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• Exact relativistic-MHD solutions

• The baryon loading problem



• GRBs and their afterglows are inferred to arise from rapid (∆t ∼ seconds),
variable (∆t/δt ∼ 102) ejection episodes of energetic (E ∼ 1051ergs), highly
relativistic (γ ∼ 102 − 103), and highly collimated (ϑ ∼ 2o − 20o) outflows. Most
of the progenitor models involve a BH–debris disk system.

THE DYNAMICS OF MAGNETIZED GRB OUTFLOWS 6th Hellenic Astronomical Conference / September 16, 2003



• GRBs and their afterglows are inferred to arise from rapid (∆t ∼ seconds),
variable (∆t/δt ∼ 102) ejection episodes of energetic (E ∼ 1051ergs), highly
relativistic (γ ∼ 102 − 103), and highly collimated (ϑ ∼ 2o − 20o) outflows. Most
of the progenitor models involve a BH–debris disk system.

• Energy reservoirs:
① binding energy of the orbiting debris
② spin energy of the newly formed BH and disk

THE DYNAMICS OF MAGNETIZED GRB OUTFLOWS 6th Hellenic Astronomical Conference / September 16, 2003



• GRBs and their afterglows are inferred to arise from rapid (∆t ∼ seconds),
variable (∆t/δt ∼ 102) ejection episodes of energetic (E ∼ 1051ergs), highly
relativistic (γ ∼ 102 − 103), and highly collimated (ϑ ∼ 2o − 20o) outflows. Most
of the progenitor models involve a BH–debris disk system.

• Energy reservoirs:
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② spin energy of the newly formed BH and disk

• Energy extraction mechanisms:
☞ viscous dissipation ⇒ thermal energy⇒ νν̄ → e+e−⇒ e±/photon/baryon fireball

– unlikely that the disk is optically thin to neutrinos (Di Matteo, Perna, & Narayan 2002)
– strong photospheric emission would have been detectable (Daigne & Mochkovitch 2002)
– difficult to explain the collimation
– highly super-Eddington luminosity usually implies high baryonic mass→ small γ
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– highly super-Eddington luminosity usually implies high baryonic mass→ small γ

☞ dissipation of magnetic fields
generated by the differential rotation in the torus⇒ e±/photon/baryon “magnetic” fireball
– collimation
– strong photospheric emission
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☞ MHD extraction ( Poynting jet)
A recent measurement of a high (80± 20%) linear polarization in the prompt γ-ray
emission in GRB 021206 has been interpreted as evidence that the underlying outflow
was driven by a large-scale, ordered magnetic field (Coburn & Boggs 2003).
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– from the BH: Bp & 1015G (small Bφ, small area)
– from the disk: smaller magnetic field required ∼ 1014G
∗ If initially Bp/Bφ > 1, a trans-Alfv énic outflow is produced.
∗ If initially Bφ/Bp > 1, the outflow is super-Alfv énic from the start.

• Is it possible to “use” this energy and accelerate the matter ejecta?
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Ideal Magneto-Hydro-Dynamics
in collaboration with Arieh Königl

• Outflowing matter:
– baryons (rest density ρ0, bulk velocity V)
– ambient electrons (neutralize the protons)
– e± pairs (Maxwellian distribution)

• photons (blackbody distribution)

• large scale electromagnetic field E ,B
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Ideal Magneto-Hydro-Dynamics
in collaboration with Arieh Königl

• Outflowing matter:
– baryons (rest density ρ0, bulk velocity V)
– ambient electrons (neutralize the protons)
– e± pairs (Maxwellian distribution)

• photons (blackbody distribution)

• large scale electromagnetic field E ,B

Assumptions:
❶ axisymmetry
❷ highly relativistic poloidal motion (γ � 1)
❸ quasi-steady poloidal magnetic field ⇔ Bp ‖ Vp

❹ adiabatic evolution: P ∝ ρ
4/3
0 , ξc2 = c2 + 4P/ρ0

(P = total pressure, ξc2 = specific enthalpy)
❺ radial self-similarity (separation of variables)
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Trans-Alfv énic Jets (Vlahakis & Königl 2001 ApJL, 2003a ApJ)
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• $1 < $ < $6: Thermal acceleration - force free magnetic field
(γ ∝ $ , ρ0 ∝ $−3 , T ∝ $−1 , $Bφ = const, parabolic shape of fieldlines: z ∝ $2)

