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Outline

• introduction (observed jet characteristics)

• magnetohydrodynamics (collimation-acceleration)

• linear jet stability (resulting growth rates)



Examples of astrophysical jets

(scale =1000 AU, V∞ = afew100km/s)
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The jet from the M87 galaxy

(from Blandford+2018)
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(Hada et al 2016)

collimation at ∼100 Schwarzschild radii
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The jet shape (Nakamura & Asada 2013)

Parabolic up to the Bondi radius, then radial
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(Hada+2013)
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jet from the disk or the black hole?
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(Asada+2017)
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Transverse profile (Mertens+2016)
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• fast spine – slow sheath
• they manage to observe sheath rotation:

the value favors disk-driven (and not BH-driven) jet
• the spine?
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X-ray binaries γ-ray bursts

mildly relativistic γ = a few 100
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Basic questions
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jet
(matter + EM field)

base
Γ σ(  ~1,   >>1)

• source of matter/energy?

• bulk acceleration?

• collimation?

• interaction with environment?
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Theoretical modeling

☞ if energy source = thermal energy:

thermal acceleration is an efficient mechanism

gives terminal speed
mpV

2
∞

2
∼ kBTi for YSO jets

or terminal Lorentz factors γ∞mpc
2 ∼ kBTi for relativistic jets

in both cases needs high initial temperatures Ti to explain the
observed motions

☞ magnetic acceleration more likely
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Polarization

(Marscher et al 2008, Nature)

observed Erad ⊥ B⊥los

(modified by Faraday rotation and relativistic effects)
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Faraday RM gradients across the jet

(Asada et al)

helical field surrounding the emitting region (Gabuzda)
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Role of magnetic field

⋆ extract energy (Poynting flux)

⋆ extract angular momentum

⋆ transfer energy and angular momentum to matter

⋆ explain relatively large-scale acceleration

⋆ self-collimation

⋆ synchrotron emission

⋆ polarization and Faraday RM maps
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How MHD acceleration works

A unipolar inductor (Faraday disk)

magnetic field + rotation
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current ↔ Bϕ

Poynting flux c
4πEBϕ

is extracted (angular
momentum as well)

The Faraday disk could be the rotating accretion disk, or the
frame dragging if energy is extracted from the ergosphere of a
rotating black hole (Blandford & Znajek mechanism)

UNIVERSITY OF IOANNINA 20 May 2022



The ideal MHD equations
Maxwell:
∇ ·B = 0 = ∇×E +

∂B

c∂t
,∇×B =

∂E

c∂t
+

4π

c
J ,∇ ·E =

4π

c
J0

Ohm: E = −V

c
×B

mass conservation (continuity):
d(γρ0)

dt
+ γρ0∇ · V = 0 , where

d

dt
=

∂

∂t
+ V ·∇

energy UµT
µν
,ν = 0 (or specific entropy conservation, or first law for thermodynamics):

d
(
P/ρΓ0

)
dt

= 0

momentum T νi
,ν = 0: γρo

d (ξγV )

dt
= −∇P +

J0E + J ×B

c
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magnetic acceleration
• simplified momentum equation along the flow

γρ0
d(γV )

dt
= − Bϕ

4πϖ

∂(ϖBϕ)

∂ℓ
= J ×B force

(ϖ= cylindrical distance, ℓ= arclength along flow)

• simplified Ferraro’s law (ignore Vϕ – small compared to ϖΩ)

Vϕ = ϖΩ+ V Bϕ/Bp ⇔ Bϕ ≈ −ϖΩBp

V
“Parker spiral”

• combine the two, use the mass-to-magnetic flux ΨA =
4πγρ0V

Bp

(constant due to flux-freezing)

m
d(γV )

dt
= − ∂

∂ℓ

(
S

V

)
, m =

ΨA

AΩ2
, S =

ϖ2Bp

A

(A is the magnetic flux – integral)
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toy model

m
d(γV )

dt
= − ∂

∂ℓ

(
S

V

)
motion of a mass m =

ΨA

AΩ2
in a velocity-dependent potential

S

V

corresponding energy integral = Bernoulli γmc2 +
S

V
= E

The equation of particle motion can be written as a de-Laval
nozzle equation

dV

dℓ
=

dS

dℓ
E − γ3mc2
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bunching function S = ϖ2Bp/A
using the definition of A, S =

2πϖ2Bp∫
Bp · da

thus S measures the ratio of the local over the mean poloidal
magnetic field

it measures how bunched are the fieldlines at a given point

its variation along the flow measures the expansion of the flow,
S ∝ Bp 2πϖδℓ⊥︸ ︷︷ ︸

