MagnetoHydroDynamics of Gamma-Ray Burst Jets

Nektarios Vlahakis

mailto: vlahakis@jets.uchicago.edu

Outline

- GRBs and their afterglows
	- **–** observations
	- **–** our understanding
- the MHD description
	- **–** general theory
	- **–** the model
	- **–** results
- Crab-like pulsar winds
	- **–** a solution to the σ-problem

• 1967: the first GRB Vela satellites (first publication on 1973)

- 1967: the first GRB Vela satellites (first publication on 1973)
- 1991: launch of ComptonGammaRayObservatory Burst and Transient Experiment (BATSE) 2704 GRBs (until May 2000) isotropic distribution (cosmological origin)
-

- 1967: the first GRB Vela satellites (first publication on 1973)
- 1991: launch of ComptonGammaRayObservatory Burst and Transient Experiment (BATSE) 2704 GRBs (until May 2000) isotropic distribution (cosmological origin)
- 1997: Beppo (in honor of Giuseppe Occhialini) Satellite per Astronomia X X-ray afterglow arc-min accuracy positions optical detection GRB afterglow at longer wavelengths identification of the host galaxy measurement of redshift distances

- 1967: the first GRB Vela satellites (first publication on 1973)
- 1991: launch of ComptonGammaRayObservatory Burst and Transient Experiment (BATSE) 2704 GRBs (until May 2000) isotropic distribution (cosmological origin)
- 1997: Beppo(in honor of Giuseppe Occhialini) Satellite per Astronomia X X-ray afterglow arc-min accuracy positions optical detection GRB afterglow at longer wavelengths identification of the host galaxy measurement of redshift distances
- HighEnergyTransientExplorer-2

- 1967: the first GRB Vela satellites (first publication on 1973)
- 1991: launch of ComptonGammaRayObservatory Burst and Transient Experiment (BATSE) 2704 GRBs (until May 2000) isotropic distribution (cosmological origin)
- 1997: Beppo(in honor of Giuseppe Occhialini) Satellite per Astronomia X X-ray afterglow arc-min accuracy positions optical detection GRB afterglow at longer wavelengths identification of the host galaxy measurement of redshift distances
-

GRB prompt emission

(from Djorgovski et al. 2001)

• Fluence $F_{\gamma} = 10^{-8} - 10^{-3}$ ergs/cm² energy

$$
E_{\gamma} = 10^{53} \left(\frac{D}{3 \text{ Gpc}}\right)^2 \left(\frac{F_{\gamma}}{10^{-4} \frac{\text{ergs}}{\text{cm}^2}}\right) \left(\frac{\Delta \omega}{4\pi}\right) \text{ergs}
$$

collision $\left\{\begin{array}{c} \text{reduces } E_{\gamma} \\ \text{inergence the rate of event.} \end{array}\right\}$

- increases the rate of events
- non-thermal spectrum
- Duration $\Delta t = 10^{-3} 10^3$ s long bursts > 2 s, short bursts < 2 s
- Variability $\delta t = \Delta t / N$, $N = 1 1000$ compact source $R < c \delta t \sim 1000$ km not a single explosion huge optical depth for $\gamma\gamma\to e^+e^$ compactness problem: how the photons escape?

 $\sqrt{ }$

 \int

 $\overline{\mathcal{L}}$

relativistic motion $\gamma \gtrsim 100$

 $R < \gamma^2 c \, \delta t$ blueshifted photon energy beaming optically thin

Afterglow

(from Stanek et al. 1999)

- from X-rays to radio
- fading broken power law panchromatic break $F_{\nu} \propto$ $\int t^{-a_1}$, $t < t_o$ t^{-a_2} , $t > t_o$
- non-thermal spectrum (synchrotron + inverse Compton with power law electron energy distribution)

