Formation and Kinematic Properties of Relativistic MHD Jets

Nektarios Vlahakis

Outline

- ideal MHD in general
- semianalytical modeling
 - *r*-self similarity
 - * AGN outflows
 - * GRB outflows
 - z-self similarity
 - * Crab-like pulsar winds
- summary meet the observations

Ideal Magneto-Hydro-Dynamics

- How the jet is collimated and accelerated? Need to examine outflows taking into account
 - matter: velocity V, rest density ρ_0 , pressure P, specific enthalpy ξc^2
 - electromagnetic field: \mathbf{E} , \mathbf{B}
- ideal MHD equations:
 - Maxwell: $\nabla \cdot \mathbf{B} = 0 = \nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{c\partial t}, \ \nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{c\partial t} + \frac{4\pi}{c} \mathbf{J}, \ \nabla \cdot \mathbf{E} = \frac{4\pi}{c} J^0$
 - Ohm: $\mathbf{E} + \frac{\mathbf{V}}{c} \times \mathbf{B} = 0$

- mass conservation:
$$\frac{\partial(\gamma\rho_0)}{\partial t} + \nabla \cdot (\gamma\rho_0 \mathbf{V}) = 0$$

- specific entropy conservation: $\left(\frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla\right) \left(\frac{P}{o^{\Gamma}}\right) = 0$

- momentum:
$$\gamma \rho_0 \left(\frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla \right) (\xi \gamma \mathbf{V}) = -\nabla P + \frac{J^0 \mathbf{E} + \mathbf{J} \times \mathbf{B}}{c}$$

Integration

• assume

- axisymmetry $(\partial/\partial \phi = 0, E_{\phi} = 0)$
- steady state $(\partial/\partial t = 0)$
- introduce the magnetic flux function A
 - (A = const is a poloidal field-streamline)
- the full set of ideal MHD equations can be partially integrated to yield five fieldline constants:
 - ① the mass-to-magnetic flux ratio (continuity equation)
 - ② the field angular velocity (Faraday + Ohm)
 - ③ the specific angular momentum ($\hat{\phi}$ component of momentum equation)
 - ④ the total energy-to-mass flux ratio (momentum equation along V)
 - 5 the adiabat (entropy equation)
- two integrals remain to be performed, involving the Bernoulli and transfield force-balance
- boundary conditions?

r self-similarity

If the boundary conditions on the conical disk surface $\theta = \theta_i$ are power laws:

 $B_{r} = -C_{1}r^{F-2}, B_{\phi} = -C_{2}r^{F-2},$ $V_{r}/c = C_{3}, V_{\theta}/c = -C_{4}, V_{\phi}/c = C_{5},$ $\rho_{0} = C_{6}r^{2(F-2)}, P = C_{7}r^{2(F-2)},$

then the variables r, θ are separable and the system reduces to ODEs. The solution should cross the Alfvén and the modified fast singular points. [Blandford & Payne – (nonrelativistic) Li, Chiueh, & Begelman (1992) and Contopoulos (1994) – (cold) Vlahakis & Königl (2003, astro-ph/0303482,0303483) – (including thermal/radiation effects)]

F (the only parameter of the model) controls the current distribution: $I\propto \varpi B_{\phi}\propto r^{F-1}$

- F > 1: current-carrying jet (near the rotation axis)
- F < 1: return-current (possibly at large ϖ)

AGN outflows (Vlahakis & Königl in preparation) (modeling the sub-pc-scale jet in NGC 6251)

VLBI measurements show sub-pc scale acceleration of the radio-jet in NGC 6251, from V(r = 0.53 pc) = 0.13c to V(r = 1 pc) = 0.42c [Sudou, H., et al. 2000, PASJ, 52, 989]

Adopting the best fit model of Melia et al. 2002, ApJ, 567, 811 (consistent with the limits set by Jones et al. 1986, ApJ, 305, 684) and assuming $n \propto r^{-2}$ we find

