The Kelvin-Helmholtz instability in Relativistic Jets

Nektarios Vlahakis University of Athens

Outline

- introduction (KH basic mechanism)
- linear stability of relativistic magnetized jets
- growth rates (dependence on jet/environment properties)

Kelvin-Helmholtz in nature

Basic mechanism

Two fluids in relative motion

Simplest variant: incompressible hydrodynamics

• Magnetic field stabilizes (through magnetic tension) In the non-relativistic case stability when $\rho_1 \rho_2 = (B_1 \cdot k)^2 + (B_2 \cdot k)^2$

$$\frac{\rho_1 \rho_2}{\rho_1 + \rho_2} \left(\boldsymbol{V}_1 \cdot \boldsymbol{k} - \boldsymbol{V}_2 \cdot \boldsymbol{k} \right)^2 < \frac{(\boldsymbol{B}_1 \cdot \boldsymbol{k})^2 + (\boldsymbol{B}_2 \cdot \boldsymbol{k})^2}{4\pi}$$
(Chandrasekhar 1961)

Compressibility important

Fast flows (with sufficiently high Mach numbers) are stable (When the section decreases the density increases – and not the speed as in the incompressible limit – consequently pressure increases)

For example, for same fluids without magnetic field, stability when $M > \sqrt{8}$

For astrophysical jets we need to combine

- magnetic field
- compressibility
- relativity (in bulk speed, sound speed, Alfvén speed)
- cylindrical geometry contrary to planar geometry: (i) the jet is inhomogeneous, (ii) we have the spatial scale r_j , (iii) reflections from the symmetry axis may be important

Besides K-H there are also current-driven instabilities (sketch from Yager-Elorriaga 2017)

Linear stability analysis of jets Charalampos Sinnis' PhD work

Unperturbed state:

• Cylindrical jet, cold, with constant speed $V_0 \hat{z}$, constant density ρ_0 , and helical magnetic field

 $B_{0z} = \frac{B_0}{1 + (r/r_0)^2}, \quad B_{0\phi} = B_{0z} \gamma \frac{r}{r_0}$ (satisfying the force balance equation). B_0 controls the magnetization $\sigma = \frac{B_{co}^2}{4\pi\rho_0 c^2}, r_0$ controls the $\frac{B_{\phi}}{B_z}$ • Environment: uniform, static, with density $\eta \rho_{0 jet}$, either hydrodynamic or cold with uniform B_{0z} • Add perturbations in all quantities $Q(r, z, \phi, t) = Q_0(r) + Q_1(r)e^{i(kz+m\phi-\omega t)}$ with integer *m*, real *k*, and complex ω (temporal approach), i.e. $Q = Q_0(r) + Q_1(r)e^{\Im \omega t}e^{i(kz+m\phi-\Re \omega t)}$ (instability corresponds to $\Im \omega > 0$)

Linearization of the ideal relativistic magnetohydrodynamic equations reduces to two equations with (complex) unknowns:

• the Lagrangian displacement of each fluid element in the radial direction y_1

• the perturbation of the total pressure at the displaced position y_2

These should be continuous everywhere (at the interface as well)

Eigenvalue problem

 integrate the equations inside the jet (attention to regularity condition on the axis)

• integrate the equations in the environment (solution vanishes at $r \gg r_j$)

• Match the solutions at r_j : find ω for which y_1 and y_2 are continuous \longrightarrow dispersion relation

• The solution depends on γ , σ , r_0 , η , and the wavenumbers k, m

Results for hydrodynamic environment

Typical result for the dispersion relation (Re=solid, Im=dashed). Here $\gamma = 5$, $\sigma = 1$ (at r_j), $r_0 = 0.1$, $\eta = 10$, and m = 0

For $\gamma = 2$, $\sigma = 1$ (at r_j), $r_0 = 0.1$, $\eta = 10$ a "hyper-unstable" mode appears! it turns out to be the Kelvin-Helmholtz instability mode

For $k \gtrsim 2$ planar geometry is a good approximation

We explore in the following a fiducial case with $k = \pi$

For small speeds $\Im \omega \propto V$ while sufficiently large M_{fast} stabilizes

Locality of the eigenfunction y_1 (Lagrangian displacement)

Higher $\boldsymbol{B} \cdot \boldsymbol{k} = B_z k + B_\phi k_\phi$ (through nonzero $k_\phi = m$) stabilizes

Since the magnetic field is mainly azimuthal (at the jet surface), the most unstable mode is the axisymmetric m = 0 Dependence on the density contrast (which modifies the environment sound speed)

Dependence on the jet magnetization (at r_j)

Results for cold/magnetized environment

Dependence on the density contrast (which modifies the environment Alfvén speed)

Dependence on the jet magnetization (at r_j)

Summary

- ★ When KH is present it is the most unstable mode with growth rates comparable to c/r_j (even larger for high k)
- * The growth rate mostly affected by the fast magnetosonic Mach number $M_{\rm fast} = \gamma/\sqrt{\sigma}$ of the jet (largest growth rates when $M_{\rm fast}$ is in a "window" around ~ 1)
- * Higher values of $B \cdot k$ (in jet and in environment) stabilize (jets with magnetized environments are in general more stable compared to the ones with hydrodynamic environments)
- ★ A sufficiently dense environment stabilizes (acts as solid wall)
- \star For relatively small k the curvature of the jet radius cannot be ignored (planar geometry is not a good approximation)