# Perturbing relativistic, magnetized jets: instabilities, and the interaction with the environment

Nektarios Vlahakis University of Athens

Outline

- relativistic jet properties
- linear stability analysis and resulting growth rates
- "body" and "surface" interactions the Riemann problem

## **Astrophysical jet examples**









## **Relativistic jet models: Why magnetic fields**

• Hydrodynamics give Lorentz factors  $\gamma \sim k_{\rm B}T_i/m_pc^2$  – need very high initial temperatures  $T_i$  to explain observations

 Hydrodynamic acceleration is a fast process (saturates at distances where gravity is still important) while observations imply pc-scale acceleration

 Magnetic fields tap the rotational energy of central object or accretion disk

• "Clean" energy extraction – makes high  $\gamma = \dot{\mathcal{E}}/\dot{M}c^2$  possible

 Radiation through shocks (particle acceleration and synchrotron/inverse Compton mechanisms) or magnetic reconnection

## **Polarization**



#### (Marscher et al 2008, Nature)

observed  $E_{rad} \perp B_{\perp los}$ (modified by Faraday rotation and relativistic effects)

#### Faraday RM gradients across the jet



helical field surrounding the emitting region (Gabuzda)

#### What magnetic fields can do

- \* extract energy (Poynting flux)
- ★ extract angular momentum
- ★ transfer energy and angular momentum to matter
- ★ explain relatively large-scale acceleration
- ★ self-collimation
- ★ synchrotron emission
- ⋆ polarization and RM maps



*B* field from advection, or dynamo, or cosmic battery



## A unipolar inductor



current  $\leftrightarrow B_{\phi}$ Poynting flux  $\frac{c}{4\pi}EB_{\phi}$  is extracted (angular momentum as well) The Faraday disk could be the rotating accretion disk, or the frame dragging if energy is extracted from the ergosphere of a rotating black hole (Blandford & Znajek mechanism - the electromagnetic analogue of the Penrose mechanism)

## **Acceleration efficiency**

Analytical steady-state self-similar models
 (radial self-similar Blandford & Payne, Li, Chiueh & Begelman,
 Contopoulos & Lovelace, Vlahakis & Königl, and meridionally
 self-similar Sauty & Tsinganos, Vlahakis & Tsinganos)
 → efficient conversion of Poynting to kinetic energy flux

 Verified and extended by axisymmetric numerical simulations (Komissarov, Vlahakis & Königl, Tchekhovskoy, McKinney & Narayan)

• role of environment:  $\gamma\gtrsim 100$  achievable only for confined outflows (unconfined remain Poynting dominated)



RCAAM, Academy of Athens

8 March 2016

## Magnetohydrodynamics

 successfully explain the main characteristics

• At small distances  $V_{\phi} \gg V_p$ ,  $|B_{\phi}| \ll B_p$ . At large distances  $V_{\phi} \ll V_p$ ,  $|B_{\phi}| \gg B_p$ .

• From Ferraro's law  $V_{\phi} = r\Omega + V_p B_{\phi}/B_p$ , where  $\Omega$  integral of motion = rotation at base, we get  $-B_{\phi}/B_p \approx r\Omega/V_p$ , or,  $-B_{\phi}/B_p \approx r/r_{\rm LC}$ .

$$\frac{|B_{\phi}|}{B_{z}} \approx 150 \left(\frac{r_{j}}{10^{16} \text{cm}}\right) \left(\frac{r_{\text{LC}}}{4GM/c^{2}}\right) \left(\frac{M}{10^{8}M_{\odot}}\right)^{-1}$$
For a disk-jet  $\frac{|B_{\phi}|}{B_{z}} \approx 20 \left(\frac{r_{j}}{10^{16} \text{cm}}\right) \left(\frac{r_{0}}{10GM/c^{2}}\right)^{-3/2} \left(\frac{M}{10^{8}M_{\odot}}\right)^{-1}$ 

For a rotating BH-iet

ΛZ

Strong  $B_{\phi}$  induces current-driven instabilities (Kruskal-Shafranov)



Interaction with the environment  $\rightarrow$  Kelvin-Helmholtz instabilities

Stability of axisymmetric solutions (analytical or numerical)? Role of  $B_z$ ? of inertia?

