Rarefaction acceleration in magnetized gamma-ray burst jets

Nektarios Vlahakis University of Athens

Outline

- introduction on GRBs
- "standard" magnetic acceleration caveat $\gamma \vartheta \sim 1$
- rarefaction wave application to GRBs

RCAAM, ACADEMY OF ATHENS

Observations

- 1967: the first GRB Vela satellites (first publication on 1973)
- 1991: launch of ComptonGammaRayObservatory Burst and Transient Experiment (BATSE) 2704 GRBs (until May 2000) isotropic distribution (cosmological origin)
- 1997: Beppo(in honor of Giuseppe Occhialini) Satellite per Astronomia X X-ray afterglow arc-min accuracy positions optical detection GRB afterglow at longer wavelengths identification of the host galaxy measurement of redshift distances
- HighEnergyTransientExplorer-2

SWIFT

FERMI

GRB prompt emission

• Fluence $F_{\gamma} = 10^{-8} - 10^{-3} \text{ergs/cm}^2$ energy

$$E_{\gamma} = 10^{53} \left(\frac{D}{3 \text{ Gpc}}\right)^2 \left(\frac{F_{\gamma}}{10^{-4} \frac{\text{ergs}}{\text{cm}^2}}\right) \left(\frac{\Delta\Omega}{4\pi}\right) \text{ergs}$$

collimation
$$\begin{cases} \text{reduces } E_{\gamma} \\ \text{increases the rate of events} \end{cases}$$

- non-thermal spectrum
- Duration $\Delta t = 10^{-3} 10^{3}$ s long bursts > 2 s, short bursts < 2 s
- Variability $\delta t = \Delta t / N$, N = 1 1000compact source $R < c \ \delta t \sim 1000 \ {\rm km}$ huge optical depth for $\gamma \gamma \rightarrow e^+ e^$ compactness problem: how the photons escape?

 $\begin{array}{l} \mbox{relativistic motion} \\ \gamma\gtrsim 100 \end{array} \left\{ \begin{array}{l} R<\gamma^2 c\; \delta t \\ \mbox{blueshifted photon energy} \\ \mbox{beaming} \end{array} \right.$ optically thin

Afterglow

(Stanek et al.)

- from X-rays to radio
- fading broken power law "panchromatic" break $F_{\nu} \propto \begin{cases} t^{-a_1}, t < t_o \\ t^{-a_2}, t > t_o \end{cases}$ not really panchromatic
- non-thermal spectrum (synchrotron + inverse Compton)

The internal-external shocks model

mass outflow (pancake) N shells (moving with different $\gamma \gg 1$)

internal shocks (a few tens of kinetic energy \rightarrow **GRB**)

external shock interaction with ISM (or wind) (when the flow accumulates $M_{ISM} = M/\gamma$) As γ decreases with time, kinetic energy \rightarrow X-rays ... radio \rightarrow Afterglow

Beaming – Collimation

- During the afterglow γ decreases When $1/\gamma > \vartheta$ the F(t) decreases faster The broken power-law justifies collimation
- at the start of the afterglow phase, $\gamma\vartheta\gg 1$

• afterglow fits
$$\rightarrow \begin{cases} \text{opening half-angle } \vartheta = 1^{\circ} - 10^{\circ} \\ \text{energy } E_{\gamma} = 10^{50} - 10^{51} \text{ergs} \\ E_{\text{afterglow}} = 10^{50} - 10^{51} \text{ergs} \end{cases}$$

Progenitors of long GRBs: collapsar model

Magnetized outflows

• Extracted energy per time $\dot{\mathcal{E}}$ mainly in the form of Poynting flux (magnetic fields tap the rotational energy of the compact object or disk) $\dot{\mathcal{E}} = \frac{c}{4\pi} \frac{r}{r_{lc}} B_p \ B_{\phi} \times (\text{ area }) \approx \frac{c}{2} B^2 r^2$

- Ejected mass per time \dot{M}

• The $\mu\equiv \dot{\mathcal{E}}/\dot{M}c^2$ gives the maximum possible bulk Lorentz factor of the flow

