Magnetized Relativistic Astrophysical Plasma Jets: Dynamics and Stability

> Nektarios Vlahakis University of Athens

Outline

- introduction (observed jet characteristics)
- magnetohydrodynamics (collimation-acceleration)
- linear jet stability (resulting growth rates)

Examples of astrophysical jets

(scale =1000 AU, $V_{\infty} = a few100$ km/s)

UNIVERSITY OF IOANNINA 20 May 2022

The jet from the M87 galaxy

(from Blandford+2018)

Image Credit: The EHT Multi-wavelength Science Working Group; the EHT Collaboration; ALMA (ESO/NAOJ/NRAO); the EVN; the EAVN Collaboration; VLBA (NRAO); the GMVA; the Hubble Space Telescope; the Neil Gehrels Swift Observat

Superluminal Motion in the M87 Jet

collimation at ∼100 Schwarzschild radii

The jet shape (Nakamura & Asada 2013)

UNIVERSITY OF IOANNINA 2022

(Hada+2013)

jet from the disk or the black hole?

UNIVERSITY OF IOANNINA 20 May 2022

(Asada+2017)

Transverse profile (Mertens+2016)

- they manage to observe sheath rotation: the value favors disk-driven (and not BH-driven) jet
- the spine?

UNIVERSITY OF IOANNINA 20 May 2022

X-ray binaries γ**-ray bursts**

mildly relativistic $\gamma = a$ few 100

Basic questions

- source of matter/energy?
- bulk acceleration?
- collimation?
- interaction with environment?

Theoretical modeling

 \mathbb{R} if energy source = thermal energy:

thermal acceleration is an efficient mechanism

gives terminal speed $\frac{m_p V_\infty^2}{2}$ ∞ 2 $\sim k_{\rm B}T_i$ for YSO jets or terminal Lorentz factors $\gamma_\infty m_p c^2 \sim k_{\rm B} T_i$ for relativistic jets in both cases needs high initial temperatures T_i to explain the

observed motions

☞ magnetic acceleration more likely

Polarization

(Marscher et al 2008, Nature)

observed $E_{\rm rad} \perp B_{\perp \rm los}$ (modified by Faraday rotation and relativistic effects)

Faraday RM gradients across the jet

helical field surrounding the emitting region (Gabuzda)

Role of magnetic field

- \star extract energy (Poynting flux)
- \star extract angular momentum
- \star transfer energy and angular momentum to matter
- \star explain relatively large-scale acceleration
- \star self-collimation
- \star synchrotron emission
- \star polarization and Faraday RM maps

How MHD acceleration works

Beam¹ B_{p} \overline{E} Black hole \boldsymbol{E} J_{p} B_{φ}

A unipolar inductor (Faraday disk)

magnetic field + rotation

current $\leftrightarrow B_{\phi}$ Poynting flux $\frac{c}{4\pi}EB_{\phi}$ is extracted (angular momentum as well)

The Faraday disk could be the rotating accretion disk, or the frame dragging if energy is extracted from the ergosphere of a rotating black hole (Blandford & Znajek mechanism)

The ideal MHD equations

Maxwell: ${\bf \nabla} \cdot {\bm B} = 0 = {\bf \nabla} \times {\bm E} +$ $\partial \boldsymbol{B}$ $\frac{\partial \mathbf{B}}{\partial t}, \mathbf{\nabla} \times \mathbf{B} =$ $\partial \bm{E}$ $\frac{\partial \mathbf{E}}{\partial t} +$ 4π \overline{c} \boldsymbol{J} , $\boldsymbol{\nabla}\cdot\boldsymbol{E}=$ 4π \overline{c} J^0 Ohm: $E = -$ V \overline{c} \times \bm{B} mass conservation (continuity): $\displaystyle{\frac{d(\gamma\rho_0)}{dt}+\gamma\rho_0\bm{\nabla}\cdot\bm{V}=0\,,\quad}$ where $\displaystyle{\frac{d}{dt}}$ = ∂ $\frac{\partial}{\partial t} + \bm{V} \cdot \bm{\nabla}$ **energy** $U_{\mu}T^{\mu\nu}_{,\nu}=0$ (or specific entropy conservation, or first law for thermodynamics): $d\left(P/\rho_0^{\Gamma}\right)$ $\frac{\partial^2 f}{\partial t^2} = 0$

$$
\text{momentum }_{T,\nu}^{\nu i} = 0: \;\; \gamma \rho_o \frac{d\left(\xi \gamma \boldsymbol{V}\right)}{dt} = - \boldsymbol{\nabla} P + \frac{J^0 \boldsymbol{E} + \boldsymbol{J} \times \boldsymbol{B}}{c}
$$

magnetic acceleration

• simplified momentum equation along the flow

$$
\gamma \rho_0 \frac{d(\gamma V)}{dt} = - \frac{B_\phi}{4 \pi \varpi} \frac{\partial (\varpi B_\phi)}{\partial \ell} \quad = \textbf{J} \times \textbf{B} \text{ force}
$$