δA

ϖ

δℓ⊥
∝ ϖ

δℓ⊥

if δℓ⊥/ϖ increases, S decreases

ϖ

δ 

if δℓ⊥/ϖ decreases, S increases

δ 

ϖ
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Vlahakis+2000 nonrelativistic solution
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δ 

ϖ

first S increases then decreases
(differential collimation)

S∞ ∼ 1 so the Bernoulli integral
gives the value of V∞

higher Smax → higher
acceleration efficiency

in V00 Smax ≈ 4.5 and
acceleration efficiency ≳ 90%
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Vlahakis & Königl 2003, 2004 relativistic solutions
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acceleration efficiency ≳ 50%
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Simulations of special relativistic jets
(e.g. Komissarov+2009)

energy flux ratios:

γ = kinetic
rest mass

γσ =
Poynting
rest mass

(σ =
Poynting
kinetic )

µ = γ + γσ

γ (increasing),

γσ (decreasing),

and µ (constant)

efficiency > 50%
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left: density/field lines, right: Lorentz factor/current lines (jet shape z ∝ r1.5)
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Even in general relativistic MHD jet simulations
(Chatterjee+2019 - review Mizuno 2022)
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Basic questions: collimation
hoop-stress:

+ electric force

degree of collimation ? Role of environment?
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☞ transfield component of the momentum equation for
relativistic jets simplifies to R ≈ γ2ϖ

since R−1 ≈ −d2ϖ
dz2

≈ ϖ
z2

it gives power-law γ ≈ z/ϖ

(for parabolic shapes z ∝ ϖa, γ is a power of ϖ)

☞ role of external pressure
pext = B2

co/8π ≃ (Bϕ̂)2/8πγ2 ∝ 1/ϖ2γ2

• if the pressure drops slower than z−2 then
⋆ shape more collimated than z ∝ ϖ2

⋆ linear acceleration γ ∝ ϖ

• if the pressure drops as z−2 then
⋆ parabolic shape z ∝ ϖa with 1 < a ≤ 2

⋆ first γ ∝ ϖ and then power-law acceleration
γ ∼ z/ϖ ∝ ϖa−1

• if pressure drops faster than z−2 then
⋆ conical shape
⋆ linear acceleration γ ∝ ϖ (small efficiency)
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Basic questions

en
vi

ro
nm

en
t

jet
(matter + EM field)

base
Γ σ(  ~1,   >>1)

• source of matter/energy?
disk or central object,
rotation+magnetic field

• bulk acceleration ✓

• collimation ✓

• interaction with environment?
Pext is important especially in
relativistic jets
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2nd level of understanding
☞ distribution of B in the source? (advection vs diffusion,

instabilities in disks?)

☞ details of jet physics near rotating black holes (pair creation in
stagnation surface) – energy extraction from the black hole?

☞ nonthermal radiation – particle acceleration

shocks or reconnection ? connection with instabilities ?

☞ polarization maps and comparison with observations

☞ detailed study of the interaction with environment (Riemann
problem – shock and rarefaction waves)

☞ jet stability (Kelvin-Helmholtz? current driven?)
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Magnetohydrodynamics

Ω
r

z

Ω

• successfully explain the main
characteristics

• At small distances Vϕ ≫ Vp, |Bϕ| ≪ Bp.
At large distances Vϕ ≪ Vp, |Bϕ| ≫ Bp.

• From Ferraro’s law
Vϕ = ϖΩ+ V Bϕ/Bp, where Ω integral of
motion = rotation at base, we get
−Bϕ/Bp ≈ ϖΩ/Vp ≈ ϖ/ϖLC.

For a rotating BH-jet
|Bϕ|
Bz

≈ 150
( rj
1016cm

)(
ϖLC

4GM/c2

)(
M

108M⊙

)−1

For a disk-jet
|Bϕ|
Bz

≈ 20
( rj
1016cm

)(
r0

10GM/c2

)−3/2(
M

108M⊙

)−1

UNIVERSITY OF IOANNINA 20 May 2022



Strong Bϕ induces current-driven instabilities
(Kruskal-Shafranov)

Interaction with the environment → Kelvin-Helmholtz instabilities

Stability of axisymmetric solutions (analytical or numerical)? Role
of Bz? of inertia?

