Relativistic jets from black holes and disks

Nektarios Vlahakis University of Athens

Outline

observations (AGN jets)

 theoretical questions: what defines the asymptotic speed and the jet power role of environment GR effects (spine jets from black holes)

The jet from the M87 galaxy

(from Blandford+2018)

The 3rd image shows the HST-I knot, located at the Bondi radius

Superluminal Motion in the M87 Jet

(a sketch of an AGN jet from Zamaninasab+2014)

 the position of the radio core (synchrotron self-absorption) depends on frequency

• the core-shift gives the position of the BH

(also an estimation of the magnetic field, Lobanov 1998)

The jet shape (Nakamura & Asada 2013)

14TH HEL.A.S. CONFERENCE

(Hada+2013)

jet from the disk or the black hole?

- fast spine slow sheath
- they manage to observe sheath rotation: the value favors disk-driven (and not BH-driven) jet
- the spine?

(Asada+2017)

Theoretical modeling

• For disk-driven jets:

mass loading from accretion (baryonic)

if energy source = thermal energy then $\dot{\mathcal{E}} = cT^{0z} \times \pi \varpi^2 = \gamma^2 V \left(\rho_0 c^2 + \frac{\Gamma}{\Gamma - 1} P \right) \pi \varpi^2$ $\dot{M}_{jet} = \gamma \rho_0 V \times \pi \varpi^2$ $\mu = \frac{\dot{\mathcal{E}}}{\dot{M}_{jet}c^2} =$ maximum possible asymptotic Lorentz factor thermal acceleration is an efficient mechanism gives Lorentz factors $\gamma \sim \mu \sim k_{\rm B}T_i/m_pc^2$ need very high initial temperatures T_i to explain the observed motions ($\gamma =$ few 10 in AGN jets)

magnetic acceleration more likely

if energy source = magnetic:

 B_z field threads the disk (magnetic field from advection, or MRI, or cosmic battery)

real of the second sec

magnetic field + disk rotation \rightarrow extraction of Poynting flux $\dot{\mathcal{E}} = cT^{0z} \times \pi \varpi^2 = \frac{c}{4\pi} EB_{\phi} \times \pi \varpi^2 \sim \frac{c}{4\pi} \left(\frac{\varpi\Omega}{c}\right)^2 B_z^2 \times \pi \varpi^2$, or in terms of magnetic flux $\dot{\mathcal{E}} = \frac{\Omega^2 \Phi^2}{4\pi^2 c}$ $\dot{M}_{jet} = \gamma \rho_0 V \times \pi \varpi^2$ $\mu = \frac{\dot{\mathcal{E}}}{\dot{M}_{jet}c^2}$ = maximum possible asymptotic Lorentz factor

often called "Blandford & Payne" modeling

Disk-driven relativistic MHD jets

bulk acceleration \checkmark

 Analytical steady-state special-relativistic self-similar MHD models (Li, Chiueh & Begelman 1992, Contopoulos 1994, Vlahakis & Königl 2004)

 \rightarrow efficient conversion of Poynting to kinetic energy flux

 Verified and extended by axisymmetric special-relativistic MHD simulations of jets confined by rigid walls (Komissarov, Vlahakis & Königl 2007 & 2009, Tchekhovskoy, McKinney & Narayan 2009)

• role of confinement by the wall (by the environment): For GRB jets with $\gamma\gtrsim 100$ achievable only for confined outflows (unconfined remain Poynting dominated) However for AGN jets even unconfined flows are efficiently accelerated

Parabolic jet shape \checkmark

The wall-shape $z \propto r^a$ and the acceleration law is controlled by the external pressure $p_{\text{ext}} \propto z^{-\alpha_p}$:

- if $\alpha_p < 2$ (the pressure drops slower than z^{-2}) then
 - $\star a > 2$ (shape more collimated than $z \propto r^2$)
 - $\star~$ linear acceleration $\gamma \propto r$
- if $\alpha_p = 2$ then
 - $\star 1 < a \leq 2$ (parabolic shape)
 - $\star~$ first $\gamma \propto r$ and then power-law acceleration $\gamma \sim z/r \propto r^{a-1}$
- if $\alpha_p > 2$ (pressure drops faster than z^{-2}) then
 - $\star a = 1$ (conical shape)
 - \star linear acceleration $\gamma \propto r$ (small efficiency)

