Dynamics of Astrophysical Jets

Nektarios Vlahakis University of Athens

Outline

- introduction (observed jet characteristics)
- magnetohydrodynamics (collimation-acceleration)
- linear jet stability (resulting growth rates)

Examples of astrophysical jets

(scale =1000 AU, $V_{\infty} = a few 100$ km/s)

The jet from the M87 galaxy

(from Blandford+2018)

Image Credit: The EHT Multi-wavelength Science Working Group; the EHT Collaboration; ALMA (ESO/NAOJ/NRAO); the EVN; the EAVN Collaboration; VLBA (NRAO); the GMVA; the Hubble Space Telescope; the Neil Gehrels Swift Observatory; the Chandra X-ray Observatory; the Nuclear Spectroscopic Telescope Array; the Fermi-LAT Collaboration; the H.E.S.S collaboration; the MAGIC collaboration; the VERITAS collaboration; NASA and ESA. Composition by J. C. Algaba

Jet speed

Superluminal Motion in the M87 Jet

collimation at \sim 100 Schwarzschild radii

The jet shape (Nakamura & Asada 2013)

(Hada+2013)

jet from the disk or the black hole?

Transverse profile (Mertens+2016)

- they manage to observe sheath rotation: the value favors disk-driven (and not BH-driven) jet
- the spine?

(Park+2021)

X-ray binaries

γ -ray bursts

mildly relativistic

 $\gamma = a \text{ few } 100$

Basic questions

- source of matter/energy?
- bulk acceleration?
- collimation?
- interaction with environment?

Theoretical modeling

if energy source = thermal energy:

thermal acceleration is an efficient mechanism

gives terminal speed $\frac{m_p V_{\infty}^2}{2} \sim k_{\rm B} T_i$ for YSO jets or terminal Lorentz factors $\gamma_{\infty} m_p c^2 \sim k_{\rm B} T_i$ for relativistic jets

in both cases needs high initial temperatures T_i to explain the observed motions

magnetic acceleration more likely

Polarization

(Marscher et al 2008, Nature)

observed $E_{rad} \perp B_{\perp los}$ (modified by Faraday rotation and relativistic effects)

Faraday RM gradients across the jet

helical field surrounding the emitting region (Gabuzda)

Role of magnetic field

- * extract energy (Poynting flux)
- ★ extract angular momentum
- ★ transfer energy and angular momentum to matter
- ★ explain relatively large-scale acceleration
- ★ self-collimation
- ★ synchrotron emission
- ⋆ polarization and Faraday RM maps

How MHD acceleration works

A unipolar inductor (Faraday disk)

magnetic field + rotation

current $\leftrightarrow B_{\phi}$ Poynting flux $\frac{c}{4\pi}EB_{\phi}$ is extracted (angular momentum as well)

The Faraday disk could be the rotating accretion disk, or the frame dragging if energy is extracted from the ergosphere of a rotating black hole (Blandford & Znajek mechanism)

The ideal MHD equations

Maxwell: $\boldsymbol{\nabla} \cdot \boldsymbol{B} = 0 = \boldsymbol{\nabla} \times \boldsymbol{E} + \frac{\partial \boldsymbol{B}}{c\partial t}, \boldsymbol{\nabla} \times \boldsymbol{B} = \frac{\partial \boldsymbol{E}}{c\partial t} + \frac{4\pi}{c} \boldsymbol{J}, \boldsymbol{\nabla} \cdot \boldsymbol{E} = \frac{4\pi}{c} J^{0}$ Ohm: $E = -\frac{V}{c} \times B$ mass conservation (continuity): $\frac{d(\gamma \rho_0)}{dt} + \gamma \rho_0 \nabla \cdot \boldsymbol{V} = 0, \quad \text{where} \quad \frac{d}{dt} = \frac{\partial}{\partial t} + \boldsymbol{V} \cdot \nabla$ **ENERGY** $U_{\mu}T^{\mu\nu}_{,\nu} = 0$ (or specific entropy conservation, or first law for thermodynamics): $\frac{d\left(P/\rho_0^{\Gamma}\right)}{dt} = 0$

momentum
$$T^{\nu i}_{,\nu} = 0$$
: $\gamma \rho_o \frac{d(\xi \gamma V)}{dt} = -\nabla P + \frac{J^0 E + J \times B}{c}$

magnetic acceleration

• simplified momentum equation along the flow

$$\gamma \rho_0 \frac{d(\gamma V)}{dt} = -\frac{B_{\phi}}{4\pi \varpi} \frac{\partial(\varpi B_{\phi})}{\partial \ell} = \boldsymbol{J} \times \boldsymbol{B} \text{ force}$$

