Acceleration and collimation in relativistic astrophysical jets

Nektarios Vlahakis University of Athens

outline

- introduction: astrophysical jets
- the MHD description
	- \star acceleration collimation
	- \star models (semi-analytical simulations)

Jets from Young Stars

(scale =1000 AU, $V_{\infty} = a few100$ km/s)

Jets from Active Galactic Nuclei

Jets from Active Galactic Nuclei

 -2.0 -2.5
ARC SEC

M87 - RADIO POLARIZATION

 -3.0

 -3.5

 -4.0

 $0,0$

 -0.5

 -1.0

 -1.5

Superluminal Motion in the M87 Jet

microquasars

scale-down of quasars

speed $\sim 0.9 - 0.99c$

microquasars

scale-down of quasars speed $\sim 0.9 - 0.99c$

GRBs

- \star high Lorentz factors (compactness problem)
- \star collimated outflows (energy reservoir, achromatic afterglow breaks)

GRBs

- \star high Lorentz factors (compactness problem)
- \star collimated outflows (energy reservoir, achromatic afterglow breaks)

- ☞ similar characteristics
- ☞ MHD offers a unified picture

We need magnetic fields

- \star to extract energy (Poynting flux)
- \star to extract angular momentum
- \star to transfer energy and angular momentum to matter
- \star to explain relatively large-scale acceleration
- \star to collimate outflows and produce jets
- \star for synchrotron emission
- \star to explain polarization maps

MHD (Magneto-Hydro-Dynamic) description

- How the jet is collimated and accelerated? Need to examine outflows taking into account
	- **matter:** velocity V, rest density ρ_0 , pressure P, specific enthalpy ξc^2
	- **–** electromagnetic field: E , B
- ideal MHD equations in special relativity:
	- **–** Maxwell: $\nabla \cdot \boldsymbol{B} = 0 = \nabla \times \boldsymbol{E} + \nonumber$ $\partial \boldsymbol{B}$ $\frac{\partial \mathcal{L}}{\partial t}, \ \nabla \times \boldsymbol{B} =$ $\partial \bm{E}$ $\frac{\partial}{\partial t}$ + 4π \mathcal{C} $\boldsymbol{J} \,,\ \nabla \cdot \boldsymbol{E} = % \hbox{\boldmath $ \boldsymbol{J} \,|\, } \boldsymbol{J} \,+\, \boldsymbol{J} \,|\, \boldsymbol{J} \,|\, \boldsymbol{J} \,|\,$ 4π $\mathcal{C}_{0}^{(n)}$ J^0 **–** Ohm: E + V $\mathcal{C}_{0}^{(n)}$ \times **B** = 0 **–** mass conservation: [∂](γρ0) $\frac{\partial^2 P^{(0)}\partial t}{\partial t} + \nabla \cdot (\gamma \rho_0 \boldsymbol{V}) = 0$ **–** specific entropy conservation: $\left(\frac{\partial}{\partial t} + \bm{V} \cdot \nabla \right) \left(\frac{P}{\rho_0^{\Gamma}}\right)$ 0 \setminus $= 0$ **- momentum:** γρ₀ $\left(\frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla \right)$ $(\xi \gamma \boldsymbol{V}) = -\nabla P +$ $J^0\check{\bm E}+\bm J\times\bm B$ $\mathcal{C}_{0}^{(n)}$
- The system gives B, V, ρ_0, P .

Integrals of motion under the assumption of steady-state and axisymmetry

From
$$
\nabla \cdot \mathbf{B} = 0
$$

\n
$$
\mathbf{B}_p = \frac{\nabla A \times \hat{\boldsymbol{\phi}}}{\varpi}, \text{ or, } \mathbf{B}_p = \nabla \times \left(\frac{A \hat{\boldsymbol{\phi}}}{\varpi}\right)
$$
\n
$$
A = \frac{1}{2\pi} \iint \mathbf{B}_p \cdot d\mathbf{S}
$$

From $\nabla \times \mathbf{E} = 0$, $\mathbf{E} = -\nabla \Phi$ Because of axisymmetry $E_{\phi} = 0$. Combining with Ohm's law $(E = -V \times B/c)$ we find $V_p \parallel B_p$.