 $(\varpi=$ cylindrical distance, $\ell=$ arclength along flow)

• simplified Ferraro's law (ignore V_{ϕ} – small compared to $\varpi\Omega$)

$$
V_{\phi} = \varpi \Omega + VB_{\phi}/B_p \quad \Leftrightarrow \quad B_{\phi} \approx -\frac{\varpi \Omega B_p}{V} \quad \text{``Parker spiral''}
$$
\n• combine the two, use the mass-to-magnetic flux $\Psi_A = \frac{4\pi \gamma \rho_0 V}{B_p}$ (constant due to flux-freezing)

$$
m\frac{d(\gamma V)}{dt} = -\frac{\partial}{\partial \ell} \left(\frac{S}{V}\right) , \quad m = \frac{\Psi_A}{A\Omega^2} , \quad S = \frac{\varpi^2 B_p}{A}
$$

$$
(A \text{ is the magnetic flux – integral})
$$

UNIVERSITY OF IOANNINA 20 May 2022

toy model

$$
m\frac{d(\gamma V)}{dt} = -\frac{\partial}{\partial \ell} \left(\frac{S}{V}\right)
$$

motion of a mass $m = \frac{\Psi_A}{A\Omega^2}$ in a velocity-dependent potential $\frac{S}{V}$
corresponding energy integral = Bernoulli $\gamma mc^2 + \frac{S}{V} = E$
The equation of particle motion can be written as a de-Laval
nozzle equation
$$
\frac{dS}{dV} = \frac{dS}{dV}
$$

$$
\frac{dV}{d\ell} = \frac{d\ell}{E - \gamma^3 mc^2}
$$

bunching function $S = \varpi^2 B_p/A$ using the definition of $A, S =$ $2\pi\varpi^2B_p$ Z $\boldsymbol{B}_{\boldsymbol{p}}\cdot d\boldsymbol{a}$

thus S measures the ratio of the local over the mean poloidal magnetic field

it measures how bunched are the fieldlines at a given point

its variation along the flow measures the expansion of the flow, $S \propto B_p \, 2 \pi \varpi \delta \ell_{\perp}$ ${\delta A}$ $\overline{\omega}$ $\delta\ell_\perp$ ∝ $\frac{1}{\omega}$ $\delta\ell_\perp$

if $\delta\ell_{\perp}/\varpi$ increases, S decreases if $\delta\ell_{\perp}/\varpi$ decreases, S increases $\overline{0}$ $\delta\ell$ δ $\boldsymbol{\overline{\omega}}$

UNIVERSITY OF IOANNINA 20 May 2022

Vlahakis+2000 nonrelativistic solution

first S increases then decreases (differential collimation)

 S_{∞} ~ 1 so the Bernoulli integral gives the value of V_{∞}

higher $S_{\text{max}} \rightarrow$ higher acceleration efficiency

in V00 $S_{\text{max}} \approx 4.5$ and acceleration efficiency $\geq 90\%$

Vlahakis & Königl 2003, 2004 relativistic solutions

acceleration efficiency $\gtrsim 50\%$

Simulations of special relativistic jets (e.g. Komissarov+2009)

energy flux ratios:

UNIVERSITY OF IOANNINA 20 May 2022

left: density/field lines, right: Lorentz factor/current lines (jet shape $z \propto r^{1.5})$

Even in general relativistic MHD jet simulations (Chatterjee+2019 - review Mizuno 2022)

Basic questions: collimation

hoop-stress:

+ electric force

degree of collimation ? Role of environment?

☞ transfield component of the momentum equation for relativistic jets simplifies to $\mathcal{R}\approx \gamma^2\varpi$

since $\mathcal{R}^{-1} \approx -\frac{d^2\varpi}{dz^2} \approx \frac{\varpi}{z^2}$ $\frac{\varpi}{z^2}$ it gives power-law $\gamma \approx z/\varpi$ (for parabolic shapes $z \propto \omega^a$, γ is a power of ω)

☞ role of external pressure

 $p_{\rm ext} = B_{\rm co}^2/8\pi \simeq (B^{\hat\phi})^2/8\pi\gamma^2 \propto 1/\varpi^2\gamma^2$

