Formation and Kinematic Properties of Relativistic MHD Jets

Nektarios Vlahakis

Outline

- ideal MHD in general
- semianalytical modeling
	- **–** r-self similarity
		- ∗ AGN outflows
		- ∗ GRB outflows
	- **–** z-self similarity
		- ∗ Crab-like pulsar winds
- summary meet the observations

Ideal Magneto-Hydro-Dynamics

- How the jet is collimated and accelerated? Need to examine outflows taking into account
	- **matter:** velocity V, rest density ρ_0 , pressure P, specific enthalpy ξc^2
	- **–** electromagnetic field: E , B
- ideal MHD equations:
	- **–** Maxwell: ∇ · B = 0 = ∇ × E + ∂B c∂t , $\nabla \times \mathbf{B} =$ ∂E c∂t $+$ 4π $\mathcal{C}_{0}^{(n)}$ $\mathrm{\bf J} \, , \, \, \nabla \cdot \mathrm{\bf E} =$ 4π $\mathcal{C}_{0}^{(n)}$ J^0
	- **–** Ohm: E + V $\mathcal{C}_{0}^{(n)}$ \times B = 0

- mass conservation:
$$
\frac{\partial(\gamma \rho_0)}{\partial t} + \nabla \cdot (\gamma \rho_0 \mathbf{V}) = 0
$$

– specific entropy conservation: ∂ ∂t $+\mathbf{V} \cdot \nabla \Big) \Big(\frac{P}{I}$ ρ_0^{Γ} \setminus $= 0$

- momentum:
$$
\gamma \rho_0 \left(\frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla \right) (\xi \gamma \mathbf{V}) = -\nabla P + \frac{J^0 \mathbf{E} + \mathbf{J} \times \mathbf{B}}{c}
$$

Integration

• assume

- **axisymmetry** $(\partial/\partial \phi = 0, E_{\phi} = 0)$
- **–** steady state $(\partial/\partial t = 0)$
- introduce the magnetic flux function A
	- $(A = const$ is a poloidal field-streamline)
- the full set of ideal MHD equations can be partially integrated to yield five fieldline constants:
	- ① the mass-to-magnetic flux ratio (continuity equation)
	- ② the field angular velocity (Faraday + Ohm)
	- $\circled{3}$ the specific angular momentum (ϕ component of momentum equation)
	- ④ the total energy-to-mass flux ratio (momentum equation along V)
	- ⑤ the adiabat (entropy equation)
- two integrals remain to be performed, involving the Bernoulli and transfield force-balance
- boundary conditions?

r **self-similarity**

If the boundary conditions on the conical disk surface $\theta = \theta_i$ are power laws:

 $B_r = -C_1 r^{F-2}$, $B_\phi = -C_2 r^{F-2}$, $V_r/c = C_3$, $V_\theta/c = -C_4$, $V_\phi/c = C_5$, $\rho_0 = \mathcal{C}_6 r^{2(F-2)}\,,\, P = \mathcal{C}_7 r^{2(F-2)}\,,$

then the variables r, θ are separable and the system reduces to ODEs. The solution should cross the Alfvén and the modified fast singular points. [Blandford & Payne – (nonrelativistic) Li, Chiueh, & Begelman (1992) and Contopoulos (1994) – (cold) Vlahakis & Königl (2003, astro-ph/0303482,0303483) – (including thermal/radiation effects)]

 F (the only parameter of the model) controls the current distribution: $I\propto\varpi B_\phi\propto r^{F-1}$

- $F > 1$: current-carrying jet (near the rotation axis)
- $F < 1$: return-current (possibly at large ϖ)

AGN outflows (Vlahakis & Königl in preparation) (modeling the sub-pc-scale jet in NGC 6251)

VLBI measurements show sub-pc scale acceleration of the radio-jet in NGC 6251, from $V(r = 0.53 \text{pc}) = 0.13c$ to $V(r = 1 \text{pc}) = 0.42c$ [Sudou, H., et al. 2000, PASJ, 52, 989]