Because $\boldsymbol{V}_p \parallel \boldsymbol{B}_p$ we can write

$$
\boldsymbol{V}=\frac{\Psi_A}{4\pi\gamma\rho_0}\boldsymbol{B}+\varpi\Omega\hat{\boldsymbol{\phi}}\,,\quad \frac{\Psi_A}{4\pi\gamma\rho_0}=\frac{V_p}{B_p}\,,
$$

$$
V_{\phi} = \frac{\Psi_A}{4\pi \gamma \rho_0} B_{\phi} + \varpi \Omega = \frac{V_p}{B_p} B_{\phi} + \varpi \Omega \,.
$$

The Ω and Ψ_A are constants of motion, $\Omega = \Omega(A)$, $\Psi_A = \Psi_A(A)$.

- Ω = angular velocity at the base
- Ψ_A = mass-to-magnetic flux ratio

The electric field $E = -V \times B/c =$ $-(\varpi\Omega/c)\hat{\phi}\times B_p$ is a poloidal vector, normal to B_p . Its magnitude is $E=\frac{\varpi\Omega}{c}$ $\frac{\sigma\Omega}{c}B_p$.

So far, we've used Maxwell's eqs, Ohm's law and the continuity.

The entropy eq gives $P/\rho_0^{\Gamma} =$ constant of motion (entropy).

We are left with the momentum equation
\n
$$
\gamma \rho_0 (\mathbf{V} \cdot \nabla) (\xi \gamma \mathbf{V}) = -\nabla P + \frac{J^0 \mathbf{E} + \mathbf{J} \times \mathbf{B}}{c}, \text{ or,}
$$
\n
$$
\gamma \rho_0 (\mathbf{V} \cdot \nabla) (\xi \gamma \mathbf{V}) = -\nabla P + \frac{(\nabla \cdot \mathbf{E}) \mathbf{E} + (\nabla \times \mathbf{B}) \times \mathbf{B}}{4\pi}
$$

Due to axisymmetry, the toroidal component can be integrated to give the total angular momentum-to-mass flux ratio:

$$
\xi\gamma\varpi V_{\phi}-\frac{\varpi B_{\phi}}{\Psi_A}=L(A)
$$

Poloidal components of the momentum eq

$$
\gamma \rho_0 (\boldsymbol{V} \cdot \nabla) (\xi \gamma \boldsymbol{V}) = -\nabla P + \frac{(\nabla \cdot \boldsymbol{E}) \boldsymbol{E} + (\nabla \times \boldsymbol{B}) \times \boldsymbol{B}}{4\pi} \Leftrightarrow
$$

$$
\boldsymbol{f}_G + \boldsymbol{f}_T + \boldsymbol{f}_C + \boldsymbol{f}_I + \boldsymbol{f}_P + \boldsymbol{f}_E + \boldsymbol{f}_B = 0
$$

$$
f_G = -\gamma \rho_0 \xi (V \cdot \nabla \gamma) V
$$

\n
$$
f_T = -\gamma^2 \rho_0 (V \cdot \nabla \xi) V
$$
 : "temperature" force
\n
$$
f_C = \hat{\varpi} \gamma^2 \rho_0 \xi V_{\phi}^2 / \varpi
$$
 : centrifugal force
\n
$$
f_I = -\gamma^2 \rho_0 \xi (V \cdot \nabla) V - f_C
$$

\n
$$
f_P = -\nabla P
$$
 : pressure force
\n
$$
f_E = (\nabla \cdot E) E / 4\pi
$$
 : electric force
\n
$$
f_B = (\nabla \times B) \times B / 4\pi
$$
 : magnetic force