(ϖ = cylindrical distance, ℓ = arclength along flow)

• simplified Ferraro's law (ignore V_{ϕ} – small compared to $\varpi \Omega$)

$$V_{\phi} = \varpi \Omega + V B_{\phi}/B_p \quad \Leftrightarrow \quad B_{\phi} \approx -\frac{\varpi \Omega B_p}{V} \quad$$
 "Parker spiral"
• combine the two, use the mass-to-magnetic flux $\Psi_A = \frac{4\pi \gamma \rho_0 V}{B_p}$
(constant due to flux-freezing)

$$m\frac{d(\gamma V)}{dt} = -\frac{\partial}{\partial \ell} \left(\frac{S}{V}\right), \quad m = \frac{\Psi_A}{A\Omega^2}, \quad S = \frac{\varpi^2 B_p}{A}$$

$$(A \text{ is the magnetic flux} - \text{integral})$$

toy model

$$m\frac{d(\gamma V)}{dt} = -\frac{\partial}{\partial \ell} \left(\frac{S}{V}\right)$$

motion of a mass $m = \frac{\Psi_A}{A\Omega^2}$ in a velocity-dependent potential $\frac{S}{V}$
corresponding energy integral = Bernoulli $\gamma mc^2 + \frac{S}{V} = E$
The equation of particle motion can be written as a de-Laval
nozzle equation

$$\frac{dV}{d\ell} = \frac{\overline{d\ell}}{E - \gamma^3 mc^2}$$

bunching function $S = \varpi^2 B_p / A$ using the definition of A, $S = \frac{2\pi \varpi^2 B_p}{\int B_p \cdot da}$

thus S measures the ratio of the local over the mean poloidal magnetic field

it measures how bunched are the fieldlines at a given point

its variation along the flow measures the expansion of the flow, $S \propto \underbrace{B_p 2\pi \varpi \delta \ell_{\perp}}_{\delta A} \frac{\varpi}{\delta \ell_{\perp}} \propto \frac{\varpi}{\delta \ell_{\perp}}$

 $\int \delta \ell_{\perp} / \varpi \text{ increases, } S \text{ decreases if } \delta \ell_{\perp} / \varpi \text{ decreases, } S \text{ increases}$

Vlahakis+2000 nonrelativistic solution

first *S* increases then decreases (differential collimation)

 $S_\infty \sim 1$ so the Bernoulli integral gives the value of V_∞

higher $S_{\max} \rightarrow$ higher acceleration efficiency

in V00 $S_{\rm max} \approx 4.5$ and acceleration efficiency $\gtrsim 90\%$

Vlahakis & Königl 2003, 2004 relativistic solutions

acceleration efficiency $\gtrsim 50\%$

Simulations of special relativistic jets (e.g. Komissarov+2009)

energy flux ratios:

UNIVERSITY OF PATRAS

2 February 2023

left: density/field lines, right: Lorentz factor/current lines (jet shape $z \propto r^{1.5}$)

Even in general relativistic MHD jet simulations (Chatterjee+2019 - review Mizuno 2022)

Basic questions: collimation

hoop-stress:

+ electric force

degree of collimation ? Role of environment?

 $^{\tiny \hbox{\tiny INS}}$ transfield component of the momentum equation for relativistic jets simplifies to $\mathcal{R}\approx\gamma^2\varpi$

since $\mathcal{R}^{-1} \approx -\frac{d^2 \varpi}{dz^2} \approx \frac{\varpi}{z^2}$ it gives power-law $\gamma \approx z/\varpi$ (for parabolic shapes $z \propto \varpi^a$, γ is a power of ϖ)

role of external pressure

 $p_{\rm ext} = B_{\rm co}^2 / 8\pi \simeq (B^{\hat{\phi}})^2 / 8\pi \gamma^2 \propto 1/\varpi^2 \gamma^2$

- if the pressure drops slower than z^{-2} then
 - $\star\,\,$ shape more collimated than $z\propto arpi^2$
 - $\star~$ linear acceleration $\gamma\propto\varpi$
- if the pressure drops as z^{-2} then
 - \star parabolic shape $z \propto \varpi^a$ with $1 < a \leq 2$
 - $\star~~{\rm first}~\gamma\propto\varpi$ and then power-law acceleration $\gamma\sim z/\varpi\propto\varpi^{a-1}$
- if pressure drops faster than z^{-2} then
 - \star conical shape

 \star linear acceleration $\gamma \propto \varpi$ (small efficiency)

Basic questions

source of matter/energy?
 disk or central object,
 rotation+magnetic field

- bulk acceleration
- collimation \checkmark
- interaction with environment? $P_{\rm ext}$ is important especially in relativistic jets

2nd level of understanding

Instabilities in disks?
Instabilities in disks?