Relation with observations? (knot structure, jet bending, shocks, polarization degree, reconnection)















#### Marscher+ 2008, Nature



## **Stability analysis**

• Why astrophysical jets are stable? (contrary to lab jets)

 3D relativistic MHD simulations hard to cover the full jet range (one needs to simulate formation and propagation zone + environment)

interesting results for the jet-formation region (McKinney & Blandford, Tchekhovskoy, Narayan & McKinney)



RCAAM, Academy of Athens

- our approach:
- focus on the propagation phase
- assume cylindrical unperturbed jet
- linear (normal mode) analysis
- A similar analysis from Hardee 2007 for  $B_{\phi} = 0$  and Bodo+2013 for  $V_{\phi} = 0$

try to understand how a jet is transformed to stable configuration

first step to find the dependence of the growth rate on various jet parameters

#### **Unperturbed flow**

#### Unperturbed relativistic cylindrical jet

helical, axisymmetric, cylindrically symmetric and steady flow

$$V_{0} = V_{0z}(r)\hat{z} + V_{0\phi}(r)\hat{\phi}, \quad \gamma_{0} = \gamma_{0}(r) = (1 - V_{0z}^{2} - V_{0\phi}^{2})^{-1/2},$$
$$B_{0} = B_{0z}(r)\hat{z} + B_{0\phi}(r)\hat{\phi}, \quad E_{0} = (V_{0z}B_{0\phi} - V_{0\phi}B_{0z})\hat{r},$$
$$\rho_{00} = \rho_{00}(r), \quad \xi_{0} = \xi_{0}(r), \quad \Pi_{0} = \frac{\Gamma - 1}{\Gamma} (\xi_{0} - 1) \rho_{00} + \frac{B_{0}^{2} - E_{0}^{2}}{2}$$

Equilibrium condition 
$$\frac{B_{0\phi}^2 - E_0^2}{r} - \xi_0 \rho_{00} \frac{\gamma_0^2 V_{0\phi}^2}{r} + \frac{d\Pi_0}{dr} = 0.$$

#### **Linearized equations**

$$\begin{split} Q(r\,,z\,,\phi\,,t) &= Q_0(r) + Q_1(r) \exp\left[i(m\phi + kz - \omega t)\right] \\ & \\ 10 \times 12 \text{ array} \\ \text{function of } r\,,\omega\,,k \end{split} \left( \begin{array}{c} \gamma_1 \\ \rho_{01} \\ B_{1z} \\ B_{1\phi} \\ iB_{1r} \\ \xi_1 \\ V_{1z} \\ V_{1\phi} \\ d\,(irV_{1r})/dr \\ d\Pi_1/dr \\ irV_{1r} \\ \Pi_1 \end{array} \right) &= 0 \end{split}$$

reduces to (4 equations in real space)

$$\frac{d}{dr} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \frac{1}{\mathcal{D}} \begin{pmatrix} \mathcal{F}_{11} & \mathcal{F}_{12} \\ \mathcal{F}_{21} & \mathcal{F}_{22} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = 0,$$

where the (complex) unknowns are

$$y_1 = i \frac{rV_{1r}}{\omega_0}, \qquad y_2 = \Pi_1 + \frac{y_1}{r} \frac{d\Pi_0}{dr}$$

 $(\mathcal{D}, \mathcal{F}_{ij} \text{ are determinants of } 10 \times 10 \text{ arrays}).$ 

#### Equivalently

$$y_{2}'' + \left[\frac{\mathcal{F}_{11} + \mathcal{F}_{22}}{\mathcal{D}} + \frac{\mathcal{F}_{21}}{\mathcal{D}}\left(\frac{\mathcal{D}}{\mathcal{F}_{21}}\right)'\right]y_{2}' + \left[\frac{\mathcal{F}_{11}\mathcal{F}_{22} - \mathcal{F}_{12}\mathcal{F}_{21}}{\mathcal{D}^{2}} + \frac{\mathcal{F}_{21}}{\mathcal{D}}\left(\frac{\mathcal{F}_{22}}{\mathcal{F}_{21}}\right)'\right]y_{2} = 0,$$

which for uniform flows with  $V_{0\phi} = 0$ ,  $B_{0\phi} = 0$ , reduces to Bessel.