- temperature: $T = 10^{12} \left[\frac{r(pc)}{0.026} \right]^{-4/3} {}^{\circ}\text{K}$ sound speed: $\frac{C_s}{c} = 0.5573 \left[\frac{r(pc)}{0.026} \right]^{-2/3}$

• specific enthalpy:
$$\xi = 1 + 0.466 \left[\frac{r(pc)}{0.026} \right]^{-4/3}$$

Thus, for 0.53 pc < r < 1 pc the flow is supersonic and the quantity $\xi \gamma - 1$ changes from 0.01562 at r = 0.53 pc to 0.106 at r = 1 pc. As for hydrodynamic flows $\xi \gamma - 1 = const.$, the conclusion is that the flow is not hydrodynamically accelerated. We propose the magnetic acceleration as a plausible explanation of the observations.

GRB outflows (including time dependence, e^{\pm} , radiation)

 $(\gamma \propto \varpi, \rho_0 \propto \varpi^{-3}, T \propto \varpi^{-1}, \varpi B_{\phi} = const$, parabolic shape of fieldlines: $z \propto \varpi^2$) • $\varpi_6 < \varpi < \varpi_8$: Magnetic acceleration ($\gamma \propto \varpi, \rho_0 \propto \varpi^{-3}$)

• $\varpi = \varpi_8$: cylindrical regime - equipartition $\gamma_{\infty} \approx (-EB_{\phi}/4\pi\gamma\rho_0 V_p)_{\infty}$

RELATIVISTIC MHD JETS

Mayschoss / May 13, 2003

Collimation – Acceleration

- The flow is centrifugally accelerated for $V_{\phi} \gtrsim V_p \Rightarrow V_p \lesssim \frac{c}{\sqrt{2}}$.
- Thermal acceleration is important for $\gamma \lesssim \xi_i$.
- For $\gamma \gtrsim \xi_i$, $\xi \approx 1$ and the magnetic acceleration takes over.
- How efficient is the magnetic acceleration? ($\sigma_{\infty} =$?)
 - For F > 1 the flow reaches asymptotically a rough equipartition between kinetic and Poynting fluxes ($\sigma_{\infty} \approx 1$). The Lorentz force is capable of collimating the flow reaching cylindrical asymptotics (the collimation is possible for $\gamma \leq$ a few $\times 10$, following $\gamma^2 \varpi \sim \mathcal{R}$).
 - For F < 1, the acceleration is more efficient. The collimation is not so strong and the flow eventually approaches conical asymptotics.
- Is the 100% acceleration efficiency possible ($\sigma_{\infty} = 0$)? Super-Alfvénic asymptotic solutions show that it is!

Crab-like pulsar winds

RELATIVISTIC MHD JETS

Mayschoss / May 13, 2003

Summary of the previous results

- The shape is determined close to the source ($J_{\parallel} < 0$)
- Collimation is possible
- The acceleration continues at larger distances $(J_{\parallel} > 0)$
- The magnetic acceleration is eficient
- r self-similar: does not cover both ($J_{\parallel} \leq 0$) cases (F > 1 is preferable)
- Alternatives:
 - -z self similar (captuers both cases)
 - θ self-similar: applies to thermally driven flows near the axis (inside the light cylinder)
 - Fully numerical studies

Meet the observations

boundary conditions on the disk B, T, $\xi(e^{\pm} \text{ or } e^{-}p^{+}$?), $V \sim C_{s}$, $V_{\phi} = \varpi \Omega$, size ($M_{\rm BH}$), \dot{M} line shape $z = z(\varpi)$, V, B, ρ_0 , P as function of distance along each fieldline

- bulk flow
- synchrotron emission (knowing **B** in space)
- positions of the shocks $\sim \gamma^2 c \Delta t$ (knowing γ) (Source variability Δt ?)
- final value of σ (asymptotic $\mathbf{B} \rightarrow \mathbf{B}$ in shocks)
- polarizarion
- asymptotic width opening angle