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Outline
• MHD bulk acceleration and collimation mechanisms

(general analysis)

• models
– semi-analytical
– simulations



collimation at ∼100 Schwarzschild radii, γ∞ ∼ 10
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The question for magnetized outflows

A rotating source (disk or star) creates an axisymmetric outflow

Ω
ϖ

z

Ω

Assume steady-state and ideal
magnetohydrodynamics (MHD).
Near the source Vp � Vφ ≈ $Ω.
The energy resides in the
electromagnetic field.

• magnetic acceleration →?
γ∞ ∼ E/Mc2

• magnetic self-collimation?
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Acceleration mechanisms

• thermal (due to ∇P ) → velocities up to Cs

• magnetocentrifugal (beads on wire - Blandford & Payne)
→ velocities up to $0Ω

• relativistic thermal (thermal fireball) gives γ ∼ ξi,
where ξ = enthalpy

mass× c2.

• magnetic – up to γ∞ = µ?

 where µ =

dE

dSdt
dM

dSdt
c2


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The energy integral

All acceleration mechanisms can be seen in the energry
conservation equation

µ = ξγ +
Ω

ΨAc2
$Bφ

where µ, Ω, ΨA(=mass-to-magnetic flux ratio) are constants of
motion.

So γ ↑ when ξ ↓ (thermal, relativistic thermal), or,
$Bφ ↓⇔ Ip ↓ (magnetocentrifugal, magnetic).

γ∞ = µ means ξ = 1 (its minimum value) and $Bφ = 0.
Is this possible?
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Magnetic acceleration vs fieldline shape

• From Ferraro’s law, $Bφ ≈ $2BpΩ/Vp.
So, the transfield force-balance determines the acceleration;
we are not free to assume a fieldline shape.

• Since $Bφ ↓ → acceleration,
$2Bp ↓, or, sufficiently fast expansion → acceleration.

• Magnetic flux conservation
1
2π

∫∫
B · dS = A = constant along the flow →

lower limit in the asymptotic value of $2Bp →
acceleration efficiency < 100%.
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II

dl

ϖ

z A A+dA

$Bφ ↓ for decreasing

$2Bp =
$2

2π$dl⊥
(BpdS︸ ︷︷ ︸

dA

) ∝ $

dl⊥
.

Expansion with increasing dl⊥/$

leads to acceleration.
The expansion ends in a more-or-less
uniform distribution $2Bp ≈ A

(in a quasi-monopolar shape).
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Conclusions on the magnetic acceleration

II

dl

ϖ

z A A+dAIf we assume a quasi-monopolar
shape throughout the flow →
no acceleration. Example:
Michel’s (1969) solution which gives
γ∞ ≈ µ1/3 � µ.
Also Beskin et al (1998); Bogovalov (2001) who found

quasi-monopolar solutions.

For any other (more realistic) initial
field distribution we have efficient
acceleration!
(details and an analytical estimation of the efficiency in Vlahakis

2004, ApSS 293, 67).

example: if we start with $2Bp/A = 2
we have asymptotically $2Bp/A = 1
→ 50% efficiency
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On the collimation

IIII ϖ0

pB

Bφ

ϖΑ

pJ

ϖ

z

slow

, Vp

E

fast

Alfven

The Jp ×Bφ force contributes to the
collimation (hoop-stress paradigm).
In relativistic flows the electric force plays
an opposite role (a manifestation of the
high inertia of the flow).

• surrounding medium may play a role
(e.g. a slow external wind, or stellar
material in the collapsar model for
GRBs)

• self-collimation works (mainly at small
distances where the velocities are
mildly relativistic)
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For γ � 1, curvature radius R ∼ γ2$ (� $).

Collimation more difficult, but not impossible!

