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Outline

e introduction (observed jet characteristics)
e 1st level (magnetohydrodynamic collimation-acceleration)
e 2nd level (stability, resistivity, GR effects)



Examples of astrophysical jets
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The jet from the M87 galaxy

(from Blandford+2018)
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Image Credit: The EHT Multi-wavelength Science Working Group; the EHT Collaboration; ALMA (ESO/NAOJ/NRAQO); the EVN; the EAVN Collaboration; VLBA (NRAQ); the GMVA; the Hubble Space Telescope; the Neil Gehrels Swift Observatory;
the Chandra X-ray Observatory; the Nuclear Spectroscopic Telescope Array; the Fermi-LAT Collaboration; the H.E.S.S collaboration; the MAGIC collaboration; the VERITAS collaboration; NASA and ESA. Composition by J. C. Algaba
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Jet speed

Superluminal Motion in the M87 Jet
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(Hada et al 2016)

collimation at ~100 Schwarzschild radii
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The jet shape (Nakamura & Asada 2013)
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(Hada+2013)
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jet from the disk or the black hole?
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Relative DEC (mas)

Transverse profile (Mertens+2016)
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e fast spine — slow sheath
e they manage to observe sheath rotation:

the value favors disk-driven (and not BH-driven) jet
e the spine?
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Jet radius (R,)

(Park+2021)
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X-ray binaries ~v=-ray bursts

mildly relativistic ~v=a few 100
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Basic questions

source of matter/energy?

bulk acceleration?

collimation?

role of environment?
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Theoretical modeling

If energy source = thermal energy:

thermal acceleration is an efficient mechanism

2
mp Voo

gives terminal speed ~ kgT; for YSO jets

or terminal Lorentz factors %Omp(:Q ~ kgT; for relativistic jets

in both cases needs high initial temperatures T; to explain the
observed motions

leptonic jets? (require m,,/m. smaller temperatures)

magnetic acceleration more likely
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Polarization
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Milliarcseconds

(Marscher et al 2008, Nature)

observed E..q L B |
(modified by Faraday rotation and relativistic effects)
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Faraday RM gradients across the jet
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helical field surrounding the emitting region (Gabuzda)
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Role of magnetic field

* extract energy (Poynting flux)

* extract angular momentum

* transfer energy and angular momentum to matter
* explain relatively large-scale acceleration

* self-collimation

* synchrotron emission

* polarization and Faraday RM maps
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How MHD acceleration works

A unipolar inductor (Faraday disk)

Beam] I I

magnetic field + rotation
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current < By

Poynting flux =FEB,
IS extracted (angular
momentum as well)

+\+%_} +_-_T\f‘+ E
Q

The Faraday disk could be the rotating accretion disk, or the
frame dragging if energy is extracted from the ergosphere of a
rotating black hole (Blandford & Znajek mechanism)

-
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maghnetic acceleration

Vlahakis+2000 nonrelativistic solution

enthalpy

1Se] ‘pow

MOIS "pol

\\\\\ - = — > [N B et

10°

10° F

|
-
o
i

at

10°
1

i
_PASWUn Ul ABiaua

10° 10" 10° 10°
0)

10"

107

zlw(z=

28 June 2024



Vlahakis & Konigl 2003, 2004 relativistic solutions
10" —mm8m™ ————————

" (Poynting flux)/(mass ﬂu;)c\2 T — - d) ]

z (pc)

—~

0.2 0.4 0.6 0.8 1.0 10
alloN /o

28 June 2024



80

Simulations of special relativistic jets
(e.g. Komissarov+2009)

energy flux ratios:
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left: density/field lines, right: Lorentz factor/current lines (jet shape z o r!-°)
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Even in general relativistic MHD jet simulations
(Chatterjee+2019 - review Mizuno 2022)
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Basic questions: collimation

hoop-stress:

+ electric force (acts in the opposite way in the core of the jet)

degree of collimation ? Role of environment?
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Spatial scale of ~

