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Outline

• linear stability analysis

• unperturbed cylindrical, cold, magnetized jets

• resulting growth rates



Unperturbed flow

Unperturbed relativistic cylindrical jet
helical, axisymmetric, cylindrically symmetric and steady flow

V 0 = V0z($)ẑ + V0φ($)φ̂ , γ0 = γ0($) = (1− V 2
0z − V 2

0φ)−1/2 ,

B0 = B0z($)ẑ + B0φ($)φ̂ , E0 = (V0zB0φ − V0φB0z)$̂ ,

ρ00 = ρ00($) , ξ0 = ξ0($) , Π0 =
Γ− 1

Γ
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The jet is expected to be unstable to current-driven instabilities
(Kruskal-Shafranov) — role of inertia?
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Linearized equations

Q($ , z , φ , t) = Q0($) + Q1($) exp [i(mφ + kz − ωt)]

10× 12 array
function of $ ,ω , k
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reduces to (4 equations in real space)

d

d$

(
y1

y2

)
+

1
D

(
F11 F12

F21 F22

)(
y1

y2

)
= 0 ,

where the (complex) unknowns are

y1 = i
$V1$

ω0
, y2 = Π1 +

y1

$

dΠ0

d$

(D ,Fij are determinants of 10× 10 arrays).

Equivalently

y′′2 +

[
F11 + F22

D
+
F21

D

(
D
F21

)′]
y′2+

[
F11F22 −F12F21

D2
+
F21

D

(
F22

F21

)′]
y2 = 0 ,

which for uniform flows with V0φ = 0, B0φ = 0, reduces to Bessel.
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Eigenvalue problem
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(matter + EM field)

jr

ξ

• solve the problem inside the jet
(attention to regularity condition on
the axis)

• similarly in the environment
(solution vanishes at ∞)

• Match the solutions at rj:
[[y1]] = 0 , [[y2]] = 0 −→
dispersion relation
? spatial approach: ω = <ω and
<k = <k(ω),=k = =k(ω)
Q = Q0($) + Q1($)e−=kzei(mφ+<kz−ωt)

? temporal approach: k = <k and
<ω = <ω(k),=ω = =ω(k)
Q = Q0($) + Q1($)e=ωtei(mφ+kz−<ωt)
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Unperturbed jet solutions
Try to mimic the Komissarov et al simulation results

(for AGN and GRB jets)

• cold, nonrotating jet

V 0 = V0($)ẑ , γ0 = γ0($) = (1− V 2
0 )−1/2 ,

B0 = B0z($)ẑ + B0φ($)φ̂ , E0 = V0B0φ$̂ ,

ρ00 = ρ00($) , ξ0 = 1 .

• Equilibrium condition (“force-free”)

B2
0φ/γ2

0

$
+

d

d$

(
B2

0z + B2
0φ/γ2

0

2

)
= 0 ,

relates B0z with B0φ/γ0.
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A cold, nonrotating solution:

B0z = Bj

[1+($/$0)
2]ζ

, B0φ = −γ0B0z

√
[1+($/$0)

2]2ζ
−1−2ζ($/$0)

2

(2ζ−1)($/$0)
2 .

$0 , ζ free parameters, γ0 , ρ00 free functions.

• choice of ζ:

B0z ∝ $−1.2

ζ = 0.6
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Formation of core crucial for the acceleration.

The bunching function S ≡

S︷︸︸︷
π$2 B0z∫$

0
B0z 2π$d$︸ ︷︷ ︸

dS

is related to the

acceleration efficiency σ =
1

Sf

S − 1
, where Sf integral of motion

∼ 0.9.
Since S ≈ 1− ζ we get σ =

1− ζ

ζ − 0.1
= 0.8.
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• choice of γ0($):

From Ferraro’s law V0φ = $Ω + V0zB0φ/B0z, where Ω integral of
motion, we get −B0φ/B0z ≈ $Ω/V0z, or, −B0φ/B0z ≈ $/$LC.

For a BH-jet −B0φ

B0z
≈ 150

( rj

1016cm

)( M

108M�

)−1

For a disk-jet
|B0φ|
B0z

≈ 20
( rj

1016cm

)( r0

10GM/c2

)−3/2(
M

108M�

)−1

For the given expressions of B0φ/γ0, B0z,

γ0 =
√

1 + $2
0Ω2 (2ζ−1)($/$0)

4

[1+($/$0)
2]2ζ

−1−2ζ($/$0)
2
.

On the axis
γ0V0

Ω

∣∣∣∣
axis

=
$0√

ζ
(gives Ω|axis for given γ0axis, $0).

The choice of $0, Ω($) controls the pitch B0φ/($B0z), and the
values of γ0 on the axis and the jet surface.
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left: density/field lines, right: Lorentz factor/current lines (jet boundary z ∝ r1.5)
Uniform rotation → γ increases with r
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Differential rotation → slow envelope and faster decrease of Bφ
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• choice of ρ00($):

This comes from the mass-to-magnetic flux ratio integral γ0ρ00V0
B0z

,
which is assumed constant in the simulations. So ρ00 ∝ B0z/γ0.
The constant of proportionality from the value of

σ =
B2

0φ/γ2
0

ρ00

∣∣∣∣
$=$j

.

• external medium:

uniform, static, with zero B0φ and V0φ → Bessel.
In all the following a thermal pressure is assumed, ξe = 1.01
(the value of ξe controls the density ratio).
A cold, magnetized environment gives approximatelly same
results.
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A “surface” and multiple ”body” modes
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growth length = 1/(−=k) ∼ rj/0.2 = 5rj

nonlinear effects important after a few 10rj

growth time ≈ growth length (c = 1)

growth rate ≈ −=k ∼ 0.2/rj

in rough agreement with nonrelativistic linear studies which
predict growth rates in comoving frame Γco∼

vA

10$0
(Appl et al)

in the lab frame Γ =
Γco

< γ >
≈ 0.2/rj

(vA =
√

σ
σ+1 ∼

2
3, $0 = 0.1rj, < γ >∼ 5)
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Summary – Discussion – Next steps

? Kink instability in principle is in action

? Low (|Bφ|/Bz)co, low σ, high γ, stabilize

? The flow is significantly disrupted after a few 10rj

(nonlinear evolution through simulations only)

• Explore the parameter space for kink and other modes

• colder/moving environment? other jet equilibrium models?

• use the eigenstates as initial conditions in numerical studies

• during acceleration? effect of poloidal curvature ?
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