigmapprox 10^4$ to $\sigmapprox 10^{-3}$ (i.e., from Poynting- to matter-dominated flow)

The ideal MHD equations

Maxwell:

$$\nabla \cdot \mathbf{B} = 0 = \nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{c \partial t}, \nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{c \partial t} + \frac{4\pi}{c} \mathbf{J}, \nabla \cdot \mathbf{E} = \frac{4\pi}{c} J^{0}$$

Ohm: $\mathbf{E} = \mathbf{B} \times \mathbf{V}/c$

baryon mass conservation (continuity):

$$rac{d(\gamma
ho_0)}{dt} + \gamma
ho_0
abla \cdot \mathbf{V} = 0 \;, \quad ext{where} \quad rac{d}{dt} = rac{\partial}{\partial t} + \mathbf{V} \cdot
abla$$

energy $U_{\mu}T^{\mu\nu}_{,\nu}=0$ (or specific entropy conservation, or first law for thermodynamics):

$$\frac{d\left(P/\rho_0^{4/3}\right)}{dt} = 0$$

$$\text{momentum } T_{,\nu}^{\nu i} = 0 \text{: } \gamma \rho_o \frac{d \left(\xi \gamma \mathbf{V}\right)}{dt} = -\nabla P + \frac{J^0 \mathbf{E} + \mathbf{J} \times \mathbf{B}}{c}$$

Eliminating
$$t$$
 in terms of s : $(\mathbf{V} \cdot \nabla_s) (\xi \gamma \mathbf{V}) - \frac{(\nabla_s \cdot \mathbf{E}) \mathbf{E} + (\nabla_s \times \mathbf{B}) \times \mathbf{B}}{4\pi \gamma \rho_0} + \frac{\nabla P}{\gamma \rho_0} = (V_p - c) \frac{\partial (\xi \gamma \mathbf{V})}{\partial s} + \frac{\partial (E + B_\phi)}{4\pi \gamma \rho_0 \partial s} \frac{\nabla_s A}{|\nabla_s A|} \times \mathbf{B} - \nabla_s A \frac{\nabla_s \ell \cdot \nabla_s A}{|\nabla_s A|^2} \frac{\partial (E^2 - B_\phi^2)}{8\pi \gamma \rho_0 \partial s}$