Perturbing relativistic, magnetized jets: instabilities, and the interaction with the environment

Nektarios Vlahakis University of Athens

Outline

- relativistic jet properties
- linear stability analysis and resulting growth rates
- "body" and "surface" interactions the Riemann problem

Astrophysical jet examples

Relativistic jet models: Why magnetic fields

• Hydrodynamics give Lorentz factors $\gamma \sim k_{\rm B} T_i/m_p c^2$ – need very high initial temperatures T_i to explain observations

• Hydrodynamic acceleration is a fast process (saturates at distances where gravity is still important) while observations imply pc-scale acceleration

• Magnetic fields tap the rotational energy of central object or accretion disk

• "Clean" energy extraction – makes high $\gamma = \dot{\mathcal{E}}/Mc^2$ possible

• Radiation through shocks (particle acceleration and synchrotron/inverse Compton mechanisms) or magnetic reconnection

Polarization

(Marscher et al 2008, Nature)

observed $E_{\rm rad} \perp B_{\perp \rm los}$ (modified by Faraday rotation and relativistic effects)

Faraday RM gradients across the jet

helical field surrounding the emitting region (Gabuzda)

What magnetic fields can do

- \star extract energy (Poynting flux)
- \star extract angular momentum
- \star transfer energy and angular momentum to matter
- \star explain relatively large-scale acceleration
- \star self-collimation
- \star synchrotron emission
- \star polarization and RM maps

B field from advection, or dynamo, or cosmic battery

A unipolar inductor

current $\leftrightarrow B_{\phi}$ Poynting flux $\frac{c}{4\pi} EB_\phi$ is extracted (angular momentum as well) The Faraday disk could be the rotating accretion disk, or the frame dragging if energy is extracted from the ergosphere of a rotating black hole (Blandford & Znajek mechanism - the electromagnetic analogue of the Penrose mechanism)

Acceleration efficiency

• Analytical steady-state self-similar models (radial self-similar Blandford & Payne, Li, Chiueh & Begelman, Contopoulos & Lovelace, Vlahakis & Königl, and meridionally self-similar Sauty & Tsinganos, Vlahakis & Tsinganos) \rightarrow efficient conversion of Poynting to kinetic energy flux

• Verified and extended by axisymmetric numerical simulations (Komissarov, Vlahakis & Königl, Tchekhovskoy, McKinney & Narayan)

• role of environment: $\gamma \gtrsim 100$ achievable only for confined outflows (unconfined remain Poynting dominated)

Magnetohydrodynamics

• At small distances $V_{\phi} \gg V_p$, $|B_{\phi}| \ll B_p$. At large distances $V_{\phi} \ll V_p$, $|B_{\phi}| \gg B_p$.

• From Ferraro's law $V_{\phi} = r\Omega + V_p B_{\phi}/B_p$, where Ω integral of motion = rotation at base, we get $-B_{\phi}/B_p \approx r\Omega/V_p$, or, $-B_{\phi}/B_p \approx r/r_{\rm LC}$.

For a rotating BH-jet
\n
$$
\frac{|B_{\phi}|}{B_z} \approx 150 \left(\frac{r_j}{10^{16} \text{cm}}\right) \left(\frac{r_{\text{LC}}}{4GM/c^2}\right) \left(\frac{M}{10^8 M_{\odot}}\right)^{-1}
$$
\nFor a disk-jet $\frac{|B_{\phi}|}{B_z} \approx 20 \left(\frac{r_j}{10^{16} \text{cm}}\right) \left(\frac{r_0}{10GM/c^2}\right)^{-3/2} \left(\frac{M}{10^8 M_{\odot}}\right)^{-1}$

z

Ω

 $\overline{\Omega}$

r

Strong B_{ϕ} induces current-driven instabilities (Kruskal-Shafranov)

Interaction with the environment \rightarrow Kelvin-Helmholtz instabilities

Stability of axisymmetric solutions (analytical or numerical)? Role of B_z ? of inertia?

Relation with observations? (knot structure, jet bending, shocks, polarization degree, reconnection)

Marscher+ 2008, Nature

Stability analysis

• Why astrophysical jets are stable? (contrary to lab jets)

• 3D relativistic MHD simulations hard to cover the full jet range (one needs to simulate formation and propagation zone + environment)

interesting results for the jet-formation region (McKinney & Blandford, Tchekhovskoy, Narayan & McKinney)