RCAAM, Academy of Athens





## **Eigenvalue problem**

 solve the problem inside the jet (attention to regularity condition on the axis)

 $\bullet$  similarly in the environment (solution vanishes at  $\infty)$ 

• Match the solutions at  $r_j$ :  $\llbracket y_1 \rrbracket = 0, \llbracket y_2 \rrbracket = 0 \longrightarrow$ dispersion relation \* spatial approach:  $\omega = \Re \omega$  and  $\Re k = \Re k(\omega), \Im k = \Im k(\omega)$   $Q = Q_0(r) + Q_1(r)e^{-\Im kz}e^{i(m\phi + \Re kz - \omega t)}$ \* temporal approach:  $k = \Re k$  and  $\Re \omega = \Re \omega(k), \Im \omega = \Im \omega(k)$  $Q = Q_0(r) + Q_1(r)e^{\Im \omega t}e^{i(m\phi + kz - \Re \omega t)}$ 

#### Unperturbed jet solutions Try to mimic the Komissarov et al simulation results (for AGN and GRB jets)

• cold, nonrotating jet

$$V_0 = V_0(r)\hat{z}, \quad \gamma_0 = \gamma_0(r) = (1 - V_0^2)^{-1/2},$$
$$B_0 = B_{0z}(r)\hat{z} + B_{0\phi}(r)\hat{\phi}, \quad E_0 = V_0 B_{0\phi}\hat{r},$$
$$\rho_{00} = \rho_{00}(r), \quad \xi_0 = 1.$$

• Equilibrium condition ("force-free")

$$\frac{B_{0\phi}^2/\gamma_0^2}{r} + \frac{d}{dr} \left( \frac{B_{0z}^2 + B_{0\phi}^2/\gamma_0^2}{2} \right) = 0 \,,$$

relates  $B_{0z}$  with  $B_{0\phi}/\gamma_0$ .

RCAAM, Academy of Athens

A cold, nonrotating solution:

$$B_{0z} = \frac{B_j}{\left[1 + (r/r_0)^2\right]^{\zeta}}, \quad B_{0\phi} = -\gamma_0 B_{0z} \sqrt{\frac{\left[1 + (r/r_0)^2\right]^{2\zeta} - 1 - 2\zeta(r/r_0)^2}{(2\zeta - 1)(r/r_0)^2}}.$$

 $r_0, \zeta$  free parameters,  $\gamma_0, \rho_{00}$  free functions.



Formation of core crucial for the acceleration. The bunching function  $S \equiv \frac{\overbrace{\pi r^2}^S B_{0z}}{\int_0^r B_{0z} 2\pi r dr}$  is related to the acceleration efficiency  $\sigma = \frac{1}{\frac{S_f}{S} - 1}$ , where  $S_f$  integral of motion  $\sim 0.9$ . Since  $S \approx 1 - \zeta$  we get  $\sigma = \frac{1 - \zeta}{\zeta - 0.1} = 0.8$ . • choice of  $\gamma_0(r)$ :

From Ferraro's law  $V_{0\phi} = r\Omega + V_{0z}B_{0\phi}/B_{0z}$ , where  $\Omega$  integral of motion, we get  $-B_{0\phi}/B_{0z} \approx r\Omega/V_{0z}$ . Using the given expressions of  $B_{0\phi}/\gamma_0$ ,  $B_{0z}$ ,  $\gamma_0 = \sqrt{1 + r_0^2 \Omega^2 \frac{(2\zeta - 1)(r/r_0)^4}{[1 + (r/r_0)^2]^{2\zeta} - 1 - 2\zeta(r/r_0)^2}}$ .