- if the pressure drops slower than z^{-2} then
	- **★ shape more collimated than** $z \propto \omega^2$
	- \star linear acceleration $\gamma \propto \varpi$
- if the pressure drops as z^{-2} then
	- ★ parabolic shape $z \propto \varpi^a$ with $1 < a < 2$
	- \star first $\gamma \propto \varpi$ and then power-law acceleration $\gamma \sim z/\varpi \propto \varpi^{a-1}$
- if pressure drops faster than z^{-2} then
	- \star conical shape

 \star linear acceleration $\gamma \propto \varpi$ (small efficiency)

Basic questions

• source of matter/energy? disk or central object, rotation+magnetic field

- bulk acceleration \checkmark
- collimation √
- interaction with environment? P_{ext} is important especially in relativistic jets

2nd level of understanding

 \mathbb{F} distribution of B in the source? (advection vs diffusion, instabilities in disks?)

- ☞ details of jet physics near rotating black holes (pair creation in stagnation surface) – energy extraction from the black hole?
- ☞ nonthermal radiation particle acceleration shocks or reconnection ? connection with instabilities ?
- ☞ polarization maps and comparison with observations
- ☞ detailed study of the interaction with environment (Riemann problem – shock and rarefaction waves)
- ☞ jet stability (Kelvin-Helmholtz? current driven?)

Magnetohydrodynamics

For a rotating BH-jet

• successfully explain the main characteristics

• At small distances $V_{\phi} \gg V_p$, $|B_{\phi}| \ll B_p$. At large distances $V_{\phi} \ll V_p$, $|B_{\phi}| \gg B_p$.

• From Ferraro's law $V_{\phi} = \varpi \Omega + V B_{\phi}/B_p$, where Ω integral of $motion = rotation$ at base, we get $-B_{\phi}/B_{p} \approx \varpi \Omega/V_{p} \approx \varpi/\varpi_{\mathrm{LC}}.$

$$
\frac{|B_{\phi}|}{B_z} \approx 150 \left(\frac{r_j}{10^{16} \text{cm}}\right) \left(\frac{\varpi_{\rm LC}}{4GM/c^2}\right) \left(\frac{M}{10^8 M_{\odot}}\right)^{-1}
$$

For a disk-jet $\frac{|B_{\phi}|}{B_z} \approx 20 \left(\frac{r_j}{10^{16} \text{cm}}\right) \left(\frac{r_0}{10GM/c^2}\right)^{-3/2} \left(\frac{M}{10^8 M_{\odot}}\right)^{-1}$

Strong B_{ϕ} induces current-driven instabilities (Kruskal-Shafranov)

Interaction with the environment \rightarrow Kelvin-Helmholtz instabilities

Stability of axisymmetric solutions (analytical or numerical)? Role of B_z ? of inertia?

Relation with observations? (knot structure, jet bending, shocks, polarization degree, reconnection)

Stability analysis

• Are astrophysical jets stable? (contrary to lab jets)

• 3D relativistic MHD simulations hard to cover the full jet range (formation and propagation zone + environment) interesting results for the jet-formation region (McKinney & Blandford, Tchekhovskoy, Narayan & McKinney)

Linear Stability Analysis

Unperturbed flow: Cylindrical jet

helical, axisymmetric, cylindrically symmetric and steady flow

$$
\boldsymbol{V}_0=V_{0z}(\varpi)\hat{z}+V_{0\phi}(\varpi)\hat{\phi}\,,
$$

$$
B_0 = B_{0z}(\omega)\hat{z} + B_{0\phi}(\omega)\hat{\phi}, \quad E_0 = -\frac{V_0 \times B_0}{c},
$$

$$
\rho_{00} = \rho_{00}(\omega), \quad \xi_0 = \xi_0(\omega),
$$

$$
\Pi_0 = \frac{\Gamma - 1}{\Gamma} (\xi_0 - 1) \rho_{00} c^2 + \frac{B_0^2 - E_0^2}{8\pi}.
$$

Equilibrium condition

$$
\frac{B_{0\phi}^2 - E_0^2}{4\pi\varpi} - \xi_0 \rho_{00} \frac{\gamma_0^2 V_{0\phi}^2}{\varpi} + \frac{d\Pi_0}{d\varpi} = 0.
$$

Linearized equations

$$
Q(\varpi, z, \phi, t) = Q_0(\varpi) + Q_1(\varpi) \exp[i(m\phi + kz - \omega t)]
$$
\n
$$
\begin{pmatrix}\n\gamma_1 \\
\rho_{01} \\
B_{1z} \\
B_{1\phi} \\
iB_{1\phi} \\
iB_{1\
$$

reduces to (4 equations in real space)

$$
\frac{d}{d\varpi}\left(\begin{array}{c}y_1\\y_2\end{array}\right)+\frac{1}{\mathcal{D}}\left(\begin{array}{cc}\mathcal{F}_{11}&\mathcal{F}_{12}\\ \mathcal{F}_{21}&\mathcal{F}_{22}\end{array}\right)\left(\begin{array}{c}y_1\\y_2\end{array}\right)=0\,,
$$

where the (complex) unknowns are

$$
y_1 = i \frac{\varpi V_{1\varpi}}{\omega_0}, \qquad y_2 = \Pi_1 + \frac{y_1}{\varpi} \frac{d\Pi_0}{d\varpi}
$$

 $(\mathcal{D}, \mathcal{F}_{ij})$ are determinants of 10×10 arrays).