RCAAM, Academy of Athens 8 March 2016

- our approach:
- focus on the propagation phase
- assume cylindrical unperturbed jet
- linear (normal mode) analysis
- A similar analysis from Hardee 2007 for $B_{\phi} = 0$ and Bodo+2013 for $V_{\phi}=0$

try to understand how a jet is transformed to stable configuration

first step to find the dependence of the growth rate on various jet parameters

Unperturbed flow

Unperturbed relativistic cylindrical jet

helical, axisymmetric, cylindrically symmetric and steady flow

$$
\mathbf{V}_0 = V_{0z}(r)\hat{z} + V_{0\phi}(r)\hat{\phi}, \quad \gamma_0 = \gamma_0(r) = (1 - V_{0z}^2 - V_{0\phi}^2)^{-1/2},
$$

$$
\mathbf{B}_0 = B_{0z}(r)\hat{z} + B_{0\phi}(r)\hat{\phi}, \quad \mathbf{E}_0 = (V_{0z}B_{0\phi} - V_{0\phi}B_{0z})\hat{r},
$$

$$
\rho_{00} = \rho_{00}(r), \quad \xi_0 = \xi_0(r), \quad \Pi_0 = \frac{\Gamma - 1}{\Gamma}(\xi_0 - 1)\rho_{00} + \frac{B_0^2 - E_0^2}{2}
$$

$$
\text{Equilibrium condition} \quad \frac{B_{0\phi}^2 - E_0^2}{r} - \xi_0 \rho_{00} \frac{\gamma_0^2 V_{0\phi}^2}{r} + \frac{d\Pi_0}{dr} = 0 \,.
$$

.

Linearized equations

Q(r , z , φ , t) = Q0(r) + Q1(r) exp [i(mφ + kz − ωt)] γ1 ρ⁰¹ B1^z B1^φ iB1^r 10 × 12 array ξ1 = 0 function of r , ω , k V1^z V1^φ d (irV1r)/dr dΠ1/dr irV1^r Π¹

 $\bigg)$

reduces to (4 equations in real space)

$$
\frac{d}{dr}\left(\begin{array}{c}y_1\\y_2\end{array}\right)+\frac{1}{\mathcal{D}}\left(\begin{array}{cc}\mathcal{F}_{11}&\mathcal{F}_{12}\\ \mathcal{F}_{21}&\mathcal{F}_{22}\end{array}\right)\left(\begin{array}{c}y_1\\y_2\end{array}\right)=0\,,
$$

where the (complex) unknowns are

$$
y_1 = i \frac{rV_{1r}}{\omega_0}, \qquad y_2 = \Pi_1 + \frac{y_1}{r} \frac{d\Pi_0}{dr}
$$

 $(\mathcal{D}, \mathcal{F}_{ij})$ are determinants of 10×10 arrays).

Equivalently

$$
y_2'' + \left[\frac{\mathcal{F}_{11} + \mathcal{F}_{22}}{\mathcal{D}} + \frac{\mathcal{F}_{21}}{\mathcal{D}} \left(\frac{\mathcal{D}}{\mathcal{F}_{21}}\right)'\right] y_2' + \left[\frac{\mathcal{F}_{11}\mathcal{F}_{22} - \mathcal{F}_{12}\mathcal{F}_{21}}{\mathcal{D}^2} + \frac{\mathcal{F}_{21}}{\mathcal{D}} \left(\frac{\mathcal{F}_{22}}{\mathcal{F}_{21}}\right)'\right] y_2 = 0,
$$

which for uniform flows with $V_{0\phi}=0$, $B_{0\phi}=0$, reduces to Bessel.

RCAAM, Academy of Athens 8 March 2016

Eigenvalue problem

• solve the problem inside the jet (attention to regularity condition on the axis)

• similarly in the environment (solution vanishes at ∞)

• Match the solutions at r_i : $\llbracket y_1 \rrbracket = 0, \llbracket y_2 \rrbracket = 0 \longrightarrow$ dispersion relation \star spatial approach: $\omega = \Re \omega$ and $\Re k = \Re k(\omega), \Im k = \Im k(\omega)$ $Q = Q_0(r) + Q_1(r)e^{-\Im kz}e^{i(m\phi + \Re kz - \omega t)}$ \star temporal approach: $k = \Re k$ and $\Re \omega = \Re \omega(k), \Im \omega = \Im \omega(k)$ $Q = Q_0(r) + Q_1(r)e^{\Im\omega t}e^{i(m\phi + kz - \Re\omega t)}$

Unperturbed jet solutions Try to mimic the Komissarov et al simulation results (for AGN and GRB jets)

• cold, nonrotating jet

$$
\mathbf{V}_0 = V_0(r)\hat{z}, \quad \gamma_0 = \gamma_0(r) = (1 - V_0^2)^{-1/2},
$$

$$
\mathbf{B}_0 = B_{0z}(r)\hat{z} + B_{0\phi}(r)\hat{\phi}, \quad \mathbf{E}_0 = V_0 B_{0\phi}\hat{r},
$$

$$
\rho_{00} = \rho_{00}(r), \quad \xi_0 = 1.
$$

• Equilibrium condition ("force-free")

$$
\frac{B_{0\phi}^2/\gamma_0^2}{r} + \frac{d}{dr}\left(\frac{B_{0z}^2 + B_{0\phi}^2/\gamma_0^2}{2}\right) = 0\,,
$$

relates B_{0z} with $B_{0\phi}/\gamma_0$.

RCAAM, Academy of Athens 8 March 2016

A cold, nonrotating solution:

$$
B_{0z} = \frac{B_j}{\left[1 + (r/r_0)^2\right]^{\zeta}}, \quad B_{0\phi} = -\gamma_0 B_{0z} \sqrt{\frac{\left[1 + (r/r_0)^2\right]^{2\zeta} - 1 - 2\zeta(r/r_0)^2}{\left(2\zeta - 1\right)\left(r/r_0\right)^2}}.
$$

 r_0 , ζ free parameters, γ_0 , ρ_{00} free functions.

