MHD modeling of relativistic outflows

Nektarios Vlahakis (Athens)

in collaboration with Serguei Komissarov (Leeds) Maxim Barkov (Leeds) Arieh Königl (Chicago)

Outline

- MHD bulk acceleration and collimation mechanisms
 (general analysis)
- models
 - semi-analytical
 - simulations

collimation at ~100 Schwarzschild radii, $\gamma_{\infty} \sim 10$

The question for magnetized outflows

A rotating source (disk or star) creates an axisymmetric outflow

Assume steady-state and ideal magnetohydrodynamics (MHD). Near the source $V_p \ll V_\phi \approx \varpi \Omega$. The energy resides in the electromagnetic field.

- magnetic acceleration $\xrightarrow{?}$ $\gamma_{\infty} \sim \mathcal{E}/Mc^2$
- magnetic self-collimation?

Acceleration mechanisms

- thermal (due to ∇P) \rightarrow velocities up to C_s
- magnetocentrifugal (beads on wire Blandford & Payne) \rightarrow velocities up to $\varpi_0 \Omega$
- relativistic thermal (thermal fireball) gives $\gamma \sim \xi_i$, where $\xi = \frac{\text{enthalpy}}{\text{mass} \times c^2}$.

• magnetic – up to
$$\gamma_{\infty} = \mu$$
? $\left(\text{ where } \mu = \frac{\frac{dE}{dSdt}}{\frac{dM}{dSdt}c^2} \right)$

The energy integral

All acceleration mechanisms can be seen in the energry conservation equation

$$\mu = \xi \gamma + \frac{\Omega}{\Psi_A c^2} \varpi B_{\phi}$$

where μ , Ω , Ψ_A (=mass-to-magnetic flux ratio) are constants of motion.

So $\gamma \uparrow$ when $\xi \downarrow$ (thermal, relativistic thermal), or, $\varpi B_{\phi} \downarrow \Leftrightarrow I_p \downarrow$ (magnetocentrifugal, magnetic).

 $\gamma_{\infty} = \mu$ means $\xi = 1$ (its minimum value) and $\varpi B_{\phi} = 0$. Is this possible?

Magnetic acceleration vs fieldline shape

- From Ferraro's law, $\varpi B_{\phi} \approx \varpi^2 B_p \Omega / V_p$. So, the transfield force-balance determines the acceleration; we are not free to assume a fieldline shape.
- Since $\varpi B_{\phi} \downarrow \rightarrow$ acceleration, $\varpi^2 B_p \downarrow$, or, sufficiently fast expansion \rightarrow acceleration.
- Magnetic flux conservation $\frac{1}{2\pi} \iint \mathbf{B} \cdot d\mathbf{S} = A = \text{constant along the flow} \rightarrow$ lower limit in the asymptotic value of $\varpi^2 B_p \rightarrow$ acceleration efficiency < 100%.

 $\varpi B_{\phi} \downarrow \text{ for decreasing} \\ \varpi^{2} B_{p} = \frac{\varpi^{2}}{2\pi \varpi dl_{\perp}} (\underbrace{B_{p} dS}_{dA}) \propto \frac{\varpi}{dl_{\perp}}.$ Expansion with increasing dl_{\perp}/ϖ leads to acceleration. The expansion ends in a more-or-less uniform distribution $\varpi^2 B_p \approx A$ (in a quasi-monopolar shape).

Conclusions on the magnetic acceleration

A+dA If we <u>assume</u> a quasi-monopolar shape throughout the flow \rightarrow no acceleration. Example: Michel's (1969) solution which gives $\gamma_{\infty} \approx \mu^{1/3} \ll \mu$.

Also Beskin et al (1998); Bogovalov (2001) who found quasi-monopolar solutions.

For any other (more realistic) initial field distribution we have efficient acceleration!

(details and an analytical estimation of the efficiency in Vlahakis

2004, ApSS 293, 67).

example: if we start with $\varpi^2 B_p/A = 2$ we have asymptotically $\varpi^2 B_p/A = 1$ $\rightarrow 50\%$ efficiency

 $\mathbf{\omega}$

A

dl

Ζ

On the collimation

The $J_p \times B_{\phi}$ force contributes to the collimation (hoop-stress paradigm). In relativistic flows the electric force plays an opposite role (a manifestation of the high inertia of the flow).

