The Dynamics of Magnetized GRB Outflows

Nektarios Vlahakis, University of Athens

mailto: vlahakis@phys.uoa.gr

Collaborators:

Arieh Königl, University of Chicago Fang Peng, University of Chicago

Outline:

- Magnetic driving of GRB outflows
- Exact relativistic-MHD solutions
- The baryon loading problem

• Energy reservoirs:

- ① binding energy of the orbiting debris
- ② spin energy of the newly formed BH and disk

• Energy reservoirs:

- ① binding energy of the orbiting debris
- ② spin energy of the newly formed BH and disk

• Energy extraction mechanisms:

- Solution ⇒ thermal energy ⇒ $\nu \bar{\nu} \rightarrow e^+ e^- \Rightarrow e^{\pm}$ /photon/baryon fireball
 - unlikely that the disk is optically thin to neutrinos (Di Matteo, Perna, & Narayan 2002)
 - strong photospheric emission would have been detectable (Daigne & Mochkovitch 2002)
 - difficult to explain the collimation
 - highly super-Eddington luminosity usually implies high baryonic mass ightarrow small γ

• Energy reservoirs:

- ① binding energy of the orbiting debris
- ② spin energy of the newly formed BH and disk

• Energy extraction mechanisms:

- Solution ⇒ thermal energy ⇒ $\nu \bar{\nu} \rightarrow e^+ e^- \Rightarrow e^{\pm}$ /photon/baryon fireball
 - unlikely that the disk is optically thin to neutrinos (Di Matteo, Perna, & Narayan 2002)
 - strong photospheric emission would have been detectable (Daigne & Mochkovitch 2002)
 - difficult to explain the collimation
 - highly super-Eddington luminosity usually implies high baryonic mass ightarrow small γ
- rightarrow dissipation of magnetic fields generated by the differential rotation in the torus $\Rightarrow e^{\pm}$ /photon/baryon "magnetic" fireball
 - collimation
 - strong photospheric emission

MHD extraction (Poynting jet)

A recent measurement of a high ($80 \pm 20\%$) linear polarization in the prompt γ -ray emission in GRB 021206 has been interpreted as evidence that the underlying outflow was driven by a large-scale, ordered magnetic field (Coburn & Boggs 2003).

•
$$\mathcal{E} = \frac{c}{4\pi} \underbrace{\frac{\varpi\Omega}{c}}_{E} B_{p} B_{\phi} \times \text{area } \times \text{duration} \Rightarrow$$

$$\frac{B_{p}B_{\phi}}{(2 \times 10^{14}\text{G})^{2}} = \left[\frac{\mathcal{E}}{5 \times 10^{51}\text{ergs}}\right] \left[\frac{\text{area}}{4\pi \times 10^{12}\text{cm}^{2}}\right]^{-1} \left[\frac{\varpi\Omega}{10^{10}\text{cm s}^{-1}}\right]^{-1} \left[\frac{\text{duration}}{10\text{s}}\right]^{-1}$$

- from the BH: $B_p \gtrsim 10^{15}$ G (small B_{ϕ} , small area)
- from the disk: smaller magnetic field required $\sim 10^{14} {
 m G}$
 - * If initially $B_p/B_{\phi} > 1$, a **trans-Alfvénic** outflow is produced.
 - * If initially $B_{\phi}/B_p > 1$, the outflow is **super-Alfvénic** from the start.
- Is it possible to "use" this energy and accelerate the matter ejecta?

Ideal Magneto-Hydro-Dynamics

in collaboration with Arieh Königl

- Outflowing matter:
 - baryons (rest density ρ_0 , bulk velocity V)
 - ambient electrons (neutralize the protons)
 - e^{\pm} pairs (Maxwellian distribution)
- photons (blackbody distribution)
- large scale electromagnetic field ${\bf E}\,, {\bf B}$

Ideal Magneto-Hydro-Dynamics

in collaboration with Arieh Königl

- Outflowing matter:
 - baryons (rest density ρ_0 , bulk velocity V)
 - ambient electrons (neutralize the protons)
 - e^{\pm} pairs (Maxwellian distribution)
- photons (blackbody distribution)
- large scale electromagnetic field ${\bf E}\,, {\bf B}$

Assumptions:

- axisymmetry
- **2** highly relativistic poloidal motion ($\gamma \gg 1$)
- $oldsymbol{\Theta}$ quasi-steady poloidal magnetic field $\Leftrightarrow \mathbf{B}_p \parallel \mathbf{V}_p$

4 adiabatic evolution: $P \propto \rho_0^{4/3}$, $\xi c^2 = c^2 + 4P/\rho_0$

- ($P = \text{total pressure}, \xi c^2 = \text{specific enthalpy}$)

Trans-Alfvénic Jets (Vlahakis & Königl 2001 ApJL, 2003a ApJ)

• $\varpi_1 < \varpi < \varpi_6$: Thermal acceleration - force free magnetic field ($\gamma \propto \varpi, \rho_0 \propto \varpi^{-3}, T \propto \varpi^{-1}, \varpi B_{\phi} = const$, parabolic shape of fieldlines: $z \propto \varpi^2$)