The internal–external shocks model

mass outflow (pancake) N shells (moving with different $\gamma \gg 1$) Frozen pulse (if ℓ the path's arclength, $s \equiv ct - \ell = const$ for each shell, $\delta s = const$ for two shells)

internal shocks ($∼ 10\%$ of kinetic energy $→$ GRB)

external shock interaction with ISM (or wind) (when the flow accumulates $M_{ISM} = M/\gamma$) As γ decreases with time, kinetic energy \rightarrow X-rays ... radio → **Afterglow**

Beaming – Collimation

- During the afterglow γ decreases When $1/\gamma > \vartheta$ the $F(t)$ decreases faster The broken power-law justifies collimation
- orphan afterglows ? (for $\omega > \vartheta$)
- afterglow fits \rightarrow $\sqrt{ }$ \int $\overline{\mathcal{L}}$ opening half-angle $\vartheta = 1^{\rm o} - 10^{\rm o}$ <code>energy</code> $E_{\gamma}=10^{50}-10^{51}$ ergs (Frail et al. 2001) $E_{\rm afterglow} = 10^{50} - 10^{51}$ ergs (Panaitescu & Kumar 2002)

Imagine a Progenitor . . .

- **e acceleration** and **collimation** of matter ejecta
- $E \sim 1\%$ of the binding energy of a solar-mass compact object
- small $\delta t \rightarrow$ compact object
- \bullet highly relativistic \rightarrow compact object
- two time scales $(\delta t, \Delta t)$ + energetics suggest accretion

The BH – debris-disk system

• **Energy reservoirs:**

- ① binding energy of the orbiting debris
- ② spin energy of the newly formed BH

The BH – debris-disk system

• **Energy reservoirs:**

- ① binding energy of the orbiting debris
- ② spin energy of the newly formed BH

• **Energy extraction mechanisms:**

- ☞ viscous dissipation ⇒ thermal energy ⇒ νν¯ → e +e [−] ⇒ e [±]/photon/baryon **fireball**
	- unlikely that the disk is optically thin to neutrinos (Di Matteo, Perna, & Narayan 2002)
	- $-$ hot, luminous photosphere \Rightarrow detectable thermal emission (Daigne & Mochkovitch 2002)
	- collimation ?
	- highly super-Eddington $L \Rightarrow M_{\mathsf{baryon}} \restriction \; \Rightarrow \; \gamma \approx$ $\mathcal E$ $\frac{1}{M_{\text{baryon}}c^2}$

The BH – debris-disk system

• **Energy reservoirs:**

- ① binding energy of the orbiting debris
- ② spin energy of the newly formed BH

• **Energy extraction mechanisms:**

- ☞ viscous dissipation ⇒ thermal energy ⇒ νν¯ → e +e [−] ⇒ e [±]/photon/baryon **fireball**
	- unlikely that the disk is optically thin to neutrinos (Di Matteo, Perna, & Narayan 2002)
	- $-$ hot, luminous photosphere \Rightarrow detectable thermal emission (Daigne & Mochkovitch 2002)
	- collimation ?
	- highly super-Eddington $L \Rightarrow M_{\mathsf{baryon}} \restriction \; \Rightarrow \; \gamma \approx$ $\mathcal E$ $\frac{1}{M_{\text{baryon}}c^2}$
- ☞ dissipation of magnetic fields generated by the differential rotation in the torus $\Rightarrow e^{\pm}/$ photon/baryon "magnetic" **fireball** – collimation ?
	- $-$ hot, luminous photosphere \Rightarrow detectable thermal emission

☞ MHD extraction (**Poynting** jet)

•
$$
\mathcal{E} = \frac{c}{4\pi} \frac{\varpi \Omega}{c} B_p B_\phi \times \text{ area } \times \text{ duration } \Rightarrow
$$

\n
$$
\frac{B_p B_\phi}{\left(2 \times 10^{14} \text{G}\right)^2} = \left[\frac{\mathcal{E}}{5 \times 10^{51} \text{ergs}}\right] \left[\frac{\text{area}}{4\pi \times 10^{12} \text{cm}^2}\right]^{-1} \left[\frac{\varpi \Omega}{10^{10} \text{cm s}^{-1}}\right]^{-1} \left[\frac{\text{duration}}{10 \text{s}}\right]^{-1}
$$