Equivalently

$$
y_2'' + \left[\frac{\mathcal{F}_{11} + \mathcal{F}_{22}}{\mathcal{D}} + \frac{\mathcal{F}_{21}}{\mathcal{D}} \left(\frac{\mathcal{D}}{\mathcal{F}_{21}} \right)' \right] y_2' + \left[\frac{\mathcal{F}_{11} \mathcal{F}_{22} - \mathcal{F}_{12} \mathcal{F}_{21}}{\mathcal{D}^2} + \frac{\mathcal{F}_{21}}{\mathcal{D}} \left(\frac{\mathcal{F}_{22}}{\mathcal{F}_{21}} \right)' \right] y_2 = 0,
$$

which for uniform flows with $V_{0\phi}=0$, $B_{0\phi}=0$, reduces to Bessel.

UNIVERSITY OF IOANNINA 20 May 2022

Eigenvalue problem

- solve the problem inside the jet (attention to regularity condition on the axis)
- similarly in the environment (solution vanishes at ∞)

• Match the solutions at r_i : $\llbracket y_1 \rrbracket = 0$, $\llbracket y_2 \rrbracket = 0 \longrightarrow$ dispersion relation \star spatial approach: $\omega = \Re \omega$ and $\Re k = \Re k(\omega), \Im k = \Im k(\omega)$ $Q = Q_0(\omega) + Q_1(\omega)e^{-\Im kz}e^{i(m\phi + \Re kz - \omega t)}$ \star temporal approach: $k = \Re k$ and $\Re \omega = \Re \omega(k), \Im \omega = \Im \omega(k)$ $Q = Q_0(\varpi) + Q_1(\varpi) e^{\Im \omega t} e^{i(m\phi + kz - \Re \omega t)}$

Sinnis & Vlahakis in preparation

temporal analysis of a cold, nonrotating jet

• γ_0 , ρ_{00} constants

$$
\bullet\ B_{0z}=\frac{B_0}{1+\left(\varpi/\varpi_0\right)^2},\quad B_{0\phi}=B_{0z}\frac{\varpi}{\varpi_0},
$$

•
$$
\varpi_0
$$
 controls $\frac{B_{\phi}}{B_z}$ and B_0 the magnetization $\sigma = \frac{B_{\phi}^2/\gamma^2}{4\pi\rho_0}$

• external medium: uniform, static, unmagnetized density ratio η (external over axial) (We also solved for cold, uniformly magnetized environments.)

• pressure equilibrium at jet surface

What to expect

nonrelativistic linear studies predict growth rates (in comoving frame) $\Gamma_{\rm co}$ \sim $\overline{v_A}$ $10\varpi_0$ (Appl et al)

in the lab frame $\Gamma = \frac{\Gamma_{\rm co}}{2}$ $<\gamma>$

for typical values $v_A = \sqrt{\frac{\sigma}{\sigma^+}}$ $\frac{\sigma}{\sigma+1}\sim 1,\quad \varpi_0\sim 0.1\varpi_j,\quad <\gamma>\sim 5$ the growth rate is $\sim 0.2c/\varpi_i$

typical growth times $\sim 5\varpi_j/c$

nonlinear effects become important after a few $10\varpi_i$

Results (Re=solid, Im=dashed)

A hyper-unstable mode appears!

UNIVERSITY OF IOANNINA 20 May 2022

Summary

- \star magnetic field + rotation \to Poynting flux extraction
- \star the collimation-acceleration mechanism is very efficient $$ provides a viable explanation for the bulk acceleration in all jets (relativistic or not)
- \star acceleration efficiency $\gtrsim 50\%$
- \star environment significantly affects jet dynamics in the acceleration-collimation zone (jet-shape, spatial scale of γ)
- \star typical instability growth length = a few tens ϖ_i volume or surface instabilities
- \star a hyper-unstable surface mode tends to appear for heavy jets with mildly relativistic speeds, high magnetizations, only for $B_z < |B_{\phi}|$
- \star interesting to analyze the nonlinear evolution via simulations (preliminary results show that the jet relaxes to a new quasi-steady-state)

Thank you for your attention