Formation of core crucial for the acceleration. The bunching function $\mathcal{S}\equiv$ S $\widehat{\pi r^2}\, B_{0z}$ $\overline{\int_{0}^{r}}$ $\int_0^T B_{0z} \frac{2\pi r dr}{dS}$ is related to the acceleration efficiency $\sigma=$ 1 \mathcal{S}_f $\frac{\delta f}{\delta} - 1$, where \mathcal{S}_f integral of motion $∼ 0.9$. Since $\mathcal{S} \approx 1 - \zeta$ we get $\sigma =$ $1-\zeta$ $\zeta - 0.1$ $= 0.8.$

• choice of $\gamma_0(r)$:

From Ferraro's law $V_{0\phi} = r\Omega + V_{0z}B_{0\phi}/B_{0z}$, where Ω integral of motion, we get $-B_{0\phi}/B_{0z} \approx r\Omega/V_{0z}$. Using the given expressions of $B_{0\phi}/\gamma_0$, B_{0z} , $\gamma_0 =$ $\sqrt{2}$ $1 + r_0^2 \Omega^2 \frac{(2\zeta - 1)(r/r_0)^4}{[1 + (r_0/r_0)^2]^2\zeta}$ $\sqrt{1+(r/r_0)^2}^2$ $\frac{(r/r_0)}{-1-2\zeta(r/r_0)^2}$

On the axis $\frac{\gamma_0 V_0}{\Omega}$ Ω $\begin{array}{c} \hline \end{array}$ $\overline{}$ \vert_{axis} = r_0 $\frac{'}{'}$ $\overline{\zeta}$ (gives $\Omega|_{axis}$ for given $\gamma_{0axis},\,r_0$).

The choice of r_0 , $\Omega(r)$ controls the pitch $B_{0\phi}/(rB_{0z})$, and the values of γ_0 on the axis and the jet surface.

left: density/field lines, right: Lorentz factor/current lines (jet boundary $z\propto r^{1.5})$ Uniform rotation $\rightarrow \gamma$ increases with r

Differential rotation \rightarrow slow envelope and faster decrease of B_{ϕ}

• choice of $\rho_{00}(r)$:

This comes from the mass-to-magnetic flux ratio integral $\frac{\gamma_0 \rho_{00} V_0}{B_0}$ B_{0z} , which is assumed constant in the simulations. So $\rho_{00} \propto B_{0z}/\tilde{\gamma}_0$. The constant of proportionality from the value of $\sigma=$ $B_{0\phi}^2/\gamma_0^2$ ρ_{00} $\begin{bmatrix} \end{bmatrix}$ $\Big\}$ $\Big\}$ $r=r_j$.

• external medium:

uniform, static, with zero $B_{0\phi}$ and $V_{0\phi} \rightarrow$ Bessel. In all the following a thermal pressure is assumed, $\xi_e = 1.01$ (the value of ξ_e controls the density ratio). A cold, magnetized environment gives approximatelly same results.

Ω=const, -B_φ/B_z=31 r /r_j

 $Q = Q_0(r) + Q_1(r)e^{-\Im kz}e^{i(m\phi + \Re kz - \omega t)}$

growth length = $1/(-\Im k) \sim r_i/0.2 = 5r_i$

nonlinear effects important after a few $10r_i$

growth time \approx growth length ($c=1$)

growth rate $\approx -\Im k \sim 0.2/r_i$

in rough agreement with nonrelativistic linear studies which predict growth rates in comoving frame $\Gamma_{\rm co} {\sim}$ $\overline{v_A}$ $10r_0$ (Appl et al)

in the lab frame
$$
\Gamma = \frac{\Gamma_{\text{co}}}{\langle \gamma \rangle} \approx 0.2/r_j
$$

\n $(v_A = \sqrt{\frac{\sigma}{\sigma+1}} \sim \frac{2}{3}, \quad r_0 = 0.1r_j, \quad \langle \gamma \rangle \sim 5)$

Ω=const, ω=0.56, k=0.77-i 0.12

Ω=const, ω=5, k=7.47-i 0.22

Ω=const, -B_φ/B_z=22 r /r_j

$$
m=1, \Omega=const
$$

Ω=const, ω=2.36, k=3.78-i 0.24

variable Ω

m=1, variable Ω

variable Ω , ω=0.55, k=0.84-i 0.13

variable Ω, ω=3.25, k=7.56-i 0.35

Summary – Discussion – Next steps

- \star Kink instability in principle is in action (similar to nonrelativistic)
- \star Low $(|B_{\phi}|/B_z)_{\text{co}}$, low σ , high γ , stabilize
- \star The flow is significantly disrupted after a few $10r_j$ (nonlinear evolution through simulations only)
- Explore the parameter space for kink and other modes
- colder/moving environment? other jet equilibrium models? role of velocity shear?
- use the eigenstates as initial conditions in numerical studies how the jet is transformed to a stable configuration?
- during acceleration? effect of poloidal curvature and lateral expansion of jet? (causality)