Adopting the best fit model of Melia et al. 2002, ApJ, 567, 811 (consistent with the limits set by Jones et al. 1986, ApJ, 305, 684) and assuming $n \propto r^{-2}$ we find

- temperature: $T = 10^{12} \left[\frac{r(pc)}{0.026} \right]^{-4/3}$ α K
- sound speed: $\frac{C_s}{c} = 0.5573 \left[\frac{r(pc)}{0.026} \right]^{-2/3}$

• specific enthalpy:
$$
\xi = 1 + 0.466 \left[\frac{r(pc)}{0.026} \right]^{-4/3}
$$

Thus, for 0.53 pc $\lt r \lt 1$ pc the flow is supersonic and the quantity $\xi \gamma - 1$ changes from 0.01562 at $r = 0.53$ pc to 0.106 at $r = 1$ pc. As for hydrodynamic flows $\xi\gamma - 1 = const.$, the conclusion is that the flow is not hydrodynamically accelerated. We propose the magnetic acceleration as a plausible explanation of the observations.

GRB outflows (including time dependence, e [±]**, radiation)**

- $\bullet~~ \varpi_6 < \varpi < \varpi_8$: Magnetic acceleration $(\gamma \propto \varpi~, \rho_0 \propto \varpi^{-3})$
- $\omega = \omega_8$: cylindrical regime equipartition $\gamma_\infty \approx (-EB_\phi/4\pi\gamma\rho_0V_p)_\infty$

RELATIVISTIC MHD JETS **Mayschoss / May 13, 2003**

Collimation – Acceleration

- The flow is centrifugally accelerated for $V_{\phi}\gtrsim V_p\Rightarrow V_p\lesssim$ \overline{c} $\frac{c}{\sqrt{2}}$ 2 .
- Thermal acceleration is important for $\gamma \lesssim \xi_i$.
- For $\gamma \gtrsim \xi_i, \xi \approx 1$ and the magnetic acceleration takes over.
- How efficient is the magnetic acceleration? (σ_{∞} =?)
	- **–** For F > 1 the flow reaches asymptotically a rough equipartition between kinetic and Poynting fluxes ($\sigma_{\infty} \approx 1$). The Lorentz force is capable of collimating the flow reaching cylindrical asymptotics (the collimation is possible for $\gamma \lesssim$ a few $\times 10$, following $\gamma^2 \varpi \sim \mathcal{R}$).
	- $-$ For $F < 1$, the acceleration is more efficient. The collimation is not so strong and the flow eventually approaches conical asymptotics.
- Is the 100% acceleration efficiency possible $(\sigma_{\infty} = 0)$? Super-Alfvénic asymptotic solutions show that it is!

Crab-like pulsar winds

RELATIVISTIC MHD JETS **Mayschoss / May 13, 2003**

Summary of the previous results

- The shape is determined close to the source $(J_{\parallel} < 0)$
- Collimation is possible
- The acceleration continues at larger distances $(J_{\parallel} > 0)$
- The magnetic acceleration is eficient
- r self-similar: does not cover both ($J_{\parallel} \lessgtr 0$) cases ($F > 1$ is preferable)
- Alternatives:
	- **–** z self similar (captuers both cases)
	- **–** θ self-similar: applies to thermally driven flows near the axis (inside the light cylinder)
	- **–** Fully numerical studies

Meet the observations

boundary conditions on the disk $\, {\bf B}, \, T, \, \xi(e^\pm \, {\sf or} \ e^-p^+ \, ?), \, V \sim C_s, \,$ boundary conditions on the disk

B, T, $\xi(e^{\pm}$ or e^-p^+ ?), $V \sim C_s$,
 $V_{\phi} = \varpi \Omega$, size $(M_{\rm BH})$, \dot{M}

line shape $z = z(\varpi)$, V, B, ρ_0, P as function of distance along each fieldline

- bulk flow
- synchrotron emission (knowing B in space)
- positions of the shocks $\sim \gamma^2 c \Delta t$ (knowing γ) (Source variability Δt ?)
- final value of σ (asymptotic $\mathbf{B} \to \mathbf{B}$ in shocks)
- polarizarion
- asymptotic width opening angle