Kink instability in relativistic magnetized jets

Nektarios Vlahakis University of Athens

Outline

- linear stability analysis
- unperturbed cylindrical, cold, magnetized jets
- resulting growth rates

Unperturbed flow

Unperturbed relativistic cylindrical jet

helical, axisymmetric, cylindrically symmetric and steady flow

$$V_{0} = V_{0z}(\varpi)\hat{z} + V_{0\phi}(\varpi)\hat{\phi}, \quad \gamma_{0} = \gamma_{0}(\varpi) = (1 - V_{0z}^{2} - V_{0\phi}^{2})^{-1/2},$$
$$B_{0} = B_{0z}(\varpi)\hat{z} + B_{0\phi}(\varpi)\hat{\phi}, \quad E_{0} = (V_{0z}B_{0\phi} - V_{0\phi}B_{0z})\hat{\varpi},$$
$$\rho_{00} = \rho_{00}(\varpi), \quad \xi_{0} = \xi_{0}(\varpi), \quad \Pi_{0} = \frac{\Gamma - 1}{\Gamma} (\xi_{0} - 1) \rho_{00} + \frac{B_{0}^{2} - E_{0}^{2}}{2}$$

Equilibrium condition
$$\frac{B_{0\phi}^2 - E_0^2}{\varpi} - \xi_0 \rho_{00} \frac{\gamma_0^2 V_{0\phi}^2}{\varpi} + \frac{d\Pi_0}{d\varpi} = 0.$$

The jet is expected to be unstable to current-driven instabilities (Kruskal-Shafranov) — role of inertia?

THE INNERMOST REGIONS OF RELATIVISTIC JETS AND THEIR MAGNETIC FIELDS

Linearized equations

reduces to (4 equations in real space)

$$\frac{d}{d\varpi} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \frac{1}{\mathcal{D}} \begin{pmatrix} \mathcal{F}_{11} & \mathcal{F}_{12} \\ \mathcal{F}_{21} & \mathcal{F}_{22} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = 0,$$

where the (complex) unknowns are

$$y_1 = i \frac{\varpi V_{1\varpi}}{\omega_0}, \qquad y_2 = \Pi_1 + \frac{y_1}{\varpi} \frac{d\Pi_0}{d\varpi}$$

 $(\mathcal{D}, \mathcal{F}_{ij} \text{ are determinants of } 10 \times 10 \text{ arrays}).$

Equivalently

$$y_2'' + \left[\frac{\mathcal{F}_{11} + \mathcal{F}_{22}}{\mathcal{D}} + \frac{\mathcal{F}_{21}}{\mathcal{D}}\left(\frac{\mathcal{D}}{\mathcal{F}_{21}}\right)'\right]y_2' + \left[\frac{\mathcal{F}_{11}\mathcal{F}_{22} - \mathcal{F}_{12}\mathcal{F}_{21}}{\mathcal{D}^2} + \frac{\mathcal{F}_{21}}{\mathcal{D}}\left(\frac{\mathcal{F}_{22}}{\mathcal{F}_{21}}\right)'\right]y_2 = 0,$$

which for uniform flows with $V_{0\phi} = 0$, $B_{0\phi} = 0$, reduces to Bessel.

THE INNERMOST REGIONS OF RELATIVISTIC JETS AND THEIR MAGNETIC FIELDS

Eigenvalue problem

- solve the problem inside the jet (attention to regularity condition on the axis)
- \bullet similarly in the environment (solution vanishes at $\infty)$

• Match the solutions at r_j : $\llbracket y_1 \rrbracket = 0$, $\llbracket y_2 \rrbracket = 0 \longrightarrow$ dispersion relation * spatial approach: $\omega = \Re \omega$ and $\Re k = \Re k(\omega), \Im k = \Im k(\omega)$ $Q = Q_0(\varpi) + Q_1(\varpi)e^{-\Im kz}e^{i(m\phi + \Re kz - \omega t)}$ * temporal approach: $k = \Re k$ and $\Re \omega = \Re \omega(k), \Im \omega = \Im \omega(k)$ $Q = Q_0(\varpi) + Q_1(\varpi)e^{\Im \omega t}e^{i(m\phi + kz - \Re \omega t)}$

Unperturbed jet solutions

Try to mimic the Komissarov et al simulation results (for AGN and GRB jets)

cold, nonrotating jet

$$\begin{split} \boldsymbol{V}_{0} &= V_{0}(\varpi)\hat{z} \,, \quad \gamma_{0} = \gamma_{0}(\varpi) = (1 - V_{0}^{2})^{-1/2} \,, \\ \boldsymbol{B}_{0} &= B_{0z}(\varpi)\hat{z} + B_{0\phi}(\varpi)\hat{\phi} \,, \quad \boldsymbol{E}_{0} = V_{0}B_{0\phi}\hat{\varpi} \,, \\ \rho_{00} &= \rho_{00}(\varpi) \,, \quad \xi_{0} = 1 \,. \end{split}$$

• Equilibrium condition ("force-free")

$$\frac{B_{0\phi}^2/\gamma_0^2}{\varpi} + \frac{d}{d\varpi} \left(\frac{B_{0z}^2 + B_{0\phi}^2/\gamma_0^2}{2} \right) = 0 \,,$$

relates B_{0z} with $B_{0\phi}/\gamma_0$.