- $\varpi_6 < \varpi < \varpi_8$: Magnetic acceleration ($\gamma \propto \varpi, \rho_0 \propto \varpi^{-3}$)
- $\varpi = \varpi_8$: cylindrical regime equipartition $\gamma_{\infty} \approx (-EB_{\phi}/4\pi\gamma\rho_0 V_p)_{\infty}$

THE DYNAMICS OF MAGNETIZED GRB OUTFLOWS

6th Hellenic Astronomical Conference / September 16, 2003

Super-Alfvénic Jets (Vlahakis & Königl 2003b ApJ)

- Thermal acceleration ($\gamma\propto arpi^{0.44}$, $ho_0\propto arpi^{-2.4}$, $T\propto arpi^{-0.8}$, $B_\phi\propto arpi^{-1}$, $z\propto arpi^{1.5}$)
- Magnetic acceleration ($\gamma \propto arpi^{0.44}$, $ho_0 \propto arpi^{-2.4}$)
- cylindrical regime equipartition $\gamma_{\infty} pprox (-EB_{\phi}/4\pi\gamma\rho_0 V_p)_{\infty}$

The baryon loading problem

- Proton mass in jet: $M_{\rm proton} = 3 \times 10^6 \ (\mathcal{E}/10^{51} {\rm ergs}) \ (\gamma_{\infty}/200)^{-1} M_{\odot}$.
- The disk would be $\sim 10^4$ times more massive even if 10% of its gravitational potentional energy could be converted into outflow kinetic energy (baryon loading problem).

A possible resolution (Fuller et al. 2000):

- If the source is neutron-rich, then the neutrons could decouple from the flow before the protons attain their terminal Lorentz factor.
- Disk-fed GRB outflows are expected to be neutron-rich, with n/p as high as $\sim 20 30$ (Pruet et al. 2003; Beloborodov 2003; Vlahakis et al. 2003).

However, it turns out that the decoupling Lorentz factor γ_d in a thermally driven, purely hydrodynamic outflow is of the order of the inferred value of γ_{∞} (e.g., Derishev et al. 1999; Beloborodov 2003), which has so far limited the practical implications of the Fuller at al. (2000) proposal.

Neutron-rich hydromagnetic flows

(Vlahakis, Peng, & Königl 2003 ApJL)

- Part of the thermal energy could be converted to electromagnetic (with the remainder transfered to baryon kinetic).
- The Lorentz factor increases with lower rate compared to the hydrodynamic case. This makes it possible to attain $\gamma_d \ll \gamma_\infty$, as it is shown in the following solution.
- The energy deposited into the Poynting flux is returned to the matter beyond the decoupling point.
- Pre-decoupling phase:
 - The momentum equation for the whole system (protons/neutrons/e[±]/photons/electromagnetic field) yields the flow velocity.
 - The momentum equation for the neutrons alone yields the neutron-proton collisional drag-force, and the drift velocity.
 - When $V_{\rm proton} V_{\rm neutron} \sim c$ the neutrons decouple.
- Post-decoupling phase:
 - We solve for the protons alone (+ electromagnetic field).

(a) The three components of the total energy flux, normalized by the mass flux $\times c^2$. (b) Proton-neutron drift velocity.

n/p=30 decoupling at $\gamma_d=15$

$$\begin{split} \gamma_{\infty} &= 200 \\ \mathcal{E}_{proton} \approx 10^{51} \text{ergs} \approx 0.5 \ \mathcal{E}_{neutron} \end{split}$$

Because of the magnetic collimation, the neutrons also acquire a transverse drift relative to the protons: $V_{
m neutron, \perp} \sim 0.1c$ at decoupling.

Conclusion

- Trans-Alfvénic flow:
 - * The flow is initially thermally accelerated ($\xi \gamma = const.$; the magnetic field only guides the flow), and subsequently magnetically accelerated up to Lorentz factors corresponding to equipartition between kinetic and Poynting fluxes, i.e., ~ 50% of the initial total energy is extracted to baryonic kinetic. $\gamma \propto \varpi$ in both regimes.
 - \star The fieldline shape is parabolic, $z\propto \varpi^2$ and becomes asymptotically cylindrical.
- Super-Alfvénic flow:
 - * Similar results, except that the Lorentz factor increases with lower rate: $\gamma \propto \varpi^{\beta}, \beta < 1$. Also $z \propto \varpi^{\beta+1}$.
- Neutron decoupling:
 - \star In pure-hydro case $\gamma_{\rm d} \sim \gamma_{\infty}$.
 - * Magnetic fields make possible $\gamma_{\rm d} \ll \gamma_{\infty}$.
 - ★ The decoupled neutrons decay into protons at a distance $\sim 4 \times 10^{14} (\gamma_d/15)$ cm. In contrast with the situation in the pure-hydro case, these two components are unlikely to interact with each other in the hydromagnetic case since their motions are not collinear.
 - Observational signatures of the neutron component remains an interesting problem for future research.