- surrounding medium may play a role (e.g. a slow external wind, or stellar material in the collapsar model for GRBs)
- self-collimation works (mainly at small distances where the velocities are mildly relativistic)

For $\gamma \gg 1$, curvature radius $\mathcal{R} \sim \gamma^2 \varpi$ ($\gg \varpi$). Collimation more difficult, but not impossible!

$$\frac{\varpi}{\mathcal{R}} = -\varpi \frac{\partial^2 \varpi}{\partial z^2} \left(\frac{B_z}{B_p}\right)^3 \sim \left(\frac{\varpi}{z}\right)^2$$

Combining the above, we get
$$\gamma \sim \frac{z}{\omega}$$

The same from
$$(t =) \frac{z}{V_z} = \frac{\varpi}{V_{\varpi}} \Leftrightarrow \frac{z}{c} = \frac{\varpi}{\sqrt{c^2 - V_z^2}} \approx \frac{\varpi}{c/\gamma}$$

• $\varpi_1 < \varpi < \varpi_6$: Thermal acceleration - force free magnetic field ($\gamma \propto \varpi, \rho_0 \propto \varpi^{-3}, T \propto \varpi^{-1}, \varpi B_{\phi} = const$, parabolic shape of fieldlines: $z \propto \varpi^2$)

• $\varpi_6 < \varpi < \varpi_8$: Magnetic acceleration ($\gamma \propto \varpi, \rho_0 \propto \varpi^{-3}$)

• $\varpi = \varpi_8$: cylindrical regime - equipartition $\gamma_{\infty} \approx (-EB_{\phi}/4\pi\gamma\rho_0 V_p)_{\infty}$

High Energy Phenomena in Relativistic Outflows

• cylindrical regime - equipartition $\gamma_{\infty} \approx (-EB_{\phi}/4\pi\gamma\rho_0 V_p)_{\infty}$

* At $\varpi = 10^8$ cm – where $\gamma = 10$ – the opening half-angle is already $\vartheta = 10^{\circ}$ * For $\varpi > 10^8$ cm, collimation continues slowly ($\mathcal{R} \sim \gamma^2 \varpi$)

High Energy Phenomena in Relativistic Outflows

Dublin, 26 September 2007

Beskin & Nokhrina (2006)

By expanding the equations wrt $2/\mu$ (their $1/\sigma$) they examine a flow with parabolic $z \propto \varpi^2$ shape. The acceleration is efficient, reaching $\gamma_{\infty} \sim \mu$. The scaling $\gamma \propto \varpi$ is the same as in Vlahakis & Königl (2003a), and in agreement with $\gamma \propto z/\varpi$.

Simulations of relativistic AGN jets

Komissarov, Barkov, Vlahakis, & Königl (2007)

Left panel shows density (colour) and magnetic field lines. Right panel shows the Lorentz factor (colour) and the current lines.

 $\gamma\sigma$ (solid line), μ (dashed line) and γ (dash-dotted line) along a magnetic field line as a function of cylindrical radius for models C1 (left panel), C2 (middle panel) and A2 (right panel).

(without a wall)

Conclusions

- \star MHD could explain the dynamics of relativistic jets:
 - bulk acceleration: after a possible thermall acceleration phase, the flow is magnetically accelerated up to Lorentz factors of the order of the total energy-to-mass flux ratio,

$$\gamma_{\infty} = \underbrace{\text{efficiency}}_{0.5 - 1} \times \frac{c}{Mc^2} - \gamma \propto \varpi^{\beta}$$

The γ_{∞} is $\underline{\text{NOT}} = (\mathcal{E}/Mc^2)^{1/3}$, but $\sim \mathcal{E}/Mc^2$
(σ is $\underline{\text{NOT}}$ constant in MHD flows)

- collimation: parabolic shape consistent with $\gamma \sim \frac{z}{\varpi} \Leftrightarrow z \propto \varpi^{\beta+1}$ agrees with $\mathcal{R} \sim \gamma^2 \varpi$
- The paradigm of MHD jets works in a similar way in nonrelativistic (YSO), mildly relativistic (AGN), and highly relativistic (GRB) jets!