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Outline

• introduction (observed jet characteristics)

• 1st level (magnetohydrodynamic collimation-acceleration)

• 2nd level (stability, resistivity, GR effects)



Examples of astrophysical jets

(scale =1000 AU, V∞ = afew100km/s)
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The jet from the M87 galaxy

(from Blandford+2018)
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Jet speed
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(Hada et al 2016)

collimation at ∼100 Schwarzschild radii
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The jet shape (Nakamura & Asada 2013)

Parabolic up to the Bondi radius, then radial
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(Hada+2013)
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jet from the disk or the black hole?
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Transverse profile (Mertens+2016)
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• fast spine – slow sheath
• they manage to observe sheath rotation:

the value favors disk-driven (and not BH-driven) jet
• the spine?
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(Park+2021)
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X-ray binaries γ-ray bursts

mildly relativistic γ = a few 100
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Basic questions
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jet
(matter + EM field)

base
Γ σ(  ~1,   >>1)

• source of matter/energy?

• bulk acceleration?

• collimation?

• role of environment?
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Theoretical modeling

☞ if energy source = thermal energy:

thermal acceleration is an efficient mechanism

gives terminal speed
mpV

2
∞

2
∼ kBTi for YSO jets

or terminal Lorentz factors γ∞mpc
2 ∼ kBTi for relativistic jets

in both cases needs high initial temperatures Ti to explain the
observed motions

☞ leptonic jets? (require mp/me smaller temperatures)

☞ magnetic acceleration more likely
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Polarization

(Marscher et al 2008, Nature)

observed Erad ⊥ B⊥los

(modified by Faraday rotation and relativistic effects)
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Faraday RM gradients across the jet

(Asada et al)

helical field surrounding the emitting region (Gabuzda)
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Role of magnetic field

⋆ extract energy (Poynting flux)

⋆ extract angular momentum

⋆ transfer energy and angular momentum to matter

⋆ explain relatively large-scale acceleration

⋆ self-collimation

⋆ synchrotron emission

⋆ polarization and Faraday RM maps
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How MHD acceleration works

A unipolar inductor (Faraday disk)

magnetic field + rotation
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current ↔ Bϕ

Poynting flux c
4πEBϕ

is extracted (angular
momentum as well)

The Faraday disk could be the rotating accretion disk, or the
frame dragging if energy is extracted from the ergosphere of a
rotating black hole (Blandford & Znajek mechanism)

28 June 2024



magnetic acceleration
Vlahakis+2000 nonrelativistic solution
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Vlahakis & Königl 2003, 2004 relativistic solutions
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Simulations of special relativistic jets
(e.g. Komissarov+2009)

energy flux ratios:

γ = kinetic
rest mass

γσ =
Poynting
rest mass

(σ =
Poynting
kinetic )

µ = γ + γσ

γ (increasing),

γσ (decreasing),

and µ (constant)

efficiency > 50%
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left: density/field lines, right: Lorentz factor/current lines (jet shape z ∝ r1.5)
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Even in general relativistic MHD jet simulations
(Chatterjee+2019 - review Mizuno 2022)
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Basic questions: collimation
hoop-stress:

+ electric force (acts in the opposite way in the core of the jet)

degree of collimation ? Role of environment?
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Spatial scale of γ

pressure equilibrium at the boundary
B2 − E2

8π
= Pext

ideal conductor E = −V ×B/c ⇒ E ≈ V Bϕ/c

B ≈ Bϕ ∝ 1/ϖ (from Ampére with approximately constant I)
knowing Pext(z) we find γ =

√
B2/8πPext
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☞ transfield component of the momentum equation for
relativistic jets simplifies to R ≈ γ2ϖ

since R−1 ≈ −d2ϖ
dz2

≈ ϖ
z2

it gives power-law γ ≈ z/ϖ

(for parabolic shapes z ∝ ϖa, γ is a power of ϖ)

☞ role of external pressure
combining R ≈ γ2ϖ with γ =

√
B2/8πPext:

• if the pressure drops slower than z−2 then
⋆ shape more collimated than z ∝ ϖ2

⋆ linear acceleration γ ∝ ϖ

• if the pressure drops as z−2 then
⋆ parabolic shape z ∝ ϖa with 1 < a ≤ 2

⋆ first γ ∝ ϖ and then power-law acceleration
γ ∼ z/ϖ ∝ ϖa−1

• if pressure drops faster than z−2 then
⋆ conical shape
⋆ linear acceleration γ ∝ ϖ (small efficiency)
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Basic questions
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t

jet
(matter + EM field)

base
Γ σ(  ~1,   >>1)

• source of matter/energy?
disk or central object,
rotation+magnetic field

• bulk acceleration ✓

• collimation ✓

• role of environment? ✓
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2nd level of understanding

☞ distribution of B in the source? (advection vs diffusion, disk
instabilities?)

☞ details of jet physics near rotating black holes (pair creation in
stagnation surface or by γγ collisions) – energy extraction from
the black hole?

☞ environment: pressure distribution? disk wind? detailed study
of the interaction with environment (Riemann problem – shock
and rarefaction waves)
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credit: Boston University Blazar Group
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☞ jet stability (Kelvin-Helmholtz? current driven? centrifugal?)

☞ nonthermal radiation – particle acceleration

shocks or reconnection ? connection with instabilities ?

☞ polarization maps and comparison with observations

☞ role of resistivity?

