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outline
• introduction: astrophysical jets
• the MHD description

? acceleration – collimation
? models (semi-analytical – simulations)



Jets from Young Stars

(scale =1000 AU, V∞ = afew100km/s)
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Jets from Active Galactic Nuclei
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microquasars

scale-down of quasars

speed ∼ 0.9− 0.99c
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microquasars

scale-down of quasars

speed ∼ 0.9− 0.99c
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GRBs

? high Lorentz factors (compactness problem)

? collimated outflows (energy reservoir, achromatic afterglow
breaks)

RCAAM, ACADEMY OF ATHENS 21 February 2008



GRBs

? high Lorentz factors (compactness problem)

? collimated outflows (energy reservoir, achromatic afterglow
breaks)

+ similar characteristics

+ MHD offers a unified picture
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We need magnetic fields

? to extract energy (Poynting flux)

? to extract angular momentum

? to transfer energy and angular momentum to matter

? to explain relatively large-scale acceleration

? to collimate outflows and produce jets

? for synchrotron emission

? to explain polarization maps
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MHD (Magneto-Hydro-Dynamic) description

• How the jet is collimated and accelerated? Need to examine
outflows taking into account

– matter: velocity V , rest density ρ0, pressure P , specific enthalpy ξc2

– electromagnetic field: E ,B

• ideal MHD equations in special relativity:

– Maxwell:
∇ ·B = 0 = ∇×E +

∂B

c∂t
, ∇×B =

∂E

c∂t
+

4π

c
J , ∇ ·E =

4π

c
J0

– Ohm: E +
V

c
×B = 0

– mass conservation: ∂(γρ0)
∂t

+∇ · (γρ0V ) = 0

– specific entropy conservation:
(

∂

∂t
+ V · ∇

)(
P

ρΓ
0

)
= 0

– momentum: γρ0

(
∂

∂t
+ V · ∇

)
(ξγV ) = −∇P +

J0E + J ×B

c

• The system gives B, V , ρ0, P .
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Integrals of motion
under the assumption of steady-state and axisymmetry

From ∇ ·B = 0

Bp =
∇A× φ̂

$
, or, Bp = ∇×

(
A φ̂

$

)

A =
1
2π

∫∫
Bp · dS

From ∇×E = 0, E = −∇Φ
Because of axisymmetry Eφ = 0.
Combining with Ohm’s law
(E = −V ×B/c) we find V p ‖ Bp.

ϖ

z r

θ

ẑ

Bp

ŷ

x̂

B

Bϕ
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Because V p ‖ Bp we can write

V =
ΨA

4πγρ0
B+$Ωφ̂ ,

ΨA

4πγρ0
=

Vp

Bp
,

Vφ =
ΨA

4πγρ0
Bφ + $Ω =

Vp

Bp
Bφ + $Ω .

The Ω and ΨA are constants of
motion, Ω = Ω(A), ΨA = ΨA(A).

• Ω = angular velocity at the base

• ΨA = mass-to-magnetic flux ratio

The electric field E = −V × B/c =
−($Ω/c)φ̂ × Bp is a poloidal vector,
normal to Bp. Its magnitude is
E = $Ω

c Bp.

Bp

A

∆

Bφ

E

Vφ

Vp
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So far, we’ve used Maxwell’s eqs, Ohm’s law and the continuity.

The entropy eq gives P/ρΓ
0 = constant of motion (entropy).

