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e MHD bulk acceleration and collimation mechanisms
(general analysis)

e Mmodels
— semi-analytical
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The question for magnetized outflows

A rotating source (disk or star) creates an axisymmetric outflow

Assume steady-state and ideal
magnetohydrodynamics (MHD).
Near the source V,, < V, =~ wfl.
The energy resides in the
electromagnetic field.

e magnetic acceleration ?,
Yoo ~ E /M c?

e magnetic self-collimation?
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Acceleration mechanisms

e thermal (due to VP) — velocities up to C,

e magnetocentrifugal (beads on wire - Blandford & Payne)
— velocities up to wf

e relativistic thermal (thermal fireball) gives v ~ &;,

mass x c
dE
e magnetic —up to v, = u? | where u = dSdt
g P1o7y H A

dSdt’
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The energy integral

All acceleration mechanisms can be seen in the energry
conservation equation

Y/
\IJAC2

po=Ey+ whBy,

where pu, 2, ¥ 4(=mass-to-magnetic flux ratio) are constants of
motion.

So v 1T when ¢ | (thermal, relativistic thermal), or,
wBy | 1, | (magnetocentrifugal, magnetic).

Yoo = 4 Means & = 1 (its minimum value) and wB, = 0.
Is this possible?
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Magnetic acceleration vs fieldline shape

e From Ferraro’s law, @B, ~ @ B,Q/V,,.
S0, the transfield force-balance determines the acceleration;
we are not free to assume a fieldline shape.

e Since wB, | — acceleration,
w?B, |, or, sufficiently fast expansion — acceleration.

e Magnetic flux conservation
1
oy // B -dS = A = constant along the flow —
-

lower limit in the asymptotic value of @B, —
acceleration efficiency < 100%.
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wbB, | for decreasing

2
") ")
w2Bp

_ B, dS) oc —.
QWwdlL(\;;;l—/) Xl

Expansion with increasing dl, /@
leads to acceleration.

The expansion ends in a more-or-less
uniform distribution w?B,, ~ A

(in a quasi-monopolar shape).
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Conclusions on the magnetic acceleration

A rraslf we assume a quasi-monopolar
shape throughout the flow —
no acceleration. Example:
Michel’'s (1969) solution which gives
Yoo R 1P p.
Also Beskin et al (1998); Bogovalov (2001) who found

quasi-monopolar solutions.

For any other (more realistic) initial
field distribution we have efficient
acceleration!

(details and an analytical estimation of the efficiency in Vlahakis
2004, ApSS 293, 67).

example: if we start with w*B,/A = 2
we have asymptotically @w?B,/A = 1
— 50% efficiency
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On the collimation

. The J, x B force contributes to the

©B, collimation (hoop-stress paradigm).

In relativistic flows the electric force plays
an opposite role (a manifestation of the
high inertia of the flow).

e surrounding medium may play a role
" fast (e.g. a slow external wind, or stellar
material in the collapsar model for
GRBs)

e Alfven

¢ self-collimation works (mainly at small
slow : .
A distances where the velocities are
=~ ® mildly relativistic)
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For v > 1, curvature radius R ~ v?w (> w).

Collimation more difficult, but not impossible!

5 3
R () ~ ()

Combining the above, we get  ~ ~ —
w
< w < w w
The same from (t =) - = — & — = R
( ) Vz Vw C \/CQ_VZ2 C/"}/
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w1 < w < wg. Thermal acceleration - force free magnetic field
1 , wBy = const, parabolic shape of fieldlines: z oc @

(Vocw7p00<w_37TO<w_ 2)
wg < w < wg: Magnetic acceleration (y < w , pg x w

o = wg: cylindrical regime - equipartition yoo &~ (=FEB4/4mypoVp) o
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x At o = 10%cm — where v = 10 — the opening half-angle is already ¥ = 10°

x For = > 10%cm, collimation continues slowly (R ~ ~*w)
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Seml analytlc solutlons fOI‘ AGN jetS (Viahakis & Konig! 2004
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Beskin & Nokhrina (2006)
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By expanding the equations wrt 2/u (their 1/0) they examine a flow with
parabolic z o< w? shape. The acceleration is efficient, reaching 7., ~ p.
The scaling v o« w is the same as in Vlahakis & Konigl (2003a), and in

agreement with v x 2z /w.
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Simulations of relativistic AGN jets

Komissarov, Barkov, Vlahakis, & Konigl (2007)
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Left panel shows density (colour) and magnetic field lines.
Right panel shows the Lorentz factor (colour) and the current lines.
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}loglor/rlc loglor/rlc loglor/rlc

~vo (solid line), n (dashed line) and v (dash-dotted line) along a magnetic field
line as a function of cylindrical radius for models C1 (left panel), C2 (middle
panel) and A2 (right panel).
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(without a wall)
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e.g. forv = 10,9 = 57° — 40°
while for ¥ = 5, 9 = 40° — 15°
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B,w?/(2A) — 7
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Conclusions

» MHD could explain the dynamics of relativistic jets:

e bulk acceleration: after a possible thermall acceleration
phase, the flow is magnetically accelerated up to Lorentz
factors of the order of the total energy-to-mass flux ratio,

v o P

Yoo = €efficiency x

0.5 — 1
The v is NOT = (/M c?)'/3, but ~ /M c?
(o is NOT constant in MHD flows)

e collimation: parabolic shape consistent with
< .
v~ = =z o w’ T — agrees with R ~ 72w
w

M c?

» The paradigm of MHD jets works in a similar way in
nonrelativistic (YSO), mildly relativistic (AGN), and highly
relativistic (GRB) jets!
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