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• observations

• inner jet magneto-hydro-dynamics

– self-similar models
– validity of s-s models using simulations
– jet kinematics

• how the conditions at the top of the disk
affect the jet velocity
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(credit: Klare at al)
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The plasma components move with an apparent speed of 3-20c

These plasma components travel on curved trajectories

These trajectories differ from one component to the other
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Trajectory of C7

(from Lobanov’s PhD thesis)
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• Superluminal apparent motion ⇒ βapp

• From δ(tobs) ≡
1

γ (1− β cos θV )
and βapp(tobs) =

β sin θV

1− β cos θV

we find β(tobs), γ(tobs) and θV (tobs) if we know δ

• Compare radio- and high energy emission (SSC) ⇒ δ (e.g.,
Unwin et al 1997)

For the C7 component of 3C 345 Unwin et al. (1997) inferred that
it accelerates from γ ∼ 5 to γ ∼ 10 over the (deprojected)
distance range (measured from the core) ∼ 3− 20 pc. Also the
angle θV changes from ≈ 2 to ≈ 10o and the Doppler factor
changes from ≈ 12 to ≈ 4. (tobs = 1992 – 1993.)
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• More on jet kinematics (talk by Jorstad, Lister, poster by Piner)

• Sikora, Begelman, Madejski, & Lasota (ApJ in press):

- kinematics and dynamics imply that jets are likely dominated by protons

- the Poynting flux may be comparable (σ . 1) or smaller (σ � 1) than the

kinetic flux

? are the claimed pc-scale accelerations of the VLBI features
(e.g. Unwin et al) real?

? lack of bulk-Compton features → small (γ < 5) bulk Lorentz
factor at . 103rg

? the γ saturates at values ∼ a few 10 around the blazar zone
(103 − 104rg)

So, acceleration is real , takes at least 103 rg, and is almost
complete at 104 rg
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(left Global VLBI + VSOP, right Global VLBI)

Collimation in action (at approximately 100rg) in M87. In the
formation region, the jet is seen opening widely, at an angle of
about 60 degrees, nearest the black hole, but is squeezed down
to only 6 degrees a few light-years away.

(from Junor, Biretta, & Livio 1999)
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Hydro-Dynamic Acceleration

• In case ne ∼ np, γmax ∼ kTi/mpc
2 ∼ 1 even with Ti ∼ 1012K

• If ne 6= np, γmax ∼ (ne/np)× (kTi/mpc
2) could be � 1

• With some heating source, γmax � 1 is in principle possible

However, even in the last two cases, HD is unlikely to work
because the HD acceleration saturates at distances comparable
to the sonic surface where gravity is still important, i.e., very
close to the disk surface (certainly at � 103rg)
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Relativistic Magneto-Hydro-Dynamics

• Outflowing matter

• large scale electromagnetic field

• thermal pressure

We need to solve:

– Maxwell + Ohm equations
– mass + entropy conservation
– momentum equation
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Self-similar, relativistic disk wind models

• axisymmetry

• steady-state

• ideal MHD (no resistivity)

• special relativity
The problem reduces to the two components of the momentum
equation: one along the flow and one in the transfield direction.
The unknowns are γ and A (the latter is the magnetic flux
function A =

∫
Bp · dS/2π that determines the field- and

stream-line shape).
• boundary conditions of the form rx × f(θ)

– similar to the nonrelativistic model of Blandford & Payne 1982

– cold versions of the model: Li et al 1992, Contopoulos 1994
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Vlahakis & K önigl, ApJ (2004) – application to 3C345

0.2 0.4 0.6 0.8 1.0
ϖ/ϖA

10−23

10−19

dy
n 

cm
−3

100 101 102

ϖout/ϖin

1021

1022

1023

10−5 10−4 10−3 10−2 10−1 100 101

ϖ (pc)

10−6

10−3

100

103

106
z 

(p
c)

.

inner

(a)

outer

(b)

(c)magnetic

M (g s−1)

centrifugal

pressure

100 101 102

ϖ/ϖA

10−6

10−3

100

104

106

108

1010
0.0

0.2

0.4

0.6

0.8

100

101

102

γ≈ξγ

(Poynting flux)/(mass flux)c2 (d)

(e)

(f)

(g)

Vz/c

Vφ/c
Vϖ/c

T(0K)

−Bφ(G)

Bz(G)
Bϖ(G)

BLAZAR VARIABILITY WORKSHOP II, FIU Nektarios Vlahakis, April 12, 2005



Self-similar models vs simulations

blue: flow-lines
red: current-lines
(left: self-similar,
right: simulation)

(Gracia, Vlahakis, & Tsinganos, to be submitted)

similar work by Krasnopolsky et al, ApJ (1999, 2003)
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Including the disk

with an α–prescription for the anomalous resistivity
η = αVA|z=0H exp

(
−2z2/H2

)
, Casse & Keppens, ApJ (2004)
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Relativistic MHD simulations:

• still difficult numerically to simulate a flow with high Lorentz
factor

• difficulties related to ∇ ·B = 0 → simulations are usually
halted after a few disk rotation periods