We are left with the momentum equation

γρ0 (V · ∇) (ξγV ) = −∇P +
J0E + J ×B

c
, or,

γρ0 (V · ∇) (ξγV ) = −∇P +
(∇ ·E)E + (∇×B)×B

4π

Due to axisymmetry, the toroidal component can be integrated to give the total
angular momentum-to-mass flux ratio:

ξγ$Vφ −
$Bφ

ΨA
= L(A)
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Poloidal components of the momentum eq

γρ0 (V · ∇) (ξγV ) = −∇P +
(∇ ·E)E + (∇×B)×B

4π
⇔

fG + fT + fC + f I + fP + fE + fB = 0

fG = −γρ0ξ (V · ∇γ) V
fT = −γ2ρ0 (V · ∇ξ) V : “temperature” force
fC = $̂γ2ρ0ξV

2
φ /$ : centrifugal force

f I = −γ2ρ0ξ (V · ∇) V − fC

 inertial
force

fP = −∇P : pressure force
fE = (∇ ·E) E/4π : electric force
fB = (∇×B)×B/4π : magnetic force
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Acceleration mechanisms
• thermal (due to ∇P ) → velocities up to Cs

• magnetocentrifugal (beads on wire - Blandford & Payne)

– in reality due to magnetic pressure
– initial half-opening angle ϑ > 30o

– the ϑ > 30o not necessary for nonnegligible P
– velocities up to $0Ω

• relativistic thermal (thermal fireball) gives γ ∼ ξi,
where ξ = enthalpy

mass× c2.

• magnetic

All acceleration mechanisms can be seen in the energry conservation
equation

µ = ξγ +
Ω

ΨAc2
$|Bφ|

 where µ =

dE

dSdt
dM

dSdt
c2


So γ ↑ when ξ ↓ (thermal, relativistic thermal), or,
$|Bφ| ↓⇔ Ip ↓ (magnetocentrifugal, magnetic).
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The efficiency of the magnetic acceleration

IIII ϖ0

pB

Bφ

ϖΑ

pJ

ϖ

z

slow

, Vp

E

fast

Alfven

The Jp ×Bφ force strongly depends on
the angle between field-lines and
current-lines.

Are we free to choose these two lines?
NO! All MHD quantities are related to
each other and should be found by
solving the full system of equations.

From Ferraro’s law, Vφ = Vp

Bp
Bφ + $Ω →

$|Bφ| ≈ $2BpΩ/Vp. So, the transfield
force-balance determines the
acceleration.
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II

dl

ϖ

z A A+dA

The magnetic field minimizes its
energy under the condition of keeping
the magnetic flux constant.

So, $|Bφ| ↓ for decreasing

$2Bp =
$2

2π$dl⊥
(BpdS︸ ︷︷ ︸

dA

) ∝ $

dl⊥
.

Expansion with increasing dl⊥/$

leads to acceleration (Vlahakis 2004).
The expansion ends in a more-or-less
uniform distribution $2Bp ≈ A (in a
quasi-monopolar shape).
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Conclusions on the magnetic acceleration

II

dl

ϖ

z A A+dAIf we start with a uniform distribution
the magnetic energy is already
minimum → no acceleration. Example:
Michel’s (1969) solution which gives
γ∞ ≈ µ1/3 � µ.
Also Beskin et al (1998); Bogovalov (2001)
who found quasi-monopolar solutions.

For any other (more realistic) initial
field distribution we have efficient
acceleration!
(details and an analytical estimation of the efficiency in

Vlahakis 2004, ApSS 293, 67).
example: if we start with $2Bp/A = 2
we have asymptotically $2Bp/A = 1
→ 50% efficiency
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On the collimation

IIII ϖ0

pB

Bφ

ϖΑ

pJ

ϖ

z

slow

, Vp

E

fast

Alfven

The Jp ×Bφ force contributes to the
collimation (hoop-stress paradigm).
In relativistic flows the electric force plays
an opposite role (a manifestation of the
high inertia of the flow).