The above scalings result from the transfield component of the momentum equation – verified by the numerical results

BH-driven jets

- If the spine comes from the B-H:
- mass loading from pair creation at the "stagnation surface"
- (also possible through diffusion of disk material)
- IF Hydrodynamic acceleration \rightarrow Lorentz factors $\gamma \sim k_{\rm B}T_i/m_ec^2$ cannot be ruled out
- magnetic acceleration still more likely
- \square field through advection from the disk
- energy source = B-H spin

often called "Blandford & Znajek" modeling

14TH HEL.A.S. CONFERENCE

similarly to disk-driven MHD jets:

 $\square B_z$ field threads the BH

INFIGURE BH rotation creates
$$B_{\phi} \sim \frac{\varpi \Omega}{c} B_z$$
 and electric field $E \sim B_{\phi}$
with Ω a fraction of $\Omega_H = \frac{a}{1 + \sqrt{1 - a^2}} \frac{c^3}{2GM}$ ($a = BH$ spin)

 $\begin{array}{l} \hline & \hline & \text{magnetic field + BH rotation} \rightarrow \text{extraction of Poynting flux} \\ \dot{\mathcal{E}} = cT^{0r} \times \text{ area } \sim \frac{\Omega^2 \Phi^2}{4\pi^2 c} \\ \dot{M}_{jet} = \gamma \rho_0 V \times \pi \varpi^2 \\ \mu = \frac{\dot{\mathcal{E}}}{\dot{M}_{jet}c^2} = \text{maximum possible asymptotic Lorentz factor} \end{array}$

 \square values of Ω/Ω_H , Φ , \dot{M}_{jet} ?

Magnetically Arrested Disks (Tchekhovskoy+2011)

- start with a donut disk around a Kerr BH run ideal GRMHD simulation
- MRI increases B
- B is advected through accretion \rightarrow B threads the BH
- Φ increases till magnetic pressure = accretion ram pressure this sets Φ
- Φ may be high enough to make $\dot{\mathcal{E}}$ higher than $\dot{M}_{acc}c^2$ the difference is interpreted as ejected BH spin energy

• \dot{M}_{jet} is probably related to the floor density (minimum allowed value for numerical reasons) this mimics the pair creation at the stagnation surface

for given $\dot{\mathcal{E}}$ and \dot{M}_{jet} bulk acceleration works as in disk-driven jets

14TH HEL.A.S. CONFERENCE

GR effects and the absence of wall do not change drastically the results (besides the "pinch instabilities" whose origin is unclear)

Other tries

besides numerical simulations (that can be improved wrt floor density and disk resistivity) other analytical tries include:

• Nathanail & Contopoulos (2014) assumed force-free magnetosphere and found the current and Ω distributions, i.e. the functions $B_{\phi}(\varpi)$ and $\Omega(\varpi)$, from the crossing of the two light surfaces (inner and outer)

$$\frac{\Omega}{\Omega_{H}} \sim 0.5 \,, \qquad B_{\phi} \approx \frac{\varpi \Omega}{c} B_{z}$$

 Chantry+2018 derived a meridionally self-similar model (nonpolytropic) based on expansions of all physical quantities near the symmetry axis.

The outflow solutions cross slow magnetosonic and Alfvén critical surfaces

 Another paper (Chantry+2019) is in preparation with inflow solutions and correct matching at the stagnation surface
14TH HELA.S. CONFERENCE

Summary – Discussion – Next steps

- bulk acceleration and jet morphology successfully explained by ideal magnetohydrodynamics (GR effects and interaction with environment do not substantially change these results)
- fluctuations due to interaction with environment ? (stability analysis)
- for BH-driven jets the mass loading and the advection of magnetic flux need to be better understood
- * analytical solutions may help even if they are based on expansions and do not hold everywhere (crossing of critical surfaces constrain the parameters and give important information)