$

R
= −$

∂2$

∂z2

(
Bz

Bp

)3

∼
($

z

)2

Combining the above, we get γ ∼ z

$

The same from (t =)
z

Vz
=

$

V$
⇔ z

c
=

$√
c2 − V 2

z

≈ $

c/γ
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Semi-analytic solutions for GRB Jets (NV & Königl 2001, 2003a,b)
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• $1 < $ < $6: Thermal acceleration - force free magnetic field
(γ ∝ $ , ρ0 ∝ $−3 , T ∝ $−1 , $Bφ = const, parabolic shape of fieldlines: z ∝ $2)

• $6 < $ < $8: Magnetic acceleration (γ ∝ $ , ρ0 ∝ $−3)
• $ = $8: cylindrical regime - equipartition γ∞ ≈ (−EBφ/4πγρ0Vp)∞
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• Thermal acceleration (γ ∝ $0.44 , ρ0 ∝ $−2.4 , T ∝ $−0.8 , Bφ ∝ $−1 , z ∝ $1.5)

• Magnetic acceleration (γ ∝ $0.44 , ρ0 ∝ $−2.4)
• cylindrical regime - equipartition γ∞ ≈ (−EBφ/4πγρ0Vp)∞
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? At $ = 108cm – where γ = 10 – the opening half-angle is already ϑ = 10o

? For $ > 108cm, collimation continues slowly (R ∼ γ2$)
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Semi-analytic solutions for AGN jets (Vlahakis & Königl 2004)

0.2 0.4 0.6 0.8 1.0
ϖ/ϖA

10−23

10−19

dy
n 

cm
−3

100 101 102

ϖout/ϖin

1021

1022

1023

10−5 10−4 10−3 10−2 10−1 100 101

ϖ (pc)

10−6

10−3

100

103

106
z 

(p
c)

.

inner

(a)

outer

(b)

(c)magnetic

M (g s−1)

centrifugal

pressure

100 101 102

ϖ/ϖA

10−6

10−3

100

104

106

108

1010
0.0

0.2

0.4

0.6

0.8

100

101

102

γ≈ξγ

(Poynting flux)/(mass flux)c2 (d)

(e)

(f)

(g)

Vz/c

Vφ/c
Vϖ/c

T(0K)

−Bφ(G)

Bz(G)
Bϖ(G)

High Energy Phenomena in Relativistic Outflows Dublin, 26 September 2007



1

106 1010 1014

z(cm)

1

2

3

B
pϖ

2 /A

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
ξγ

/µ

1 2 3
Bpϖ

2/A

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ξγ
/µ

High Energy Phenomena in Relativistic Outflows Dublin, 26 September 2007



Beskin & Nokhrina (2006)
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By expanding the equations wrt 2/µ (their 1/σ) they examine a flow with
parabolic z ∝ $2 shape. The acceleration is efficient, reaching γ∞ ∼ µ.
The scaling γ ∝ $ is the same as in Vlahakis & Königl (2003a), and in
agreement with γ ∝ z/$.
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Simulations of relativistic AGN jets

Komissarov, Barkov, Vlahakis, & Königl (2007)

Left panel shows density (colour) and magnetic field lines.
Right panel shows the Lorentz factor (colour) and the current lines.
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γσ (solid line), µ (dashed line) and γ (dash-dotted line) along a magnetic field
line as a function of cylindrical radius for models C1 (left panel), C2 (middle

panel) and A2 (right panel).
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(without a wall)

e.g. for Ψ = 10, ϑ = 57o → 40o

while for Ψ = 5, ϑ = 40o → 15o
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Conclusions

? MHD could explain the dynamics of relativistic jets:

• bulk acceleration: after a possible thermall acceleration
phase, the flow is magnetically accelerated up to Lorentz
factors of the order of the total energy-to-mass flux ratio,

γ∞ = efficiency︸ ︷︷ ︸
0.5 – 1

× E
Mc2

— γ ∝ $β

The γ∞ is NOT = (E/Mc2)1/3, but ∼ E/Mc2

(σ is NOT constant in MHD flows)
• collimation: parabolic shape consistent with

γ ∼ z

$
⇔ z ∝ $β+1 — agrees with R ∼ γ2$

? The paradigm of MHD jets works in a similar way in
nonrelativistic (YSO), mildly relativistic (AGN), and highly
relativistic (GRB) jets!
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