On the axis  $\left. \frac{\gamma_0 V_0}{\Omega} \right|_{axis} = \frac{r_0}{\sqrt{\zeta}}$  (gives  $\Omega|_{axis}$  for given  $\gamma_{0axis}$ ,  $r_0$ ).

The choice of  $r_0$ ,  $\Omega(r)$  controls the pitch  $B_{0\phi}/(rB_{0z})$ , and the values of  $\gamma_0$  on the axis and the jet surface.



left: density/field lines, right: Lorentz factor/current lines (jet boundary  $z \propto r^{1.5}$ ) Uniform rotation  $\rightarrow \gamma$  increases with r





Differential rotation  $\rightarrow$  slow envelope and faster decrease of  $B_{\phi}$ 

• choice of  $\rho_{00}(r)$ :

This comes from the mass-to-magnetic flux ratio integral  $\frac{\gamma_0 \rho_{00} V_0}{B_{0z}}$ , which is assumed constant in the simulations. So  $\rho_{00} \propto B_{0z}/\gamma_0$ . The constant of proportionality from the value of  $\sigma = \frac{B_{0\phi}^2/\gamma_0^2}{\rho_{00}}\Big|_{r=r_i}$ .

• external medium:

uniform, static, with zero  $B_{0\phi}$  and  $V_{0\phi} \rightarrow$  Bessel. In all the following a thermal pressure is assumed,  $\xi_e = 1.01$ (the value of  $\xi_e$  controls the density ratio). A cold, magnetized environment gives approximately same results.

Ω=const, -B<sub> $\phi$ </sub>/B<sub>z</sub>=31 r /r<sub>j</sub>



A "fundamental" and multiple "reflective" modes m=1,  $\Omega$ =const 10 Re k r -Im k r 1 0.1 0.01 0.01 0.1 10 ω r<sub>i</sub>/c

 $Q = Q_0(r) + Q_1(r)e^{-\Im kz}e^{i(m\phi + \Re kz - \omega t)}$ 

growth length =  $1/(-\Im k) \sim r_j/0.2 = 5r_j$ 

nonlinear effects important after a few  $10r_j$ 

growth time  $\approx$  growth length (c = 1)

growth rate  $\approx -\Im k \sim 0.2/r_j$ 

in rough agreement with nonrelativistic linear studies which predict growth rates in comoving frame  $\Gamma_{\rm co} \sim \frac{v_A}{10r_0}$  (Appl et al)

in the lab frame 
$$\Gamma = \frac{\Gamma_{co}}{\langle \gamma \rangle} \approx 0.2/r_j$$
  
 $(v_A = \sqrt{\frac{\sigma}{\sigma+1}} \sim \frac{2}{3}, \quad r_0 = 0.1r_j, \quad \langle \gamma \rangle \sim 5)$ 

Ω=const, ω=0.56, k=0.77-i 0.12







Ω=const,  $\omega$ =5, k=7.47-i 0.22







Ω=const, -B<sub> $\phi$ </sub>/B<sub>z</sub>=22 r /r<sub>j</sub>



m=1, 
$$\Omega$$
=const



Ω=const, ω=2.36, k=3.78-i 0.24



#### variable $\Omega$



#### m=1, variable $\Omega$



variable  $\Omega$ ,  $\omega$ =0.55, k=0.84-i 0.13





variable Ω, ω=3.25, k=7.56-i 0.35



#### **Summary – Discussion – Next steps**

- ★ Kink instability in principle is in action (similar to nonrelativistic)
- \* Low  $(|B_{\phi}|/B_z)_{co}$ , low  $\sigma$ , high  $\gamma$ , stabilize
- \* The flow is significantly disrupted after a few  $10r_j$  (nonlinear evolution through simulations only)
- Explore the parameter space for kink and other modes
- colder/moving environment? other jet equilibrium models? role of velocity shear?
- use the eigenstates as initial conditions in numerical studies how the jet is transformed to a stable configuration?
- during acceleration? effect of poloidal curvature and lateral expansion of jet? (causality)