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ldeal Magneto-Hydro-Dynamics

e How the jet is collimated and accelerated? Need to examine outflows
taking into account

— matter: velocity V, rest density pg, pressure P, specific enthalpy &¢?
— electromagnetic field: £, B

e ideal MHD equations:
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Integration

e assume

— axisymmetry (8/0¢ =0, Eg = 0)
— steady state (8/6t = 0)

e Iintroduce the magnetic flux function A
(A = const is a poloidal field-streamline)

¢ the full set of ideal MHD equations can be partially integrated to yield five

fieldline constants:

the mass-to-magnetic flux ratio (continuity equation)

the field angular velocity (Faraday + Ohm)

the specific angular momentum (¢ component of momentum equation)
the total energy-to-mass flux ratio (momentum equation along V)

the adiabat (entropy equation)

I B I O R

e two integrals remain to be performed, involving the Bernoulli and transfield force-balance

e boundary conditions?
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r self-similarity

If the boundary conditions on the conical disk surface 6 = 0, are power laws:

then the variables r, # are separable and the system reduces to ODEs.

The solution should cross the Alfvén and the modified fast singular points.
[Blandford & Payne — (nonrelativistic)
Li, Chiueh, & Begelman (1992) and Contopoulos (1994) — (cold)

Vlahakis & Konigl (2003, astro-ph/0303482,0303483) — (including thermal/radiation effects)]

F' (the only parameter of the model) controls the current distribution:
e [’ > 1: current-carrying jet (near the rotation axis)

e [’ < 1: return-current (possibly at large @)
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AGN outflows (Vlahakis & K 6nigl in preparation)
(modeling the sub-pc-scale jet in NGC 6251)

VLBI measurements show sub-pc scale acceleration of the radio-jet in NGC
6251, from V (r = 0.53pc) = 0.13c¢to V (r = 1pc) = 0.42¢ [Sudou, H., et al.
2000, PASJ, 52, 989]

Adopting the best fit model of Melia et al. 2002, ApJ, 567, 811 (consistent with the limits set
by Jones et al. 1986, ApJ, 305, 684) and assuming n o r 2 we find

—4/3
. 1012 | rpe)
e temperature: T = 10 [0,526}

_2/3
e sound speed: £&& = 0.5573 [6(52625]
e specific enthalpy: € = 1 4 0.466 [6(552]

Thus, for 0.53pc< r < 1pc the flow is supersonic and the quantity &+ — 1 changes from
0.01562 atr = 0.53pct0 0.106 at » = 1pc.

As for hydrodynamic flows £&v — 1 = const., the conclusion is that the flow is not
hydrodynamically accelerated. We propose the magnetic acceleration as a plausible
explanation of the observations.
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Collimation — Acceleration

e The flow is centrifugally accelerated for V, 2 V, = V, S \%
e Thermal acceleration is important for v < &,.

o For~ 2 &, £ = 1 and the magnetic acceleration takes over.

— For F' > 1 the flow reaches asymptotically a rough equipartition between
Kinetic and Poynting fluxes . The Lorentz force is capable of
collimating the flow reaching cylindrical asymptotics (the collimation is
possible for v < a few x 10, following v?w ~ R).

— For F' < 1, the acceleration is more efficient. The collimation is not so
strong and the flow eventually approaches conical asymptotics.

e Is the 100% acceleration efficiency possible (o, = 0)?
Super-Alfvénic asymptotic solutions show that it is!
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Crab-like pulsar winds
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Summary of the previous results

e The shape is determined close to the source (J; < 0)
e Collimation is possible
e The acceleration continues at larger distances (.J; > 0)

e The magnetic acceleration is eficient

e 1 self-similar: does not cover both (J; = 0) cases (F' > 1 Is preferable)

e Alternatives:

— z self similar (captuers both cases)

— 0 self-similar: applies to thermally driven flows near the axis (inside the
light cylinder)

— Fully numerical studies
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Meet the observations

boundary conditions on the disk
B, T, §(ei ore pt?),V~C,, |

—

V, = w, size (Mgu), M

e bulk flow

line shape z = z(w),
V, B, po, P

as function of distance along each fieldline

e synchrotron emission (knowing B in space)

e positions of the shocks ~ ~v?cAt (knowing v) (Source variability At?)

e final value of o (asymptotic B — B in shocks)

e polarizarion

e asymptotic width — opening

angle
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