Magnetically driven astrophysical relativistic jets and their stability

> Nektarios Vlahakis University of Athens

Outline

- why magnetic driving
- numerical simulations
- bulk acceleration, jet shape, stability

Relativistic motion in AGN jets

Superluminal Motion in the M87 Jet

Relativistic motion in GRB jets

the only solution to the "compactness problem"

Thermal driving is problematic

- requires high temperatures the corresponding thermal component of the emission is not observed in GRBs (Zhang & Pe'er 2009)
- cannot explain the pc-scale acceleration in AGN jets (lack of Compton features implies a lower limit on γ at $10^3 r_g$, Sikora et al 2005)

Viable alternative: magnetic driving

Two additional features:

- Extraction of "clean" energy (high energy-to-mass ratio leads to relativistic flows)
- Self-collimation

Magnetized outflows

• Extracted energy per time $\dot{\mathcal{E}}$ mainly in the form of Poynting flux (magnetic fields tap the rotational energy of the compact object or disk)

- Ejected mass per time \dot{M}
- The $\mu \equiv \dot{\mathcal{E}}/\dot{M}c^2$ gives the maximum possible bulk Lorentz factor of the flow

Magnetohydrodynamics:

matter (velocity, density, pressure)
+ large scale electromagnetic field

Numerical simulations

Komissarov, Vlahakis, Königl & Barkov 2009

magnetized plasma of a given magnetization (given μ) is ejected into a funnel of a given shape

Basic questions:

 $rightarrow \gamma vs$ distance ?

 $\approx \gamma_{\infty}$ and the acceleration efficiency $\frac{\gamma_{\infty}}{\mu} = \frac{\gamma_{\infty} \dot{M} c^2}{\dot{\mathcal{E}}} = ?$

self-collimation (formation of a cylindrical core) ?

pressure on the wall ? (pressure of the jet environment)

left: density/field lines, right: Lorentz factor/current lines (wall shape $z \propto r^{1.5}$) Differential rotation \rightarrow slow envelope

Uniform rotation $\rightarrow \gamma$ increases with r

9TH HELLENIC ASTRONOMICAL CONFERENCE

Athens, 21 September 2009

The role of the external pressure

The wall-shape $z \propto r^a$ and the acceleration law is controlled by the external pressure $p_{\rm ext} \propto z^{-\alpha_p}$:

- if $\alpha_p < 2$ (the pressure drops slower than z^{-2}) then
 - $\star a > 2$ (shape more collimated than $z \propto r^2$)
 - $\star~$ linear acceleration $\gamma \propto r$
- if $\alpha_p = 2$ then
 - $\star 1 < a \leq 2$ (parabolic shape)
 - $\star~$ first $\gamma \propto r$ and then power-law acceleration $\gamma \sim z/r \propto r^{a-1}$
- if $\alpha_p > 2$ (pressure drops faster than z^{-2}) then
 - $\star a = 1$ (conical shape)
 - $\star~$ linear acceleration $\gamma \propto r$ (small efficiency)

The above scalings result from the transfield component of the momentum equation – verified by the numerical results

On current-driven instabilities

The jet is expected to be unstable if the azimuthal magnetic field dominates the poloidal magnetic field (Kruskal-Shafranov).

In source's frame
$$\frac{|B_{\phi}|}{B_p} \approx x \equiv \frac{r\Omega}{c} \gg 1$$
 — role of inertia?
In the comoving frame $\left(\frac{|B_{\phi}|}{B_p}\right)_{co} \approx \frac{|B_{\phi}|/\gamma}{B_p} \approx \frac{x}{\gamma}$

In the power-law regime ($\gamma \ll x$) the azimuthal component dominates (unstable)

In the linear acceleration regime ($\gamma \approx x$) azimuthal and poloidal components of the magnetic field are comparable

Linear stability analysis

Equilibrium: For $0 < r < r_j$ (jet), V = 0 (comoving frame), $B_z = \frac{B_j}{1 + (r/r_0)^2}, B_\phi = \frac{r}{r_0}B_z, \rho = \frac{\rho_j}{\left[1 + (r/r_0)^2\right]^2}, P = 0$ (cold). Magnetization $\sigma = \left(\frac{B_\phi^2}{4\pi\rho c^2}\right)_{r=r_j}$. For $r > r_j$ (environment), pressure p_{ext} .

Perturbations of the form $f(r) \exp \left[i \left(m\phi + kz - \omega t\right)\right]$.

We linearize the system of RMHD eqs and find $\omega = Re\omega + iIm\omega$ for given k and m.

 $1/Im\omega$ is the growth time of the instability.

In the source's frame growth time is γ times larger.

Summary

- Magnetic driving provides a viable explanation of the dynamics of relativistic jets
 - depending on the external pressure: collimation to parabolic shape $z \propto r^a, a > 2$ with $\gamma \propto r$, parabolic shape $z \propto r^a, 1 < a \le 2$ with $\gamma \sim z/r \propto r^{a-1}$, or conical shape $z \propto r$ with $\gamma \propto r$
 - bulk acceleration up to Lorentz factors $\gamma_{\infty} \gtrsim 0.5 \frac{c}{Mc^2}$ (in conical flows only near the axis)
- \star current-driven instabilities depend on the spatial scale of the Lorentz factor (and thus, on the $p_{\rm ext}$)
 - stable jet if acceleration is linear $\gamma \propto r \ (p_{\rm ext} \text{ drops slower} \ \text{than } z^{-2}, \text{ or initial phase of jets with } p_{\rm ext} \propto z^{-2})$ (becomes unstable when γ saturates)
 - unstable in the power-law acceleration regime (end-phase of jets with $p_{\rm ext} \propto z^{-2}$)