– from the BH: $B_p \gtrsim 10^{15}$ G (small B_{ϕ} , small area)

- **–** from the disk: smaller magnetic field required ∼ 10¹⁴G
- Is it possible to "use" this energy and accelerate the matter ejecta? Important to solve the transfield force-balance equation (ignoring the transfield and assuming radial flow \rightarrow tiny efficiency; Michel 1969)
- \star force-free electrodynamics (massless limit of the ideal MHD) outgoing wave (Lyutikov & Blandford): the energy remains Poynting – they ignore the transfield – no outflowing matter is needed for the GRB
- \star Does the dissipation stops the acceleration? dissipation → acceleration! (Drenkhahn & Spruit 2002)

Ideal MHD

- \Box Only one exact solution known: the steady-state, cold, r self-similar model found by Li, Chiueh, & Begelman (1992) and Contopoulos (1994).
- ❐ Generalization for non-steady GRB outflows, including radiation and thermal effects.

 $\sqrt{ }$

 $\overline{ }$

 \setminus

 $\begin{array}{c} \hline \end{array}$

Ideal Magneto-Hydro-Dynamics

in collaboration with Arieh Königl (U of Chicago)

- Outflowing matter:
	- **–** baryons (rest density ρ_0)
	- **–** ambient electrons (neutralize the protons)
	- **–** e [±] pairs (Maxwellian distribution)
- photons (blackbody distribution)
- large scale electromagnetic field \mathbf{E} , \mathbf{B}
- $\tau \gg 1$ ensure local thermodynamic equilibrium

charge density $\frac{J^0}{c} \ll \frac{\rho_0}{m_p} e$ charge density $\frac{J^0}{c} \ll \frac{\rho_0}{m_p} e \ \text{Current density } J \ll \frac{\rho_0}{m_p} e c \ \ \ \}$ one fluid approximation

V bulk velocity

$$
P =
$$
 total pressure (matter + radiation)

 $\xi c^2 =$ specific enthalpy (matter + radiation)

Assumptions

❶ axisymmetry

❷ highly relativistic poloidal motion

^❸ quasi-steady poloidal magnetic field $\Leftrightarrow E_{\phi} = 0 \Leftrightarrow$ B_p \parallel V_p

The frozen-pulse approximation

• The arclength along a poloidal fieldline

$$
\ell = \int_{\frac{s}{c}}^{t} V_p dt \approx ct - s \Rightarrow s = ct - \ell
$$

- \bullet s is constant for each ejected shell. Moreover, the distance between two different shells $\ell_2 - \ell_1 = s_1 - s_2$ remains the same (even if they move with $\gamma_1 \neq \gamma_2$).
- • [Eliminating](#page-32-0) t in terms of s, we show that all terms with $\partial/\partial s$ are $\mathcal{O}(1/\gamma) \times$ remaining terms (generalizing the HD case examined by Piran, Shemi, & Narayan 1993). Thus we may examine the motion of each shell using steady-state equations.

$$
\left(\mathbf{e}.\mathbf{g}, \frac{d}{dt} = (c - V_p)\frac{\partial}{\partial s} + \mathbf{V} \cdot \nabla_s \approx \mathbf{V} \cdot \nabla_s\right)
$$

Integration

The full set of ideal MHD equations can be partially integrated to yield five fieldline constants (functions of A and $s = ct - \ell$):

- ① the mass-to-magnetic flux ratio
- ② the field angular velocity
- ③ the specific angular momentum
- Φ the total energy-to-mass flux ratio μc^2
- \circledS the adiabat $P/\rho_0^{4/3}$

Two integrals remain to be performed, involving the Bernoulli and transfield force-balance equations.

r **self-similarity**

(start the integration from a cone $\theta = \theta_i$ and give the boundary conditions $B_{\theta} = -C_1 r^{F-2}$, $B_\phi=-\mathcal{C}_2 r^{F-2}\,,\,V_r/c=\mathcal{C}_3\,,\,V_\theta/c=-\mathcal{C}_4\,,\,V_\phi/c=\mathcal{C}_5\,,\,\rho_0=\mathcal{C}_6 r^{2(F-2)}\,,$ and $P = C_7 r^{2(F-2)}$, where $F =$ parameter).