• collimation by an external wind
(Bogovalov & Tsinganos 2005, for AGN jets)

• surrounding medium may play a role
(in the collapsar model)

• self-collimation mainly works at small
distances where the velocities are
mildly relativistic (Vlahakis & Königl 2003)

RCAAM, ACADEMY OF ATHENS 21 February 2008



For γ � 1, the transfield force-balance gives

γ2$

R
≈
(

1− γ

µ

)
$∇ ln

∣∣∣∣ΨA

Ω

(
µ

γ
− 1
)∣∣∣∣· ∇A

|∇A|︸ ︷︷ ︸
O(1)

−
(

γ

$Ω/c

)2
$̂ ·∇A

|∇A|︸ ︷︷ ︸
O(1)

• If the last term is negligible then the curvature radius R ∼ γ2$ (� $).

Collimation more difficult, but not impossible!

$

R
= −$

∂2$

∂z2

(
Bz

Bp

)3

∼
($

z

)2

Combining the above, we get
γ ∼ z

$

• If the first term is negligible (quasi-radial flow) then

γ ≈ $Ω/c

(linear accelerator, Contopoulos & Kazanas 2002)
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r self-similarity

Assume that all physical quantities (velocity and magnetic field
components, pressure, density) scale as a power of r times a
function of θ (in spherical coordinates).

Br = rF−2C1(θ) , Bφ = rF−2C2(θ) ,

Vr/c = C3(θ) , Vθ/c = −C4(θ) , Vφ/c = C5(θ) ,

ρ0 = r2(F−2)C6(θ) , P = r2(F−2)C7(θ) .

The variables r , θ are separable and the system reduces to
ODEs.

• Blandford & Payne – (nonrelativistic)

• Li, Chiueh, & Begelman (1992) and Contopoulos (1994) – (cold)

• Vlahakis & Königl (2003, 2004) – (including thermal/radiation effects)
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Semi-analytic solutions for GRB Jets (NV & Königl 2001, 2003a,b)
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• $1 < $ < $6: Thermal acceleration - force free magnetic field
(γ ∝ $ , ρ0 ∝ $−3 , T ∝ $−1 , $Bφ = const, parabolic shape of fieldlines: z ∝ $2)

• $6 < $ < $8: Magnetic acceleration (γ ∝ $ , ρ0 ∝ $−3)
• $ = $8: cylindrical regime - equipartition γ∞ ≈ (−EBφ/4πγρ0Vp)∞
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• Thermal acceleration (γ ∝ $0.44 , ρ0 ∝ $−2.4 , T ∝ $−0.8 , Bφ ∝ $−1 , z ∝ $1.5)
• Magnetic acceleration (γ ∝ $0.44 , ρ0 ∝ $−2.4)
• cylindrical regime - equipartition γ∞ ≈ (−EBφ/4πγρ0Vp)∞
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? At $ = 108cm – where γ = 10 – the opening half-angle is already ϑ = 10o

? For $ > 108cm, collimation continues slowly (R ∼ γ2$)
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Semi-analytic solutions for AGN jets (Vlahakis & Königl 2004)
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Simulations of relativistic AGN jets
Komissarov, Barkov, Vlahakis, & Königl (2007)

Left panel shows density (colour) and magnetic field lines.
Right panel shows the Lorentz factor (colour) and the current lines.
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γσ (solid line), µ (dashed line) and γ (dash-dotted line) along a magnetic field
line as a function of cylindrical radius for models C1 (left panel), C2 (middle

panel) and A2 (right panel).
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(without a wall)

e.g. for Ψ = 10, ϑ = 57o → 40o

while for Ψ = 5, ϑ = 40o → 15o
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Simulations of relativistic GRB jets
Komissarov, Barkov, Vlahakis, & Königl, in preparation
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a
a

Bp$
2/(2A) a
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Summary

? MHD could explain the dynamics of relativistic jets:

• acceleration (the flow is initially thermally, and subsequently
magnetically accelerated up to Lorentz factors corresponding
to rough equipartition between kinetic and Poynting fluxes)

γ∞ ≈ 0.5
E

Mc2

• collimation
parabolic shape z ∝ $β+1 consistent with γ ∝ $β

? The paradigm of MHD jets works in a similar way in all
astrophysical jets!
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