☞ kinetic description ?
(combination with magnetohydrodynamics)
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Current-driven instabilities

(sketch from Yager-Elorriaga 2017)

Role of Bz? of inertia?
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• At large distances distances the field is mainly toroidal
(since Bp ∝ 1/ϖ2, Bϕ ∝ 1/ϖ)

• From Ferraro’s law −Bϕ/Bp ≈ ϖΩ/Vp ≈ ϖ/ϖLC.
For a rotating BH-jet
|Bϕ|
Bz

≈ 150
( ϖj

1016cm

)(
ϖLC

4GM/c2

)−1(
M

108M⊙

)−1

For a disk-jet
|Bϕ|
Bz

≈ 20
( ϖj

1016cm

)(
ϖ0

10GM/c2

)−3/2(
M

108M⊙

)−1
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Kinetic instabilities

V

Relative motion drives
Kelvin-Helmholtz instability

For astrophysical jets we need to
combine
• magnetic field
• compressibility
• relativity (in bulk speed, sound
speed, Alfvén speed)
• cylindrical geometry
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Linear stability analysis
Charis Sinnis’ PhD work
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Unperturbed state:
• Cylindrical jet, cold, with constant
speed V0ẑ, constant density ρ0, and
helical magnetic field

B0z =
B0

1 + (ϖ/ϖ0)
2 , B0ϕ = B0zγ

ϖ

ϖ0

(satisfying the force balance equation).
B0 controls the magnetization

σ =
B2

co

4πρ0c2
, ϖ0 controls the

Bϕ

Bz
• Environment: uniform, static, with
density ηρ0 jet, either hydrodynamic or
cold with uniform B0z
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• Add perturbations in all quantities
Q(ϖ , z , ϕ , t) = Q0(ϖ) +Q1(ϖ)ei(kz+mϕ−ωt)

with integer m, real k, and complex ω (temporal approach),
i.e. Q = Q0(ϖ) +Q1(ϖ)eℑωtei(kz+mϕ−ℜωt)

(instability corresponds to ℑω > 0)

Linearization of the ideal relativistic magnetohydrodynamic
equations reduces to two equations with (complex) unknowns:

• the Lagrangian displacement of each fluid element in the radial
direction y1

• the perturbation of the total pressure at the displaced position
y2

These should be continuous everywhere (at the interface as well)
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Eigenvalue problem
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• integrate the equations inside the
jet (attention to regularity condition
on the axis)

• integrate the equations in the
environment (solution vanishes at
ϖ ≫ ϖj)

• Match the solutions at ϖj:
find ω for which y1 and y2 are
continuous −→ dispersion relation

• The solution depends on γ, σ, ϖ0,
η, and the wavenumbers k, m
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Result for the dispersion relation (Re=solid, Im=dashed), for
γ = 2, σ = 1 (at ϖj), ϖ0 = 0.1, η = 10, and m = 0.
K-H is the most unstable mode.
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We explore in the following a fiducial case with k = π
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For small speeds ℑω ∝ V while sufficiently large Mfast stabilizes
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Dependence on the jet magnetization (at ϖj)
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Locality of the eigenfunction y1 (Lagrangian displacement)
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Nonlinear evolution
Thodoris Nousias’ master thesis

Simulation using the PLUTO code, with initial condition
eigenfunction of the linear analysis (fiducial case).

⟨ movie ⟩
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Resolution effects

• for kinetic instabilities growth time increases with k

• cannot be fully resolved
• numerical errors mimic physical diffusion effects
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Numerical magnetic diffusivity
Argyris Loules’ PhD thesis

Estimation from “Ohm’s law” ⟨J⟩ = c2

4πη
⟨E⟩

(using a numerical experiment of a blast wave in a homogeneous
magnetic field)
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The cell size defines the magnetic diffusivity (ηnum ∝ 1/N ).

Effects of physical resistivity cannot be seen if η < ηnum
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Physical magnetic diffusivity
Argyris Loules’ PhD thesis

Magnetic diffusivity affects magnetic field through

the diffusion equation
∂B

∂t
= ∇× (V ×B − η∇×B)

corresponding Reynolds number Rm =
UL

η

but also through the Joule heating in the energy equation
de

dt
+ P

d(1/ρ)

dt
=

η

4πρ
(∇×B)2

corresponding Reynolds number Rβ =
β

2
Rm (Čemeljić+2008)

Similarly in RMHD.
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Analytical results

(based on expansion wrt polar angle θ near the symmetry axis of
the jet)
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the Joule heating temporarily compensates adiabatic cooling

28 June 2024



Density floor in GRMHD simulations
Vasilis Mpisketzis’ PhD thesis

Another case where a numerical problem is used to mimic a
physical mechanism

simulations cannot handle high σ, above some σmax

from the definition of σ, ρmin =
B2

co

4πσmax

If ρ < ρmin at some point in the simulation box, the density is
replaced with ρmin

mass is added, mimicking the loading of the magnetosphere with
e± pairs

⟨ movie ⟩
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Summary

⋆ magnetic field + rotation → Poynting flux extraction

⋆ the collimation-acceleration mechanism is very efficient –
provides a viable explanation for the bulk acceleration in all jets
(relativistic or not)

⋆ dissipative effects very important, not well understood, difficult
to be simulated – numerical effects sometimes mimic physics
but cannot be fully trusted

⋆ simulations could be inspiring to isolate physical mechanisms
and examine them analytically

⋆ analytical thinking/connection with basic physics should go
hand by hand with numerical experiments
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Thank you for your attention
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