B2 o E2
pressure equilibrium at the boundary 3 = Poxt
-

ideal conductor E = -V x B/c= E ~VDBy/c
B ~ By x 1/w (from Ampére with approximately constant I)
knowing Pexi(z) we find v = \/ B2 /87 Peyq
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= transfield component of the momentum equation for
relativistic jets simplifies to R ~ v*w

since R~ ~ Cfizw ~ % it gives power-law v ~ = /w

(for parabolic shapes z x w?, v Is a power of w)

= role of external pressure
combining R ~ ~2w with v = \/B2/87 Peyy:

o if the pressure drops slower than =2 then

~ shape more collimated than z o« @?
* linear acceleration v ox w
o if the pressure drops as z~2 then

* parabolic shape z x w? with1 < a < 2
* first v « w and then power-law acceleration
v~ z/w o ]
o if pressure drops faster than =2 then
* conical shape

* _linear acceleration v o« w (small efficiency)
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Basic questions

source of matter/energy?
disk or central object,
rotation+magnetic field

bulk acceleration v~
collimation v*

role of environment? v~
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2nd level of understanding

= distribution of B in the source? (advection vs diffusion, disk
instabilities?)

== detalls of jet physics near rotating black holes (pair creation in
stagnation surface or by ~~ collisions) — energy extraction from
the black hole?

= environment: pressure distribution? disk wind? detailed study
of the interaction with environment (Riemann problem — shock
and rarefaction waves)
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= jet stability (Kelvin-Helmholtz? current driven? centrifugal?)

i nonthermal radiation — particle acceleration

shocks or reconnection ? connection with instabilities ?
i polarization maps and comparison with observations
= role of resistivity?

= Kinetic description ?
(combination with magnetohydrodynamics)

28 June 2024



Current-driven instabilities
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Role of B.? of inertia?
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At large distances distances the field is mainly toroidal
(since B, x 1/w?, By xx 1/w)

From Ferraro’s law —By /B, ~ w/V, ~ w/wic.
For a rotating BH-jet

‘B¢‘ ~ 150 ( w] ) WLC - M -
B, 101%cm/ \4GM/c? 108 Mg
. |By @, o \ P oMo\
For a disk-jet ~ 20 ( ! )
=B, 1016cm/) \10G M/ 105 M,
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Kinetic instabilities

Relative motion drives
Kelvin-Helmholtz instability

For astrophysical jets we need to
combine

magnetic field

compressibility

relativity (in bulk speed, sound
speed, Alfvén speed)

cylindrical geometry
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Linear stability analysis
Charis Sinnis’ PhD work

jet
(matter + EM field)

static environment | !

Unperturbed state:
Cylindrical jet, cold, with constant
speed V2, constant density pg, and

helical magnetic field

B v}
By, = ’ 5,  DBogp = Boﬂ—
1+ (ZD/@Q) wo

(satisfying the force balance equation).
By controls the magnetization

B? B,
— © controls the —=
7= A7 poc? =0 B,

Environment: uniform, static, W|th
density npo jet, €ither hydrodynamic or
cold with uniform B,
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Add perturbations in all quantities
Q(w,z,¢,t) = Qo(w) + Q1(w)e F=+mo=eh)
with integer m, real k£, and complex w (temporal approach),
ie. Q _ Qo(w) i Ql(w)egwtei(kz—km(b—%wt)
(instability corresponds to Sw > 0)

Linearization of the ideal relativistic magnetohydrodynamic
equations reduces to two equations with (complex) unknowns:

the Lagrangian displacement of each fluid element in the radial
direction 1,

the perturbation of the total pressure at the displaced position
Y2

These should be continuous everywhere (at the interface as well)
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Eigenvalue problem

iIntegrate the equations inside the
jet (attention to regularity condition
on the axis)

Integrate the equations in the
environment (solution vanishes at
w > w;)

jet
(matter + EM field)
Match the solutions at w;:

find w for which y; and y, are
continuous — dispersion relation

static environment | | !