Magnetohydrodynamics:

matter (velocity, density, pressure)+ large scale electromagnetic field

"Standard" model for magnetic acceleration

component of the momentum equation

 $\gamma n(V \cdot \nabla) (\gamma w V) = -\nabla p + J^0 E + J \times B$ along the flow (wind equation): $\gamma \approx \mu - \mathcal{F}$ where $\mathcal{F} \propto r^2 n \gamma V_p = r^2 \times \text{mass flux}$

since mass flux $imes \delta S =$ const, ${\cal F} \propto r^2/\delta S \propto r/\delta \ell_\perp$

acceleration requires the separation between streamlines to increase faster than the cylindrical radius

the collimation-acceleration paradigm: $\mathcal{F} \downarrow$ through stronger collimation of the inner streamlines relative to the outer ones (differential collimation)

left: density/field lines, right: Lorentz factor/current lines (wall shape $z \propto r^{1.5}$) Differential rotation \rightarrow slow envelope

RCAAM, ACADEMY OF ATHENS

 γ (increasing), $\gamma\sigma$ (decreasing), and μ (constant) efficiency > 50%

RCAAM, ACADEMY OF ATHENS

Caveat $\gamma \vartheta \sim 1$ of the "standard" model

- very narrow jets ($\vartheta < 1^{\circ}$ for $\gamma > 100$) \longrightarrow early breaks or no breaks at all
- this is a result of causality (across jet): outer lines need to know that there is space to expand
- Mach cone half-opening $\theta_m > \vartheta$ With $\sin \theta_m = \frac{\gamma_f c_f}{\gamma V_p} \approx \frac{\sigma^{1/2}}{\gamma}$ (where σ = Poynting-to-kinetic energy flux ratio) the requirement for causality yields $\gamma \vartheta < \sigma^{1/2}$. For efficient acceleration ($\sigma \sim 1$ or larger) we always get $\gamma \vartheta \sim 1$

Rarefaction acceleration

Rarefaction acceleration

Rarefaction simple waves

At t = 0 two uniform states are in contact:

This Riemann problem allows self-similar solutions that depend only on $\xi = x/t$.

• when right=vacuum, simple rarefaction wave

RCAAM, ACADEMY OF ATHENS

for the cold case the Riemann invariants imply

$$v_x = \frac{1}{\gamma_j} \frac{2\sigma_j^{1/2}}{1 + \sigma_j} \left[1 - \left(\frac{\rho}{\rho_j}\right)^{1/2} \right], \ \gamma = \frac{\gamma_j \left(1 + \sigma_j\right)}{1 + \sigma_j \rho/\rho_j}, \ \rho = \frac{4\rho_j}{\sigma_j} \sinh^2 \left[\frac{1}{3} \operatorname{arcsinh} \left(\sigma_j^{1/2} - \frac{\mu_j x}{2 t}\right) \right]$$
$$V_{head} = -\frac{\sigma_j^{1/2}}{\gamma_j}, \qquad V_{tail} = \frac{1}{\gamma_j} \frac{2\sigma_j^{1/2}}{1 + \sigma_j}, \qquad \Delta \vartheta = V_{tail} < 1/\gamma_i$$

The colour image in the Minkowski diagrams represents the distribution of the Lorentz factor and the contours show the worldlines of fluid parcels initially located at $x_i = -1, -0.8, -0.6, -0.4, -0.2, -0.02, 0$.

Simulation results

Komissarov, Vlahakis & Königl 2010

Steady-state rarefaction wave

Sapountzis & Vlahakis (in preparation)

- "flow around a corner"
- planar geometry
- ignoring B_p (nonzero B_y)
- similarity variable x/z (angle θ)

- generalization of the nonrelativistic, hydrodynamic rarefaction (e.g. Landau & Lifshitz)
- in addition, allow for inhomogeneity in the "left" state

right: combination of rarefaction and nonuniform initial flow

Summary

- \star The collimation-acceleration paradigm provides a viable explanation of the dynamics of relativistic jets (similarly to non-relativistic ones)
 - bulk acceleration up to Lorentz factors \(\gamma_{\sigma} \ge > 0.5 \frac{\varnotheta}{Mc^2}\)
 however, \(\gamma\varnotheta\) 1 making the breaks problematic \(\frac{\varnotheta}{Mc^2}\)
- Rarefaction acceleration
 - further increases γ
 - makes GRB jets with $\gamma \vartheta \gg 1$
- ★ Future work
 - rarefaction in 3 dimensions?
 - use pressure distributions inside the star from stellar-evolution models;

also finite density of the exterior limits the terminal γ (?)