Open questions in Astrophysical Jets

Nektarios Vlahakis University of Athens

Outline

- introduction (observed jet characteristics)
- 1st level (magnetohydrodynamic collimation-acceleration)
- 2nd level (stability, resistivity, GR effects)

Examples of astrophysical jets

(scale =1000 AU, $V_{\infty} = a few100$ km/s)

The jet from the M87 galaxy

(from Blandford+2018)

Image Credit: The EHT Multi-wavelength Science Working Group; the EHT Collaboration; ALMA (ESO/NAOJ/NRAO); the EVN; the EAVN Collaboration; VLBA (NRAO); the GMVA; the Hubble Space Telescope; the Neil Gehrels Swift Observat

Superluminal Motion in the M87 Jet

 $\gamma_\infty \sim 10$

collimation at ∼100 Schwarzschild radii

The jet shape (Nakamura & Asada 2013)

(Hada+2013)

jet from the disk or the black hole?

Transverse profile (Mertens+2016)

- they manage to observe sheath rotation: the value favors disk-driven (and not BH-driven) jet
- the spine?

(Park+2021)

X-ray binaries γ**-ray bursts**

mildly relativistic $\gamma = a$ few 100

Basic questions

- source of matter/energy?
- bulk acceleration?
- collimation?
- role of environment?

Theoretical modeling

 \mathbb{R} if energy source = thermal energy:

thermal acceleration is an efficient mechanism

gives terminal speed $\frac{m_p V_\infty^2}{2}$ ∞ 2 $\sim k_{\rm B}T_i$ for YSO jets or terminal Lorentz factors $\gamma_\infty m_p c^2 \sim k_{\rm B} T_i$ for relativistic jets in both cases needs high initial temperatures T_i to explain the

observed motions

 \mathbb{R} leptonic jets? (require m_p/m_e smaller temperatures)

☞ magnetic acceleration more likely

Polarization

(Marscher et al 2008, Nature)

observed $E_{\rm rad} \perp B_{\perp \rm los}$ (modified by Faraday rotation and relativistic effects)

Faraday RM gradients across the jet

helical field surrounding the emitting region (Gabuzda)

Role of magnetic field

- \star extract energy (Poynting flux)
- \star extract angular momentum
- \star transfer energy and angular momentum to matter
- \star explain relatively large-scale acceleration
- \star self-collimation
- \star synchrotron emission
- \star polarization and Faraday RM maps

How MHD acceleration works

Beam¹ B_{p} \overline{E} Black hole \boldsymbol{E} J_{P} B_{φ}

A unipolar inductor (Faraday disk)

$magnetic field + rotation$

current $\leftrightarrow B_{\phi}$ Poynting flux $\frac{c}{4\pi}EB_{\phi}$ is extracted (angular momentum as well)

The Faraday disk could be the rotating accretion disk, or the frame dragging if energy is extracted from the ergosphere of a rotating black hole (Blandford & Znajek mechanism)

magnetic acceleration

Vlahakis+2000 nonrelativistic solution

Vlahakis & Königl 2003, 2004 relativistic solutions

Simulations of special relativistic jets (e.g. Komissarov+2009)

energy flux ratios:

left: density/field lines, right: Lorentz factor/current lines (jet shape $z\propto r^{1.5})$

Even in general relativistic MHD jet simulations (Chatterjee+2019 - review Mizuno 2022)

Basic questions: collimation

hoop-stress:

+ electric force (acts in the opposite way in the core of the jet) degree of collimation ? Role of environment?

pressure equilibrium at the boundary $\frac{B^2 - E^2}{2}$ 8π $= P_{\text{ext}}$

ideal conductor $\boldsymbol{E} = -\boldsymbol{V} \times \boldsymbol{B}/c \Rightarrow E \approx V B_{\phi}/c$ $B \approx B_{\phi} \propto 1/\varpi$ (from Ampére with approximately constant I) knowing $P_{\rm ext}(z)$ we find $\gamma=\sqrt{B^2/8\pi P_{\rm ext}}$

☞ transfield component of the momentum equation for relativistic jets simplifies to $\mathcal{R} \approx \gamma^2 \varpi$

since $\mathcal{R}^{-1} \approx -\frac{d^2\varpi}{dz^2}$ $\frac{z}{dz^2} \approx$ $\overline{\omega}$ $\frac{\varpi}{z^2}$ it gives power-law $\gamma \approx z/\varpi$ (for parabolic shapes $z \propto \varpi^a$, γ is a power of ϖ)