Relation with observations? (knot structure, jet bending, shocks,
polarization degree, reconnection)
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Asada+2013
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Stability analysis
• Are astrophysical jets stable? (contrary to lab jets)

• 3D relativistic MHD simulations hard to cover the full jet range
(formation and propagation zone + environment)
interesting results for the jet-formation region (McKinney &
Blandford, Tchekhovskoy, Narayan & McKinney)
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Linear Stability Analysis

Unperturbed flow: Cylindrical jet
helical, axisymmetric, cylindrically symmetric and steady flow

V 0 = V0z(ϖ)ẑ + V0ϕ(ϖ)ϕ̂ ,

B0 = B0z(ϖ)ẑ +B0ϕ(ϖ)ϕ̂ , E0 = −V 0 ×B0

c
,

ρ00 = ρ00(ϖ) , ξ0 = ξ0(ϖ) ,

Π0 =
Γ− 1

Γ
(ξ0 − 1) ρ00c

2 +
B2

0 − E2
0

8π
.

Equilibrium condition

B2
0ϕ − E2

0

4πϖ
− ξ0ρ00

γ2
0V

2
0ϕ

ϖ
+

dΠ0

dϖ
= 0 .
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Linearized equations

Q(ϖ , z , ϕ , t) = Q0(ϖ) +Q1(ϖ) exp [i(mϕ+ kz − ωt)]

10× 12 array
function of ϖ ,ω , k





γ1
ρ01
B1z

B1ϕ

iB1ϖ

ξ1
V1z

V1ϕ

d (iϖV1ϖ)/dϖ

dΠ1/dϖ

iϖV1ϖ

Π1



= 0
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reduces to (4 equations in real space)

d

dϖ

(
y1
y2

)
+

1

D

(
F11 F12

F21 F22

)(
y1
y2

)
= 0 ,

where the (complex) unknowns are

y1 = i
ϖV1ϖ

ω0
, y2 = Π1 +

y1
ϖ

dΠ0

dϖ

(D ,Fij are determinants of 10× 10 arrays).

Equivalently

y′′2 +

[
F11 + F22

D
+

F21

D

(
D
F21

)′
]
y′2+

[
F11F22 −F12F21

D2
+

F21

D

(
F22

F21

)′
]
y2 = 0 ,

which for uniform flows with V0ϕ = 0, B0ϕ = 0, reduces to Bessel.
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Eigenvalue problem
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jet
(matter + EM field)

jr

ξ

• solve the problem inside the jet
(attention to regularity condition on
the axis)

• similarly in the environment
(solution vanishes at ∞)

• Match the solutions at rj:
[[y1]] = 0 , [[y2]] = 0 −→
dispersion relation
⋆ spatial approach: ω = ℜω and
ℜk = ℜk(ω),ℑk = ℑk(ω)
Q = Q0(ϖ) +Q1(ϖ)e−ℑkzei(mϕ+ℜkz−ωt)

⋆ temporal approach: k = ℜk and
ℜω = ℜω(k),ℑω = ℑω(k)
Q = Q0(ϖ) +Q1(ϖ)eℑωtei(mϕ+kz−ℜωt)
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Sinnis & Vlahakis in preparation

temporal analysis of a cold, nonrotating jet

• γ0 , ρ00 constants

• B0z =
B0

1 + (ϖ/ϖ0)
2 , B0ϕ = B0z

ϖ

ϖ0
,

• ϖ0 controls
Bϕ

Bz
and B0 the magnetization σ =

B2
ϕ/γ

2

4πρ0

• external medium: uniform, static, unmagnetized
density ratio η (external over axial)
(We also solved for cold, uniformly magnetized environments.)

• pressure equilibrium at jet surface
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What to expect

nonrelativistic linear studies predict growth rates (in comoving
frame) Γco ∼

vA
10ϖ0

(Appl et al)

in the lab frame Γ =
Γco

< γ >

for typical values vA =
√

σ
σ+1 ∼ 1, ϖ0 ∼ 0.1ϖj, < γ >∼ 5

the growth rate is ∼ 0.2c/ϖj

typical growth times ∼ 5ϖj/c

nonlinear effects become important after a few 10ϖj
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Results (Re=solid, Im=dashed)

A hyper-unstable mode appears!
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Summary

⋆ magnetic field + rotation → Poynting flux extraction

⋆ the collimation-acceleration mechanism is very efficient –
provides a viable explanation for the bulk acceleration in all jets
(relativistic or not)

⋆ acceleration efficiency ≳ 50%

⋆ environment significantly affects jet dynamics in the
acceleration-collimation zone (jet-shape, spatial scale of γ)
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⋆ typical instability growth length = a few tens ϖj

volume or surface instabilities

⋆ a hyper-unstable surface mode tends to appear for heavy jets
with mildly relativistic speeds, high magnetizations, only for
Bz < |Bϕ|

⋆ interesting to analyze the nonlinear evolution via simulations
(preliminary results show that the jet relaxes to a new
quasi-steady-state)
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Thank you for your attention
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