-
-

inertial force

 \mathcal{L}

 $\overline{\mathcal{L}}$

 \int

Acceleration mechanisms

- thermal (due to ∇P) \rightarrow velocities up to C_s
- magnetocentrifugal (beads on wire Blandford & Payne)
	- **–** in reality due to magnetic pressure
	- **–** initial half-opening angle $\vartheta > 30^\circ$
	- $-$ the $\vartheta > 30^{\circ}$ not necessary for nonnegligible P
	- **–** velocities up to $\varpi_0\Omega$
- relativistic thermal (thermal fireball) gives $\gamma \sim \xi_i$, where $\xi=$ enthalpy $\frac{\text{Equating }y}{\text{mass} \times c^2}$.
- magnetic

All acceleration mechanisms can be seen in the energry conservation equation

$$
\mu = \xi \gamma + \frac{\Omega}{\Psi_A c^2} \varpi |B_{\phi}| \left(\text{ where } \mu = \frac{\frac{dE}{dSdt}}{\frac{dM}{dSdt} c^2} \right)
$$

So $\gamma \uparrow$ when $\xi \downarrow$ (thermal, relativistic thermal), or, $\varpi|B_{\phi}| \downarrow \Leftrightarrow I_p \downarrow$ (magnetocentrifugal, magnetic).

The efficiency of the magnetic acceleration

The $\boldsymbol{J}_p\times\boldsymbol{B}_{\phi}$ force strongly depends on the angle between field-lines and current-lines.

Are we free to choose these two lines? NO! All MHD quantities are related to each other and should be found by solving the full system of equations. From Ferraro's law, $V_{\phi} = \frac{V_p}{B_x}$ $\frac{{\rm v}_p}{B_p} B_\phi + \varpi \Omega \rightarrow$ $|\varpi|B_{\phi}| \approx \varpi^2 B_p \Omega/V_p$. So, the transfield force-balance determines the acceleration.

The magnetic field minimizes its energy under the condition of keeping the magnetic flux constant.

So, $\varpi|B_{\phi}| \downarrow$ for decreasing ϖ^2

 $\varpi^2 B_p =$

 $2\pi \varpi dl_{\perp}$ dA dl_{\perp} Expansion with increasing dl_{\perp}/ϖ leads to acceleration (Vlahakis 2004). The expansion ends in a more-or-less uniform distribution $\varpi^2B_p \approx A$ (in a quasi-monopolar shape).

 $(B_p dS$

) ∝

 $\overline{\omega}$

.

Conclusions on the magnetic acceleration

A a A^{+dA}lf we start with a uniform distribution the magnetic energy is already minimum \rightarrow no acceleration. Example: Michel's (1969) solution which gives $\gamma_\infty \approx \mu^{1/3} \ll \mu.$

> Also Beskin et al (1998); Bogovalov (2001) who found quasi-monopolar solutions.

For any other (more realistic) initial field distribution we have efficient acceleration!

(details and an analytical estimation of the efficiency in

Vlahakis 2004, ApSS 293, 67). example: if we start with $\varpi^2B_p/A = 2$ we have asymptotically $\varpi^2B_p/A = 1$ \rightarrow 50% efficiency

On the collimation

- The $\boldsymbol{J}_p\times\boldsymbol{B}_{\phi}$ force contributes to the collimation (hoop-stress paradigm). In relativistic flows the electric force plays an opposite role (a manifestation of the high inertia of the flow).
	- collimation by an external wind (Bogovalov & Tsinganos 2005, for AGN jets)
	- surrounding medium may play a role (in the collapsar model)
	- self-collimation mainly works at small distances where the velocities are mildly relativistic (Vlahakis & Königl 2003)

For $\gamma \gg 1$, the transfield force-balance gives

$$
\gamma^2 \frac{\varpi}{\mathcal{R}} \approx \underbrace{\left(1 - \frac{\gamma}{\mu}\right) \varpi \nabla \ln \left| \frac{\Psi_A}{\Omega} \left(\frac{\mu}{\gamma} - 1\right) \right|}_{\mathcal{O}(1)} \cdot \frac{\nabla A}{|\nabla A|} - \left(\frac{\gamma}{\varpi \Omega/c}\right)^2 \underbrace{\frac{\hat{\varpi} \cdot \nabla A}{|\nabla A|}}_{\mathcal{O}(1)}.
$$