- ☞ role of external pressure combining $\mathcal{R} \approx \gamma^2 \varpi$ with $\gamma = \sqrt{B^2/8\pi P_{\rm ext}}$:
	- if the pressure drops slower than z^{-2} then
		- **★ shape more collimated than** $z \propto \omega^2$
		- \star linear acceleration $\gamma \propto \varpi$
	- if the pressure drops as z^{-2} then
		- ★ parabolic shape $z \propto \varpi^a$ with $1 < a < 2$
		- \star first $\gamma \propto \varpi$ and then power-law acceleration $\gamma \sim z/\varpi \propto \varpi^{a-1}$
	- if pressure drops faster than z^{-2} then
		- \star conical shape
		- \star linear acceleration $\gamma \propto \varpi$ (small efficiency)

Basic questions

• source of matter/energy? disk or central object, rotation+magnetic field

• bulk acceleration \checkmark

• collimation √

• role of environment? \checkmark

2nd level of understanding

- \mathbb{R} distribution of B in the source? (advection vs diffusion, disk instabilities?)
- ☞ details of jet physics near rotating black holes (pair creation in stagnation surface or by $\gamma\gamma$ collisions) – energy extraction from the black hole?
- ☞ environment: pressure distribution? disk wind? detailed study of the interaction with environment (Riemann problem – shock and rarefaction waves)

credit: Boston University Blazar Group

☞ jet stability (Kelvin-Helmholtz? current driven? centrifugal?)

- ☞ nonthermal radiation particle acceleration shocks or reconnection ? connection with instabilities ?
- ☞ polarization maps and comparison with observations
- ☞ role of resistivity?
- ☞ kinetic description ? (combination with magnetohydrodynamics)

Current-driven instabilities

(sketch from Yager-Elorriaga 2017)

Role of B_z ? of inertia?

• At large distances distances the field is mainly toroidal (since $B_p \propto 1/\varpi^2$, $B_\phi \propto 1/\varpi$)

• From Ferraro's law $-B_{\phi}/B_p \approx \varpi \Omega/V_p \approx \varpi/\varpi_{\rm LC}$. For a rotating BH-jet $|B_\phi|$ B_z $\approx 150 \left(\frac{\varpi_j}{10^{16}c} \right)$ 10^{16} cm $\bigwedge \frac{\varpi_{\mathrm{LC}}}{\sqrt{\pi}}$ $4GM/c^2$ \bigwedge^{-1} (M $10^8 M_\odot$ \setminus ⁻¹ For a disk-jet $\frac{|B_{\phi}|}{P}$ B_z $\approx 20 \left(\frac{\varpi_j}{10^{16}c} \right)$ 10^{16} cm $\bigwedge \frac{\varpi_0}{\varpi}$ $10GM/c^2$ $\bigwedge \frac{-3/2}{\pi}$ / M $10^8 M_\odot$ \setminus ⁻¹

Kinetic instabilities

Relative motion drives Kelvin-Helmholtz instability

For astrophysical jets we need to combine

- magnetic field
- compressibility
- relativity (in bulk speed, sound speed, Alfvén speed)
- cylindrical geometry

Linear stability analysis Charis Sinnis' PhD work

Unperturbed state:

• Cylindrical jet, cold, with constant speed $V_0\hat{z}$, constant density ρ_0 , and helical magnetic field

 $B_{0z} =$ $B_{\rm 0}$ $\frac{D_0}{1 + \left(\varpi / \varpi_0\right)^2}, \quad B_{0\phi} = B_{0z}\gamma$ ϖ ϖ_0 (satisfying the force balance equation). B_0 controls the magnetization $\sigma =$ $B_{\rm co}^2$ $\frac{B_{\rm{co}}^2}{4\pi\rho_0c^2},~~\varpi_0$ controls the $\frac{B_{\phi}}{B_z}$ B_z • Environment: uniform, static, with density $\eta \rho_{0 jet}$, either hydrodynamic or cold with uniform B_{0z}

