MHD modeling of relativistic outflows

Nektarios Vlahakis (Athens)

in collaboration with Serguei Komissarov (Leeds) Maxim Barkov (Leeds) Arieh Königl (Chicago)

Outline

- MHD bulk acceleration and collimation mechanisms (general analysis)
- models
	- **–** semi-analytical
	- **–** simulations

collimation at \sim 100 Schwarzschild radii, $\gamma_{\infty} \sim 10$

The question for magnetized outflows

A rotating source (disk or star) creates an axisymmetric outflow

Assume steady-state and ideal magnetohydrodynamics (MHD). Near the source $V_p \ll V_\phi \approx \varpi \Omega$. The energy resides in the electromagnetic field.

- magnetic acceleration $\frac{?}{?}$ $\gamma_{\infty} \sim \mathcal{E}/Mc^2$
- magnetic self-collimation?

Acceleration mechanisms

- thermal (due to ∇P) \rightarrow velocities up to C_s
- magnetocentrifugal (beads on wire Blandford & Payne) \rightarrow velocities up to $\varpi_0\Omega$
- relativistic thermal (thermal fireball) gives $\gamma \sim \xi_i$, where $\xi=$ enthalpy $\frac{SINHary}{mass \times c^2}$.

• magnetic – up to
$$
\gamma_{\infty} = \mu
$$
? $\left(\text{where } \mu = \frac{\frac{dE}{dSdt}}{\frac{dM}{dSdt}c^2}\right)$

The energy integral

All acceleration mechanisms can be seen in the energry conservation equation

$$
\mu = \xi \gamma + \frac{\Omega}{\Psi_A c^2} \varpi B_\phi
$$

where μ , Ω , Ψ_A (=mass-to-magnetic flux ratio) are constants of motion.

So $\gamma \uparrow$ when $\xi \downarrow$ (thermal, relativistic thermal), or, $\varpi B_{\phi} \downarrow \Leftrightarrow I_p \downarrow$ (magnetocentrifugal, magnetic).

 $\gamma_{\infty} = \mu$ means $\xi = 1$ (its minimum value) and $\varpi B_{\phi} = 0$. Is this possible?

Magnetic acceleration *vs* **fieldline shape**

- From Ferraro's law, $\varpi B_{\phi} \approx \varpi^2 B_p \Omega/V_p$. So, the transfield force-balance determines the acceleration; we are not free to assume a fieldline shape.
- Since $\varpi B_{\phi} \downarrow \rightarrow$ acceleration, $\varpi^2B_p \downarrow$, or, sufficiently fast expansion \rightarrow acceleration.
- Magnetic flux conservation 1 2π $\int \int \int \mathbf{B} \cdot d\mathbf{S} = A = \text{constant}$ along the flow \rightarrow lower limit in the asymptotic value of $\varpi^2B_n \rightarrow$ acceleration efficiency $< 100\%$.

 $\overline{\omega}B_{\phi}$ \downarrow for decreasing $\varpi^2 B_p =$ ϖ^2 $2\pi \varpi dl_{\perp}$ $(B_p dS$ dA) ∝ ϖ dl_{\perp} . Expansion with increasing dl_{\perp}/ϖ leads to acceleration. The expansion ends in a more-or-less uniform distribution $\varpi^2B_p\approx A$ (in a quasi-monopolar shape).

Conclusions on the magnetic acceleration

A and a and a quasi-monopolar shape throughout the flow \rightarrow no acceleration. Example: Michel's (1969) solution which gives $\gamma\infty \approx \mu^{1/3} \ll \mu.$

> Also Beskin et al (1998); Bogovalov (2001) who found quasi-monopolar solutions.

For any other (more realistic) initial field distribution we have efficient acceleration!