Trans-Alfvénic Jets (NV & Königl 2001, 2003a)

 $\omega_1 < \omega < \omega_6$: Thermal acceleration - force free magnetic field $(\gamma\propto\varpi$, $\rho_0\propto\varpi^{-3}$, $T\propto\varpi^{-1}$, $\varpi B_\phi=const$, parabolic shape of fieldlines: $z\propto\varpi^2$)

- $\bullet~~ \varpi_6 < \varpi < \varpi_8$: Magnetic acceleration ($\gamma \propto \varpi$, $\rho_0 \propto \varpi^{-3}$)
- $\omega = \omega_8$: cylindrical regime equipartition $\gamma_\infty \approx (-EB_\phi/4\pi\gamma\rho_0V_p)_\infty$

Super-Alfvénic Jets (NV & Königl 2003b)

- Thermal acceleration ($\gamma\propto \varpi^{0.44}$, $\rho_0\propto \varpi^{-2.4}$, $T\propto \varpi^{-0.8}$, $B_\phi\propto \varpi^{-1}$, $z\propto \varpi^{1.5}$)
- Magnetic acceleration ($\gamma \propto \varpi^{0.44}$, $\rho_0 \propto \varpi^{-2.4}$)
- cylindrical regime equipartition $\gamma_{\infty} \approx (-EB_{\phi}/4\pi \gamma \rho_0 V_p)_{\infty}$

Collimation

 \star At $\varpi = 10^8$ cm – where $\gamma = 10$ – the opening half-angle is already $\vartheta = 10^o$ \star For $\varpi > 10^8$ cm, collimation continues slowly ($\mathcal{R} \sim \gamma^2 \varpi$)

Time-Dependent Effects

\star recovering the time-dependence:

Time-Dependent Effects

\star recovering the time-dependence:

\star internal shocks:

The distance between two neighboring shells s_1 , $s_2 = s_1 + \delta s$ $\delta \ell = \delta$ $\int f^t$ s \overline{c} $\left(V_p dt\right) = -\delta s - \delta$ $\int f_t^t$ s \overline{c} $\begin{pmatrix} t \ (c-V_p)dt \end{pmatrix} \approx -\delta s \int_0^t$ 0 δ $\int c$ $2\gamma^2$ \setminus dt Different $V_p \Rightarrow$ collision (at $ct \approx \gamma^2 \delta s$ – inside the cylindrical regime)

Conclusions

- Solution incorporates:
	- **–** rotation and magnetic effects (important near BH)
	- **–** thermal–radiation effects
- The flow is initially thermally and subsequently magnetically accelerated
- The outflow is largely Poynting flux-dominated:
	- **–** the implied lower radiative luminosity near the origin could alleviate the baryon contamination problem
	- **–** negligible photospheric emission
- The magnetic field:
	- **–** provide the most plausible means of extracting the rotational energy on the burst timescale
	- **–** self-collimation
	- **–** Lorentz acceleration (∼ 50% efficiency)
	- **–** guiding property (internal shock mechanism)
	- **–** could account for the observed synchrotron emission

Magnetic acceleration in general

- $\bullet\,$ Non-radial flow $\to\gamma_\infty\gg\mu^{1/3}$ (cf. Michel's solution). Also, the classical fast magnetosonic point is located at a finite distance from the origin. Most of the acceleration occurs downstream of the classical fast point.
- Other applications:
	- **–** AGN outflows: Using the same radially self-similar model, we show that the acceleration in relativistic AGN outflows (e.g., in the recently observed sub-parsec-scale jet in NGC 6251) can be attributed to magnetic driving
	- **–** Crab-like pulsar winds