• $6 < $ < $8: Magnetic acceleration (γ ∝ $ , ρ0 ∝ $−3)

• $ = $8: cylindrical regime - equipartition γ∞ ≈ (−EBφ/4πγρ0Vp)∞
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Super-Alfv énic Jets (Vlahakis & Königl 2003b ApJ)
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• Thermal acceleration (γ ∝ $0.44 , ρ0 ∝ $−2.4 , T ∝ $−0.8 , Bφ ∝ $−1 , z ∝ $1.5)

• Magnetic acceleration (γ ∝ $0.44 , ρ0 ∝ $−2.4)

• cylindrical regime - equipartition γ∞ ≈ (−EBφ/4πγρ0Vp)∞
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The baryon loading problem

• Proton mass in jet: Mproton = 3× 106 (E/1051ergs) (γ∞/200)−1M�.

• The disk would be ∼ 104 times more massive even if 10% of its gravitational
potentional energy could be converted into outflow kinetic energy (baryon
loading problem).

A possible resolution (Fuller et al. 2000):

• If the source is neutron-rich, then the neutrons could decouple from the
flow before the protons attain their terminal Lorentz factor.

• Disk-fed GRB outflows are expected to be neutron-rich, with n/p as high as
∼ 20− 30 (Pruet et al. 2003; Beloborodov 2003; Vlahakis et al. 2003).

However, it turns out that the decoupling Lorentz factor γd in a thermally
driven, purely hydrodynamic outflow is of the order of the inferred value of γ∞
(e.g., Derishev et al. 1999; Beloborodov 2003), which has so far limited the
practical implications of the Fuller at al. (2000) proposal.
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Neutron-rich hydromagnetic flows
(Vlahakis, Peng, & Königl 2003 ApJL)

• Part of the thermal energy could be converted to electromagnetic (with the
remainder transfered to baryon kinetic).

• The Lorentz factor increases with lower rate compared to the hydrodynamic
case. This makes it possible to attain γd � γ∞, as it is shown in the
following solution.

• The energy deposited into the Poynting flux is returned to the matter
beyond the decoupling point.

• Pre-decoupling phase:
• The momentum equation for the whole system

(protons/neutrons/e±/photons/electromagnetic field)
yields the flow velocity.

• The momentum equation for the neutrons alone yields the
neutron-proton collisional drag-force, and the drift velocity.

• When Vproton − Vneutron ∼ c the neutrons decouple.

• Post-decoupling phase:
• We solve for the protons alone (+ electromagnetic field).
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(a) The three components of the total energy flux,
normalized by the mass flux × c2.
(b) Proton–neutron drift velocity.

n/p = 30
decoupling at γd = 15
a
γ∞ = 200
Eproton ≈ 1051ergs ≈ 0.5 Eneutron

Because of the magnetic collimation, the neutrons

also acquire a transverse drift relative to the protons:

Vneutron,⊥ ∼ 0.1c at decoupling.
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Conclusion
• Trans-Alfvénic flow:

? The flow is initially thermally accelerated (ξγ = const.; the magnetic field
only guides the flow), and subsequently magnetically accelerated up to
Lorentz factors corresponding to equipartition between kinetic and
Poynting fluxes, i.e., ∼ 50% of the initial total energy is extracted to
baryonic kinetic. γ ∝ $ in both regimes.

? The fieldline shape is parabolic, z ∝ $2 and becomes asymptotically
cylindrical.

• Super-Alfvénic flow:
? Similar results, except that the Lorentz factor increases with lower rate:

γ ∝ $β , β < 1. Also z ∝ $β+1.

• Neutron decoupling:
? In pure-hydro case γd ∼ γ∞.
? Magnetic fields make possible γd � γ∞.
? The decoupled neutrons decay into protons at a distance
∼ 4× 1014(γd/15)cm. In contrast with the situation in the pure-hydro
case, these two components are unlikely to interact with each other in
the hydromagnetic case since their motions are not collinear.

? Observational signatures of the neutron component remains an
interesting problem for future research.
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