The solution depends on ~, o, wy,
n, and the wavenumbers k, m
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Result for the dispersion relation (Re=solid, Im=dashed), for
v=2,0=1(atw,;), wp =0.1,n =10, and m = 0.
K-H is the most unstable mode.
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For small speeds Sw o« V' while sufficiently large M, stabilizes
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Dependence on the jet magnetization (at w ;)
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Locality of the eigenfunction y; (Lagrangian displacement)

0.020]
0.015
0.0101

Y1 0.005
0.000

—0.005

—0.0101

—— Re(w)

1.00 1
0.75 1
0.50 1
Y2
0.25

0.00

—0.251

0.5

1.0

1.5
rir;

2.0 2.5 3.0

28 June 2024



Nonlinear evolution
Thodoris Nousias’ master thesis

Simulation using the PLUTO code, with initial condition
eigenfunction of the linear analysis (fiducial case).

( movie )
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Time: 396
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Resolution effects

Tracer(t = 15)

1.0 Lo

08 0.8

0.6

Resolution: 256x256 Resolution: 512x512 Resolution: 1024x512
B.(t=15)

N

Resolution: 256x256 Resolution: 512x512 Rosout.ion: 1024x512

o for Kinetic instabilities growth time increases with k
e cannot be fully resolved
e numerical errors mimic physical diffusion effects
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Integrated Mass

— Pure Jet (resolution: 256x256)
— = Mixing Zone (resolution: 256x256)

Pure Jet (resolution: 512x512)

Mixing Zone (resolution: 512x512)
— Pure Jet (resolution: 1024x512)

==+ Mupang Zone (resolution: 1024x512)
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Numerical magnetic diffusivity
Argyris Loules’ PhD thesis

2
C
= —(B)
. . . ] .
(using a numerical experiment of a blast wave in a homogeneous

magnetic field)

Estimation from “Ohm’s law” (J)

— N,, =256 —— N,,=T68 0.006 |
0.0006 F = Ney =38 —— N, =896
— N, , =512 N,, = 1024 o5l
— N,, =640 .
0.0005 |
0.004 F s
0.0004 | /
J
(Eeo) () 0.003 |

0.0003 F /
0.002 |
0.0002 |

— N, , =256 —— N,, =768
i 0.001F ’ ’
0.0001 / — N,, =384 —— N,, =896
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0.0000F 7 0.000f ! — Npy =640
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nnum

0.16
0.14
0.14
0.12F §
0.12 F
0.10 b 0.10 F
<7]num>t
0.08 | 0.08
0.06
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0.04 I
0.04 I
0.02 I
0.02 1 1 1 1 L 1 I
0.00 £ 1 1 I 1 1 1 I .
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t N, x N,

The cell size defines the magnetic diffusivity (nyum o< 1/N).

Effects of physical resistivity cannot be seen if n < nyum
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Physical magnetic diffusivity
Argyris Loules’ PhD thesis

Magnetic diffusivity affects magnetic field through

e . B
the diffusion equation %—t =V x (V xB—-nV x B)
corresponding Reynolds number R,,, = vl
Ui
but also through the Joule heating in the energy equation

de ~_d(1/p) n )
“ip _ B
a g TV B
5

corresponding Reynolds number R s = R.., (Cemeljié+2008)

Similarly in RMHD.
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Analytical results

(based on expansion wrt polar angle # near the symmetry axis of

the jet)
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— lIdeal MHD, h.I"
—-—- Ideal MHD, ¢

— 7. =545, 0, =22
— 1n.=29545,0, =2

101 F

100

10! 102 103 — "'104

the Joule heating temporarily compensates adiabatic cooling
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Density floor in GRMHD simulations
Vasilis Mpisketzis’ PhD thesis

Another case where a numerical problem is used to mimic a
physical mechanism

simulations cannot handle high o, above some o«
B,

from the definition of o, pmin = 1
7TO-maX

If p < pmin @t SOMe point in the simulation box, the density is
replaced with pnin

mass is added, mimicking the loading of the magnetosphere with
eT pairs

( movie )
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Summary

* magnetic field + rotation — Poynting flux extraction

* the collimation-acceleration mechanism is very efficient —
provides a viable explanation for the bulk acceleration in all jets
(relativistic or not)

= dissipative effects very important, not well understood, difficult
to be simulated — numerical effects sometimes mimic physics
but cannot be fully trusted

* simulations could be inspiring to isolate physical mechanisms
and examine them analytically

* analytical thinking/connection with basic physics should go
hand by hand with numerical experiments
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Thank you for your attention
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