- details of jet physics near rotating black holes (pair creation in stagnation surface) – energy extraction from the black hole?
- nonthermal radiation particle acceleration shocks or reconnection ? connection with instabilities ?
- polarization maps and comparison with observations
- detailed study of the interaction with environment (Riemann problem shock and rarefaction waves)
- Is jet stability (Kelvin-Helmholtz? current driven?)

Magnetohydrodynamics

 successfully explain the main characteristics

• At small distances $V_{\phi} \gg V_p$, $|B_{\phi}| \ll B_p$. At large distances $V_{\phi} \ll V_p$, $|B_{\phi}| \gg B_p$.

• From Ferraro's law $V_{\phi} = \varpi \Omega + V B_{\phi}/B_p$, where Ω integral of motion = rotation at base, we get $-B_{\phi}/B_p \approx \varpi \Omega/V_p \approx \varpi/\varpi_{\rm LC}$.

 $\frac{|B_{\phi}|}{B_{z}} \approx 150 \left(\frac{r_{j}}{10^{16} \text{cm}}\right) \left(\frac{\varpi_{\text{LC}}}{4GM/c^{2}}\right)^{-1} \left(\frac{M}{10^{8}M_{\odot}}\right)^{-1}$ For a disk-jet $\frac{|B_{\phi}|}{B_{z}} \approx 20 \left(\frac{r_{j}}{10^{16} \text{cm}}\right) \left(\frac{r_{0}}{10GM/c^{2}}\right)^{-3/2} \left(\frac{M}{10^{8}M_{\odot}}\right)^{-1}$ Strong B_{ϕ} induces current-driven instabilities (Kruskal-Shafranov)

Interaction with the environment \rightarrow Kelvin-Helmholtz instabilities

Stability of axisymmetric solutions (analytical or numerical)? Role of B_z ? of inertia?

Relation with observations? (knot structure, jet bending, shocks, polarization degree, reconnection)

Stability analysis

• Are astrophysical jets stable? (contrary to lab jets)

 3D relativistic MHD simulations hard to cover the full jet range (formation and propagation zone + environment) interesting results for the jet-formation region (McKinney & Blandford, Tchekhovskoy, Narayan & McKinney)

Linear Stability Analysis

Unperturbed flow: Cylindrical jet

helical, axisymmetric, cylindrically symmetric and steady flow

$$\boldsymbol{V}_0 = V_{0z}(\boldsymbol{\varpi})\hat{z} + V_{0\phi}(\boldsymbol{\varpi})\hat{\phi},$$

$$\begin{aligned} \boldsymbol{B}_{0} &= B_{0z}(\varpi)\hat{z} + B_{0\phi}(\varpi)\hat{\phi} \,, \quad \boldsymbol{E}_{0} &= -\frac{\boldsymbol{V}_{0} \times \boldsymbol{B}_{0}}{c} \,, \\ \rho_{00} &= \rho_{00}(\varpi) \,, \quad \xi_{0} &= \xi_{0}(\varpi) \,, \\ \Pi_{0} &= \frac{\Gamma - 1}{\Gamma} \left(\xi_{0} - 1\right) \rho_{00}c^{2} + \frac{B_{0}^{2} - E_{0}^{2}}{8\pi} \,. \end{aligned}$$

Equilibrium condition

$$\frac{B_{0\phi}^2 - E_0^2}{4\pi\omega} - \xi_0 \rho_{00} \frac{\gamma_0^2 V_{0\phi}^2}{\varpi} + \frac{d\Pi_0}{d\varpi} = 0.$$