We may still learn using self-similar models;
they are not so bad as we originally thought
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Jet kinematics

• due to precession? (e.g., Caproni & Abraham)

• instabilities? (e.g., Hardee, Meier)

bulk jet flow may play at least a partial role

to explore this possibility, we used the relativistic self-similar
model (Vlahakis & Königl 2004)

since the model gives the velocity (3D) field, we can follow the
motion of a part of the flow
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For given θobs (angle between jet axis and line of sight) and
ejection area on the disk ( ro, φo), we project the trajectory on
the plane of sky and compare with observations. Find the
best-fit parameters ro, θobs, φo.
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Preliminary results (Vlahakis & K önigl in preparation)
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best-fit to Unwin et al results: ro ≈ 2× 1016cm, φo=180o and θobs=9o
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Relation between boundary conditions and jet velocity

• In the self-similar solution for the jet in 3C 345 we find the
efficiency of the magnetic acceleration to be 50%, or, γ∞ ≈ µ/2

(µc2 = total energy flux
mass flux ; µ is the maximum possible γ),

or, σ∞ ∼ 1.

• Michel’s solution gives only γ∞ = µ1/3 � µ → tiny efficiency,
or, σ∞� 1!

What controls the value of σ∞?
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Basics of ideal MHD:

• Ohm’s law E = −V /c×B

• split B into toroidal Bφ and poloidal Bp

• Ferraro’s law of isorotation ($Ω/c)Bp = E

($ = distance from the rotation axis)

• Poynting flux is proportional to the poloidal current
I = (c/2)$|Bφ|; thus, µ− γ ∝ I, and γ ↑ when $|Bφ| ↓

• define the magnetic flux
∫

Bp · dS/2π = A

– Bp$
2 ∼ A means uniformely distributed fieldlines, while

– Bp$
2 � A means bunched fieldlines

e.g., monopolar field has Bp$
2/A = 1, dipolar has Bp$

2/A = 2
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The key function Bp$
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Magnetic flux conservation implies
BpδS = δA.
When Vφ � Vp (superfast flow) Ohm’s
law → E ≈ |Bφ|.
Ferraro’s law → $Bp ∝ E, or,
$Bp ∝ |Bφ|.

Thus, µ− γ ∝ I ∝ $|Bφ| ∝ $2Bp ∝ ($2/δS)δA.
Increasing γ corresponds to expansion of fieldlines such that δS

increases faster than $2.
The poloidal fieldline shape controls the acceleration and we may
think the Poynting flux as energy stored in springs connecting the
poloidal fieldlines.

Now it is clear why Michel’s solution (where Bp$
2 is constant by

assumption) gives inefficient acceleration.
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Quantitative analysis

We proved that, as long as Vφ � Vp, i.e., in the superfast regime,
µ− γ ∝ $2Bp.

Thus, between rf and r∞,
µ− γ∞
µ− γf

=
($2Bp)∞
($2Bp)f

.

Since γf � µ and ($2Bp)∞ ≈ A, γ∞ ≈ µ

(
1− A

($2Bp)f

)

• The more bunched the fieldlines near the fast surface the
higher the acceleration efficiency.

• In the previous shown self-similar solution it happened that
($2Bp)f ≈ 2A, resulting in equipartition γ∞ ≈ µ/2. Efficiencies
higher that 50% have been found, corresponding to
($2Bp)f � A.
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Relation between γ∞ and the top of the disk

How to connect the fast surface with the base?
Easy! The flow is force-free up to the fast, Ii ≈ If . So, (using the
relation between Bp and Bφ at the fast surface) we find

γ∞ ≈ µ

(
1− AΩ

2Ii

)
(verified by all solutions that reach an asymptotic stage)

(The Poynting-to-matter energy flux ratio is σ∞ = (µ/γ∞)− 1)
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Summary

• Blazar jets are likely accelerated at relatively large distances
from the disk (e.g., a few pc according to Unwin et al for the jet
in 3C 345, or, 103 − 104rg according to the analysis by Sikora
et al.)

• Magnetic driving provides a viable explanation of the jet bulk
acceleration. It also

? naturally explains the collimation
? could explain the apparent motion of the jet components

• Although the MHD equations are highly intractable (extremely
difficult to solve them even numerically) there is a simple
analysis explaining the acceleration efficiency and its
dependence on the disk conditions
(detailed analysis in Vlahakis 2004, Ap&SS, 293, 67)
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Discussion

to follow . . .
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The ideal MHD equations

Maxwell:
∇ ·B = 0 ,∇×E = −∂B

c∂t
,∇×B =

4π

c
J +

∂E
c∂t

,∇ ·E =
4π

c
J0

Ohm: E +
V
c
×B = 0

mass conservation:
(

∂

∂t
+ V · ∇

)
(γρ0) + γρ0∇ ·V = 0 ,

energy UµTµν
,ν = 0:

(
∂

∂t
+ V · ∇

) (
P

ρΓ
0

)
dt = 0

momentum T νi
,ν = 0:

γρ0

(
∂

∂t
+ V · ∇

)
(ξγV) = −∇P +

J0E + J×B
c
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