• Add perturbations in all quantities $Q(\varpi\,,z\,,\phi\,,t)=Q_0(\varpi)+Q_1(\varpi)e^{i(kz+m\phi-\omega t)}$ with integer m , real k , and complex ω (temporal approach), i.e. $Q=Q_0(\varpi)+Q_1(\varpi)e^{\Im\omega t}e^{i(kz+m\phi-\Re\omega t)}$ (instability corresponds to $\Im \omega > 0$)

Linearization of the ideal relativistic magnetohydrodynamic equations reduces to two equations with (complex) unknowns:

• the Lagrangian displacement of each fluid element in the radial direction y_1

• the perturbation of the total pressure at the displaced position y_2

These should be continuous everywhere (at the interface as well)

Eigenvalue problem

• integrate the equations inside the jet (attention to regularity condition on the axis)

• integrate the equations in the environment (solution vanishes at $\varpi \gg \varpi_i$

• Match the solutions at ϖ_i . find ω for which y_1 and y_2 are $\text{continuous} \longrightarrow \text{dispersion relation}$

• The solution depends on γ , σ , ϖ_0 , η , and the wavenumbers k, m

Result for the dispersion relation (Re=solid, Im=dashed), for $\gamma=2, \sigma=1$ (at ϖ_j), $\varpi_0=0.1, \eta=10$, and $m=0$. K-H is the most unstable mode.

We explore in the following a fiducial case with $k = \pi$

For small speeds $\Im\omega \propto V$ while sufficiently large $M_{\rm fast}$ stabilizes

Dependence on the jet magnetization (at ϖ_j)

Locality of the eigenfunction y_1 (Lagrangian displacement)

Nonlinear evolution Thodoris Nousias' master thesis

Simulation using the PLUTO code, with initial condition eigenfunction of the linear analysis (fiducial case).

⟨ movie ⟩

28 June 2024

Resolution effects

- for kinetic instabilities growth time increases with k
- cannot be fully resolved
- numerical errors mimic physical diffusion effects

Numerical magnetic diffusivity Argyris Loules' PhD thesis

Estimation from "Ohm's law" $\langle J \rangle =$ c^2 $4\pi\eta$ $\langle E \rangle$

(using a numerical experiment of a blast wave in a homogeneous magnetic field)

The cell size defines the magnetic diffusivity $(\eta_{\text{num}} \propto 1/N)$. Effects of physical resistivity cannot be seen if $\eta < \eta_{\rm num}$

Physical magnetic diffusivity Argyris Loules' PhD thesis

Magnetic diffusivity affects magnetic field through

the diffusion equation $\frac{\partial \boldsymbol{B}}{\partial \boldsymbol{\beta}}$ ∂t $= \nabla \times (\boldsymbol{V} \times \boldsymbol{B} - \eta \nabla \times \boldsymbol{B})$ corresponding Reynolds number $\mathcal{R}_m =$ UL η

but also through the Joule heating in the energy equation de $\frac{dC}{dt} + P$ $d(1/\rho)$ dt = η $4\pi\rho$ $(\nabla \times \boldsymbol{B})^2$

corresponding Reynolds number $\mathcal{R}_{\beta}=$ β 2 \mathcal{R}_m (Čemeljić+2008) Similarly in RMHD.

Analytical results

(based on expansion wrt polar angle θ near the symmetry axis of the jet)

the Joule heating temporarily compensates adiabatic cooling

Density floor in GRMHD simulations Vasilis Mpisketzis' PhD thesis

Another case where a numerical problem is used to mimic a physical mechanism

simulations cannot handle high σ , above some σ_{max}

from the definition of
$$
\sigma
$$
, $\rho_{\min} = \frac{B_{\text{co}}^2}{4\pi\sigma_{\max}}$

If $\rho < \rho_{\min}$ at some point in the simulation box, the density is replaced with ρ_{\min}

mass is added, mimicking the loading of the magnetosphere with e^{\pm} pairs

$$
\langle \text{ movie } \rangle
$$

Summary

- \star magnetic field + rotation \to Poynting flux extraction
- \star the collimation-acceleration mechanism is very efficient $$ provides a viable explanation for the bulk acceleration in all jets (relativistic or not)
- \star dissipative effects very important, not well understood, difficult to be simulated – numerical effects sometimes mimic physics but cannot be fully trusted
- \star simulations could be inspiring to isolate physical mechanisms and examine them analytically
- \star analytical thinking/connection with basic physics should go hand by hand with numerical experiments

Thank you for your attention