Linearized equations

reduces to (4 equations in real space)

$$\frac{d}{d\varpi} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \frac{1}{\mathcal{D}} \begin{pmatrix} \mathcal{F}_{11} & \mathcal{F}_{12} \\ \mathcal{F}_{21} & \mathcal{F}_{22} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = 0,$$

where the (complex) unknowns are

$$y_1 = i \frac{\varpi V_{1\varpi}}{\omega_0}, \qquad y_2 = \Pi_1 + \frac{y_1}{\varpi} \frac{d\Pi_0}{d\varpi}$$

 $(\mathcal{D}, \mathcal{F}_{ij} \text{ are determinants of } 10 \times 10 \text{ arrays}).$

Equivalently

$$y_{2}'' + \left[\frac{\mathcal{F}_{11} + \mathcal{F}_{22}}{\mathcal{D}} + \frac{\mathcal{F}_{21}}{\mathcal{D}}\left(\frac{\mathcal{D}}{\mathcal{F}_{21}}\right)'\right]y_{2}' + \left[\frac{\mathcal{F}_{11}\mathcal{F}_{22} - \mathcal{F}_{12}\mathcal{F}_{21}}{\mathcal{D}^{2}} + \frac{\mathcal{F}_{21}}{\mathcal{D}}\left(\frac{\mathcal{F}_{22}}{\mathcal{F}_{21}}\right)'\right]y_{2} = 0,$$

which for uniform flows with $V_{0\phi} = 0$, $B_{0\phi} = 0$, reduces to Bessel.

UNIVERSITY OF PATRAS

2 February 2023

Eigenvalue problem

- solve the problem inside the jet (attention to regularity condition on the axis)
- \bullet similarly in the environment (solution vanishes at $\infty)$

• Match the solutions at r_j : $\llbracket y_1 \rrbracket = 0$, $\llbracket y_2 \rrbracket = 0 \longrightarrow$ dispersion relation * spatial approach: $\omega = \Re \omega$ and $\Re k = \Re k(\omega), \Im k = \Im k(\omega)$ $Q = Q_0(\varpi) + Q_1(\varpi)e^{-\Im kz}e^{i(m\phi + \Re kz - \omega t)}$ * temporal approach: $k = \Re k$ and $\Re \omega = \Re \omega(k), \Im \omega = \Im \omega(k)$ $Q = Q_0(\varpi) + Q_1(\varpi)e^{\Im \omega t}e^{i(m\phi + kz - \Re \omega t)}$

Sinnis & Vlahakis in preparation

temporal analysis of a cold, nonrotating jet

• γ_0 , ho_{00} constants

•
$$B_{0z} = \frac{B_0}{1 + (\varpi/\varpi_0)^2}, \quad B_{0\phi} = B_{0z} \frac{\varpi}{\varpi_0},$$

•
$$\varpi_0$$
 controls $\frac{B_{\phi}}{B_z}$ and B_0 the magnetization $\sigma = \frac{B_{\phi}^2/\gamma^2}{4\pi\rho_0}$

 external medium: uniform, static, unmagnetized density ratio η (external over axial) (We also solved for cold, uniformly magnetized environments.)

• pressure equilibrium at jet surface

What to expect

nonrelativistic linear studies predict growth rates (in comoving frame) $\Gamma_{\rm co} \sim \frac{v_A}{10\varpi_0}$ (Appl et al)

in the lab frame $\Gamma = \frac{\Gamma_{\rm co}}{<\gamma>}$

for typical values $v_A = \sqrt{\frac{\sigma}{\sigma+1}} \sim 1$, $\varpi_0 \sim 0.1 \varpi_j$, $<\gamma > \sim 5$ the growth rate is $\sim 0.2c/\varpi_j$

typical growth times $\sim 5 \varpi_j/c$

nonlinear effects become important after a few $10\varpi_j$

Results (Re=solid, Im=dashed)

A hyper-unstable mode appears!

Summary

- \star magnetic field + rotation \rightarrow Poynting flux extraction
- the collimation-acceleration mechanism is very efficient provides a viable explanation for the bulk acceleration in all jets (relativistic or not)
- \star acceleration efficiency $\gtrsim 50\%$
- * environment significantly affects jet dynamics in the acceleration-collimation zone (jet-shape, spatial scale of γ)

- ★ typical instability growth length = a few tens ϖ_j volume or surface instabilities
- ★ a hyper-unstable surface mode tends to appear for heavy jets with mildly relativistic speeds, high magnetizations, only for $B_z < |B_\phi|$
- interesting to analyze the nonlinear evolution via simulations (preliminary results show that the jet relaxes to a new quasi-steady-state)

Thank you for your attention