A solution to the pulsar σ**-problem**

• $\sigma = \frac{Poynting flux}{\text{matter energy flux}} \approx 10^4$ at the fast surface $\to \sigma \approx 10^{-3}$ at $r \approx 3 \times 10^{17}$ cm (Kennel & Coroniti, Arons)

A solution to the pulsar σ**-problem**

- $\sigma = \frac{Poynting flux}{\text{matter energy flux}} \approx 10^4$ at the fast surface $\to \sigma \approx 10^{-3}$ at $r \approx 3 \times 10^{17}$ cm (Kennel & Coroniti, Arons)
- logarithmic acceleration
	- $\boldsymbol{\tau} \,$ $z = f(A) \varpi^{n(A)},$ Chiueh, Li, & Begelman (1991)
	- **–** perturbed monopole field $A = A_0(1 \cos \theta + \delta)$, Lyubarsky & Eichler (2001)

A solution to the pulsar σ**-problem**

• $\sigma = \frac{Poynting flux}{\text{matter energy flux}} \approx 10^4$ at the fast surface $\to \sigma \approx 10^{-3}$ at $r \approx 3 \times 10^{17}$ cm (Kennel & Coroniti, Arons)

- logarithmic acceleration
	- $\boldsymbol{\tau} \,$ $z = f(A) \varpi^{n(A)},$ Chiueh, Li, & Begelman (1991)
	- **–** perturbed monopole field $A = A_0(1 \cos \theta + \delta)$, Lyubarsky & Eichler (2001)
- The z self-similar model: $z = \Phi(A)f(\varpi)$ $B_z \gg B_{\varpi}$, superAlfvénic regime

Transition from $\sigma \approx 10^4$ to $\sigma \approx 10^{-3}$ (i.e., from Poynting- to matter-dominated flow)

MHD OF GRB JETS GALLERY 11, 2003

The ideal MHD equations

Maxwell:

$$
\nabla \cdot \mathbf{B} = 0 = \nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{c \partial t}, \nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{c \partial t} + \frac{4\pi}{c} \mathbf{J}, \nabla \cdot \mathbf{E} = \frac{4\pi}{c} J^0
$$

Ohm: $E = B \times V/c$

baryon mass conservation (continuity): $d(\gamma\rho_0)$ dt $+ \ \gamma \rho_0 \nabla \cdot {\bf V} = 0 \, , \quad$ where \overline{d} dt = ∂ ∂t $+$ ${\bf V} \cdot \nabla$

energy $U_{\mu}T^{\mu\nu}_{,\nu}=0$ (or specific entropy conservation, or first law for thermodynamics): $d\left(\,P/\rho_0^{4/3}\right.$ \setminus dt $= 0$

momentum $T^{ \nu i}_{, \nu} = 0$: $\gamma \rho_o$ $d\left(\xi\gamma\mathbf{V}\right)$ dt $=-\nabla P +$ $J^0{\bf E} + {\bf J} \times {\bf B}$ \overline{c}

[Eliminating](#page-18-0) t in terms of s: $(\mathbf{V} \cdot \nabla_s) (\xi \gamma \mathbf{V})$ – $\left(\nabla_{\!s}\cdot\mathbf{E}\right)\mathbf{E}+\left(\nabla_{\!s}\times\mathbf{B}\right)\times\mathbf{B}$ $4\pi\gamma\rho_0$ $+$ ∇F $\gamma \rho_0$ = $(V_p - c)$ $\partial\left(\xi\gamma\mathbf{V}\right)$ ∂s $+$ $\partial (E+B_{\phi})$ $4\pi\gamma\rho_0\partial s$ $\nabla_{\!s}A$ $|\nabla_{\!s}A|$ \times **B** – $\nabla_{\!s}A$ $\nabla_{\!s}\ell \cdot \nabla_{\!s} A$ $|\nabla_{\!s}A|^2$ $\partial (E^2-B_\phi^2)$ $8\pi\gamma\rho_0\partial s$