A cold, nonrotating solution:

Formation of core crucial for the acceleration.

The bunching function
$$S \equiv \frac{\widetilde{\pi \varpi}^2 B_{0z}}{\int_0^{\varpi} B_{0z} 2\pi \varpi d\varpi}$$
 is related to the acceleration efficiency $\sigma = \frac{1}{\frac{S_f}{S} - 1}$, where S_f integral of motion ~ 0.9 .
Since $S \approx 1 - \zeta$ we get $\sigma = \frac{1 - \zeta}{\zeta - 0.1} = 0.8$.

• choice of $\gamma_0(\varpi)$:

From Ferraro's law $V_{0\phi} = \varpi \Omega + V_{0z} B_{0\phi}/B_{0z}$, where Ω integral of motion, we get $-B_{0\phi}/B_{0z} \approx \varpi \Omega/V_{0z}$, or, $-B_{0\phi}/B_{0z} \approx \varpi/\varpi_{\rm LC}$.

For a BH-jet
$$-\frac{B_{0\phi}}{B_{0z}} \approx 150 \left(\frac{r_j}{10^{16} \text{cm}}\right) \left(\frac{M}{10^8 M_{\odot}}\right)^{-1}$$

For a disk-jet $\frac{|B_{0\phi}|}{B_{0z}} \approx 20 \left(\frac{r_j}{10^{16} \text{cm}}\right) \left(\frac{r_0}{10GM/c^2}\right)^{-3/2} \left(\frac{M}{10^8 M_{\odot}}\right)^{-1}$
For the given expressions of $B_{0\phi}/\gamma_0$, B_{0z} ,
 $\gamma_0 = \sqrt{1 + \varpi_0^2 \Omega^2 \frac{(2\zeta - 1)(\varpi/\varpi_0)^4}{\left[1 + (\varpi/\varpi_0)^2\right]^{2\zeta} - 1 - 2\zeta(\varpi/\varpi_0)^2}}$.

On the axis $\left. \frac{\gamma_0 V_0}{\Omega} \right|_{axis} = \frac{\varpi_0}{\sqrt{\zeta}}$ (gives $\Omega|_{axis}$ for given γ_{0axis} , ϖ_0).

The choice of ϖ_0 , $\Omega(\varpi)$ controls the pitch $B_{0\phi}/(\varpi B_{0z})$, and the values of γ_0 on the axis and the jet surface.

THE INNERMOST REGIONS OF RELATIVISTIC JETS AND THEIR MAGNETIC FIELDS

left: density/field lines, right: Lorentz factor/current lines (jet boundary $z \propto r^{1.5}$) Uniform rotation $\rightarrow \gamma$ increases with r

Differential rotation \rightarrow slow envelope and faster decrease of B_{ϕ}

• choice of $ho_{00}(arpi)$:

This comes from the mass-to-magnetic flux ratio integral $\frac{\gamma_0 \rho_{00} V_0}{B_{0z}}$, which is assumed constant in the simulations. So $\rho_{00} \propto B_{0z}/\gamma_0$. The constant of proportionality from the value of

$$\sigma = \frac{B_{0\phi}^2/\gamma_0^2}{\rho_{00}}\Big|_{\varpi = \varpi_j}.$$

• external medium:

uniform, static, with zero $B_{0\phi}$ and $V_{0\phi} \rightarrow$ Bessel. In all the following a thermal pressure is assumed, $\xi_e = 1.01$ (the value of ξ_e controls the density ratio). A cold, magnetized environment gives approximately same results.

Ω=const, -B_{ϕ}/B_z=31 r /r_j

growth length = $1/(-\Im k) \sim r_j/0.2 = 5r_j$

nonlinear effects important after a few $10r_j$

growth time \approx growth length (c = 1)

growth rate $\approx -\Im k \sim 0.2/r_j$

in rough agreement with nonrelativistic linear studies which predict growth rates in comoving frame $\Gamma_{\rm co} \sim \frac{v_A}{10\varpi_0}$ (Appl et al)

in the lab frame $\Gamma = \frac{\Gamma_{co}}{<\gamma>} \approx 0.2/r_j$ $(v_A = \sqrt{\frac{\sigma}{\sigma+1}} \sim \frac{2}{3}, \quad \varpi_0 = 0.1r_j, \quad <\gamma > \sim 5)$

Ω=const, ω=0.56, k=0.77-i 0.12

Ω=const, ω=5, k=7.47-i 0.22

Ω=const, -B_{ϕ}/B_z=22 r /r_j

m=1,
$$\Omega$$
=const

Ω=const, ω=2.36, k=3.78-i 0.24

variable Ω

m=1, variable Ω

variable Ω , ω =0.55, k=0.84-i 0.13

variable Ω, ω=3.25, k=7.56-i 0.35

Summary – Discussion – Next steps

- ★ Kink instability in principle is in action
- ★ Low $(|B_{\phi}|/B_z)_{co}$, low σ , high γ , stabilize
- * The flow is significantly disrupted after a few $10r_j$ (nonlinear evolution through simulations only)
- Explore the parameter space for kink and other modes
- colder/moving environment? other jet equilibrium models?
- use the eigenstates as initial conditions in numerical studies
- during acceleration? effect of poloidal curvature ?

Acknowledgments

This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.