(details and an analytical estimation of the efficiency in Vlahakis

2004, ApSS 293, 67).

example: if we start with $\varpi^2B_p/A = 2$ we have asymptotically $\varpi^2B_p/A = 1$ \rightarrow 50% efficiency

 $\overline{\Omega}$

dl

z

On the collimation

The $\boldsymbol{J}_p\times\boldsymbol{B}_{\phi}$ force contributes to the collimation (hoop-stress paradigm). In relativistic flows the electric force plays an opposite role (a manifestation of the high inertia of the flow).

- surrounding medium may play a role (e.g. a slow external wind, or stellar material in the collapsar model for GRBs)
- self-collimation works (mainly at small distances where the velocities are mildly relativistic)

For $\gamma \gg 1$, curvature radius $\mathcal{R} \sim \gamma^2 \varpi \ (\gg \varpi)$. Collimation more difficult, but not impossible!

$$
\frac{\varpi}{\mathcal{R}}=-\varpi\frac{\partial^2\varpi}{\partial z^2}\left(\frac{B_z}{B_p}\right)^3\sim\left(\frac{\varpi}{z}\right)^2
$$

Combining the above, we get
$$
\gamma \sim \frac{z}{\varpi}
$$

The same from
$$
(t =)
$$
 $\frac{z}{V_z} = \frac{\varpi}{V_\varpi} \Leftrightarrow \frac{z}{c} = \frac{\varpi}{\sqrt{c^2 - V_z^2}} \approx \frac{\varpi}{c/\gamma}$

 $\omega = \omega_8$: cylindrical regime - equipartition $\gamma_\infty \approx (-EB_\phi/4\pi\gamma\rho_0V_p)_\infty$

High Energy Phenomena in Relativistic Outflows **Dublin, 26 September 2007 Dublin, 26 September 2007**

• cylindrical regime - equipartition $\gamma_{\infty} \approx (-EB_{\phi}/4\pi \gamma \rho_0 V_p)_{\infty}$

 \star At $\varpi=10^8$ cm – where $\gamma=10$ – the opening half-angle is already $\vartheta=10^o$ \star For $\varpi > 10^8$ cm, collimation continues slowly ($\mathcal{R}\sim \gamma^2 \varpi$)

Beskin & Nokhrina (2006)

By expanding the equations wrt $2/\mu$ (their $1/\sigma$) they examine a flow with parabolic $z \propto \omega^2$ shape. The acceleration is efficient, reaching $\gamma_\infty \sim \mu$. The scaling $\gamma \propto \varpi$ is the same as in Vlahakis & Königl (2003a), and in agreement with $\gamma \propto z/\varpi$.

Simulations of relativistic AGN jets

Komissarov, Barkov, Vlahakis, & Königl (2007)

Left panel shows density (colour) and magnetic field lines. Right panel shows the Lorentz factor (colour) and the current lines.

 $\gamma\sigma$ (solid line), μ (dashed line) and γ (dash-dotted line) along a magnetic field line as a function of cylindrical radius for models C1 (left panel), C2 (middle panel) and A2 (right panel).

(without a wall)

Conclusions

- \star MHD could explain the dynamics of relativistic jets:
	- bulk acceleration: after a possible thermall acceleration phase, the flow is magnetically accelerated up to Lorentz factors of the order of the total energy-to-mass flux ratio, $\mathcal E$

$$
\gamma_{\infty} = \underbrace{\text{efficiency}}_{0.5-1} \times \frac{c}{Mc^2} - \gamma \propto \varpi^{\beta}
$$
\nThe γ_{∞} is NOT = $(\mathcal{E}/Mc^2)^{1/3}$, but $\sim \mathcal{E}/Mc^2$

\n(σ is NOT constant in MHD flows)

- collimation: parabolic shape consistent with $\gamma \sim$ z $\overline{\omega}$ \Leftrightarrow $z \propto \varpi^{\beta+1}$ — agrees with ${\cal R} \sim \gamma^2 \varpi$
- \star The paradigm of MHD jets works in a similar way in nonrelativistic (YSO), mildly relativistic (AGN), and highly relativistic (GRB) jets!