• If the last term is negligible then the curvature radius $\mathcal{R} \sim \gamma^2 \varpi~(\gg \varpi)$. Collimation more difficult, but not impossible!

$$
\frac{\varpi}{\mathcal{R}} = -\varpi \frac{\partial^2 \varpi}{\partial z^2} \left(\frac{B_z}{B_p}\right)^3 \sim \left(\frac{\varpi}{z}\right)^2
$$

Combining the above, we get

$$
\gamma \sim \frac{z}{\varpi}
$$

• If the first term is negligible (quasi-radial flow) then

 $\gamma \approx \varpi \Omega/c$

(linear accelerator, Contopoulos & Kazanas 2002)

r **self-similarity**

Assume that all physical quantities (velocity and magnetic field components, pressure, density) scale as a power of r times a function of θ (in spherical coordinates).

 $B_r = r^{F-2}C_1(\theta)$, $B_{\phi} = r^{F-2}C_2(\theta)$, $V_r/c = C_3(\theta)$, $V_\theta/c = -C_4(\theta)$, $V_\phi/c = C_5(\theta)$, $\rho_0 = r^{2(F-2)} \mathcal{C}_6(\theta) \, , \, P = r^{2(F-2)} \mathcal{C}_7(\theta) \, .$

The variables r , θ are separable and the system reduces to ODEs.

- Blandford & Payne (nonrelativistic)
- Li, Chiueh, & Begelman (1992) and Contopoulos (1994) (cold)
- Vlahakis & Königl (2003, 2004) (including thermal/radiation effects)

Semi-analytic solutions for GRB Jets (NV & Königl 2001, 2003a,b)

- $(\gamma\propto\varpi$, $\rho_0\propto\varpi^{-3}$, $T\propto\varpi^{-1}$, $\varpi B_\phi=const$, parabolic shape of fieldlines: $z\propto\varpi^2$) • $\varpi_6 < \varpi < \varpi_8$: Magnetic acceleration $(\gamma \propto \varpi \ , \rho_0 \propto \varpi^{-3})$
- $\omega = \omega_8$: cylindrical regime equipartition $\gamma_\infty \approx (-EB_\phi/4\pi\gamma\rho_0V_p)_\infty$

- Thermal acceleration $(\gamma\propto\varpi^{0.44}$, $\rho_0\propto\varpi^{-2.4}$, $T\propto\varpi^{-0.8}$, $B_\phi\propto\varpi^{-1}$, $z\propto\varpi^{1.5})$
- Magnetic acceleration ($\gamma \propto \varpi^{0.44}$, $\rho_0 \propto \varpi^{-2.4}$)
- cylindrical regime equipartition $\gamma_{\infty} \approx (-E B_{\phi}/4\pi \gamma \rho_0 V_p)_{\infty}$

 \star At $\varpi = 10^8$ cm – where $\gamma = 10$ – the opening half-angle is already $\vartheta = 10^o$ \star For $\varpi > 10^8$ cm, collimation continues slowly ($\mathcal{R} \sim \gamma^2 \varpi$)

Simulations of relativistic AGN jets

Komissarov, Barkov, Vlahakis, & Königl (2007)

Left panel shows density (colour) and magnetic field lines. Right panel shows the Lorentz factor (colour) and the current lines.

 $\gamma\sigma$ (solid line), μ (dashed line) and γ (dash-dotted line) along a magnetic field line as a function of cylindrical radius for models C1 (left panel), C2 (middle panel) and A2 (right panel).

(without a wall)

Simulations of relativistic GRB jets

Komissarov, Barkov, Vlahakis, & Königl, in preparation

Summary

 \star MHD could explain the dynamics of relativistic jets:

- acceleration (the flow is initially thermally, and subsequently magnetically accelerated up to Lorentz factors corresponding to rough equipartition between kinetic and Poynting fluxes) $\gamma_{\infty}\approx 0.5$ $\mathcal E$
- Mc^2 • collimation

parabolic shape $z \propto \varpi^{\beta+1}$ consistent with $\gamma \propto \varpi^{\beta}$

 \star The paradigm of MHD jets works in a similar way in all astrophysical jets!