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Outline

e introduction (observed jet characteristics)
e magnetohydrodynamics (collimation-acceleration)
e linear jet stability (resulting growth rates)
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The jet from the M87 galaxy

(from Blandford+2018)
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Chandra 0.2-10 keV
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L J

NuSTAR 3-79 keV
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160 kly

H\ES\5+MAGIC+VERITAS 100 GeV-10 TeV
N 0.5 degrees
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Fermi-LAT 3-1000 GeV
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e

Image Credit: The EHT Multi-wavelength Science Working Group; the EHT Collaboration; ALMA (ESO/NAOJ/NRAQO); the EVN; the EAVN Collaboration; VLBA (NRAQ); the GMVA; the Hubble Space Telescope; the Neil Gehrels Swift Observatory;
the Chandra X-ray Observatory; the Nuclear Spectroscopic Telescope Array; the Fermi-LAT Collaboration; the H.E.S.S collaboration; the MAGIC collaboration; the VERITAS collaboration; NASA and ESA. Composition by J. C. Algaba
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Jet speed

Superluminal Motion in the M87 Jet
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(Hada et al 2016)

collimation at ~100 Schwarzschild radii
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The jet shape (Nakamura & Asada 2013)
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(Hada+2013)
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jet from the disk or the black hole?
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Relative DEC (mas)

Transverse profile (Mertens+2016)
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e fast spine — slow sheath
e they manage to observe sheath rotation:

the value favors disk-driven (and not BH-driven) jet
e the spine?
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X-ray binaries ~v=-ray bursts

mildly relativistic ~v=a few 100
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Basic questions

source of matter/energy?

bulk acceleration?

collimation?

interaction with environment?
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Theoretical modeling

If energy source = thermal energy:

thermal acceleration is an efficient mechanism

2
mp Voo

gives terminal speed ~ kgT; for YSO jets

or terminal Lorentz factors v.,m,c* ~ kgT; for relativistic jets

in both cases needs high initial temperatures T; to explain the
observed motions

magnetic acceleration more likely
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Polarization

01 Nov.D5 14 Nov.05 21 Dec.05 12 Jan.06 05 Fab.0g

Milliarcseconds

(Marscher et al 2008, Nature)

observed E..q L B |
(modified by Faraday rotation and relativistic effects)
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Faraday RM gradients across the jet
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helical field surrounding the emitting region (Gabuzda)
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Role of magnetic field

* extract energy (Poynting flux)

* extract angular momentum

* transfer energy and angular momentum to matter
* explain relatively large-scale acceleration

* self-collimation

* synchrotron emission

* polarization and Faraday RM maps
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How MHD acceleration works

A unipolar inductor (Faraday disk)

Beam] I I

magnetic field + rotation
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current < By

Poynting flux =FEB,
IS extracted (angular
momentum as well)

B
+ L U
S

The Faraday disk could be the rotating accretion disk, or the
frame dragging if energy is extracted from the ergosphere of a
rotating black hole (Blandford & Znajek mechanism)
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The ideal MHD equations

Maxwell: 9B 9B 4 A
V- B=0=VxE+ = vxB="4+2g5 v.p=""y0

cOt cOt C C
Ohm: E = v x B

C
mass conservation (continuity):
d(vpo) d 0
V-V=0, where —=—+V.V
g o ’ i ot
energy u,.1" = o (or specific entropy conservation, or first law for thermodynamics):
d(P/py) _
dt

d(EvV JE+J x B

momentum 77 = 0: yp, V) = —VP + el X

dt C
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maghnetic acceleration
¢ simplified momentum equation along the flow

dvV) By 0(wBg)
VPO T = T — J x B force

(cw= cylindrical distance, /= arclength along flow)

e simplified Ferraro’s law (ignore V,, — small compared to w?)

wllB,

Vo =wQ+VBy/B, & DBy~ — v

“Parker spiral”

dmypoV
Bp

e combine the two, use the mass-to-magnetic flux ¥ 4, =

(constant due to flux-freezing)

dV) 9 (S _ o _
" T Tae\v) T a2 T4

(A is the magnetic flux — integral)
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toy model

SdoV) 0 <§>
dt ol \V
motion of a mass m = Ya In a velocity-dependent potential >
AQ)? 1%
. . . 5 S
corresponding energy integral = Bernoulli yme” + v E

The equation of particle motion can be written as a de-Laval

nozzle equation
dS

av.
Al  E —~3mc?
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bunching function 5 = w’B,/A

using the definition of A, S =

B, -da

thus S measures the ratio of the local over the mean poloidal
magnetic field

It measures how bunched are the fieldlines at a given point

its variation along the flow measures the expansion of the flow,
w w
S < Bp2rwil] — o< —
~ ~ - 5€J_ 5€J_

if 6/, /w increases, S decreases if 6/, /o decreases, S increases

¢!
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Viahakis+2000 nonrelativistic solution

bunching function B,w?/A
5 ' roT ' roT ' T ' T

0.001 0.01 0.1 1 10 100 1000 10000
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first S increases then decreases
(differential collimation)

S« ~ 1 s0 the Bernoulli integral
gives the value of V

higher  Shax —  higher
acceleration efficiency

n VOO S,.«. ~ 4.5 and
acceleration efficiency > 90%
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Vlahakis & Konigl 2003, 2004 relativistic solutions

acceleration efficiency > 50%
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Simulations of special relativistic jets
(e.g. Komissarov+2009)
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left: density/field lines, right: Lorentz factor/current lines (jet shape z o r!-°)
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Even in general relativistic MHD jet simulations
(Chatterjee+2019 - review Mizuno 2022)

jet length r/r,
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Basic questions: collimation

hoop-stress:

+ electric force

degree of collimation ? Role of environment?
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= transfield component of the momentum equation for
relativistic jets simplifies to R ~ v*w

. 2 . .
since R~! ~ —4% ~ Z it gives power-law  ~ = /=

(for parabolic shapes z x w?, v Is a power of w)

= role of external pressure
Pext = BZ,/8T ~ (B?)?/8172 o 1/w%y?

o if the pressure drops slower than =2 then

~ shape more collimated than z o« @?
* linear acceleration v ox w
o if the pressure drops as z~2 then

* parabolic shape z x w® with 1 < a < 2
* first v « w and then power-law acceleration
v~ z/w o ]
o if pressure drops faster than =2 then
* conical shape

* _linear acceleration v o« w (small efficiency)
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Basic questions

source of matter/energy?
disk or central object,
rotation+magnetic field

bulk acceleration v

collimation v*

interaction with environment?
P.. 1s Important especially in
relativistic jets
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2nd level of understanding

= distribution of B in the source? (advection vs diffusion,
instabilities in disks?)

= detalls of jet physics near rotating black holes (pair creation in
stagnation surface) — energy extraction from the black hole?

i nonthermal radiation — particle acceleration

shocks or reconnection ? connection with instabilities ?
iz polarization maps and comparison with observations

= detailed study of the interaction with environment (Riemann
problem — shock and rarefaction waves)

= jet stability (Kelvin-Helmholtz? current driven?)
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Magnetohydrodynamics

successfully explain the main
characteristics

At small distances V> V,, |By| < B,.
At large distances V < V,,, |By| > B,.

From Ferraro’s law
Vy = w4+ V B,/ By, where () integral of
motion = rotation at base, we get
o/ 2 _B,/B,~wQ/V,~ w/wc.
For a rotating BH-jet

—1
~ 150 ( J ) ~LC M
B, 101%cm/ \4GM/c? ] \ 108 M

| By r. ro BRIV S
For a disk-jet ~ 20 ( : )
=B, 10%6cm/ \ 10GM /2 105 My,
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Strong B, induces current-driven instabilities

(Kruskal-Shafranov) x/—\/\ _\[ﬂ\/\
({{eed (-
f\r‘\ﬁ/\ﬁ \
it

Interaction with the environment — Kelvin-Helmholtz instabilities

Stability of axisymmetric solutions (analytical or numerical)? Role
of B.? of inertia?

Relation with observations? (knot structure, jet bending, shocks,
polarization degree, reconnection)
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MEBT Nucleus July 17, 2002
HST STISIMAMA

MNucleus

500 light-years
153 pc 179
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M87 Nucleus and Bright Knot in Extragalactic Jet

_

$TIS
May 17, 19949

"

&Tis

Feb, 27, 2002

HST + STISIMAMA «» ACS/HRC

"‘

S5
Jul, 17, 2002

.

A%
Apr. 17, 2003
HJ\S.I:L -F-f{ll. il'_'ll:i :.l ; .r'.;-'ldl:ld-l i':-1|:f:.1il-::le:r -.!rlr-.'«lﬂ".lr!.ll

UNIVERSITY OF IOANNINA

ACS

May 9, 2005

ACS

Mow, 28, 2006

ST5cl-FRCIE-16

20 May 2022




10°

P~ L | L | L L L L | L L | LBRLL, |
Kovalev et al. 2007: VLBA at 15 GHz
Reid et al. 1989: Gloabal VLEBI at 1.6 GHz
w = -
Biretta et al. 1999: HST .
Meyer et al. 2013: HST
0 _
)
=
8 Y[ this work: EVN at 1.6 GHz : )i i
2 |
=
§ " : }
= T T
L 3
o~ bo i i
¢
* 4
— = ‘I : -
L ® *d
G B i i .I.‘iillll. l'.l..lﬁlll. l. iL lllllll- iL i llllill- i i lllilil i i IiillT
107! 1 10’ 102 10° 10*
distance from the core [mas]
Asada+2013

UNIVERSITY OF |IOANNINA

20 May 2022



IR _ MODEL OF A QUASAR O
L HELICAL MAGNETIC FIELD o 0“0

00 O/  SIANDING  shoCK/SUPERLUMINAL KNOT

© 0O fR,MM MM-OPTICAL / RAD!O-»?—RAY

ATION OF FLOW ™ CHAOTIC MAGNETIC FIELD ——————
' EMISSION-LINE CLOUDS
NARROW (O

RADIO —>

O
o~ O

—10* pc O

— 10 pc
—10% pc
—103% pc

UNIVERSITY OF IOANNINA 20 May 2022



Stability analysis

» Are astrophysical jets stable? (contrary to lab jets)

» 3D relativistic MHD simulations hard to cover the full jet range
(formation and propagation zone + environment)
interesting results for the jet-formation region (McKinney &

Blandford, Tchekhovskoy, Narayan & McKinney)
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Linear Stability Analysis

Unperturbed flow: Cylindrical jet
helical, axisymmetric, cylindrically symmetric and steady flow

A

Vo= Vo.(w)2+ Vog(w)o,

VoXB()

By = By.(w)z + Bqu(w)an Ey=— ;

P00 = ﬂoo(w) , &= fo(w) ;
r—1 B2 — E2

Ip=——(&%—1 ’
0 T (&o ) pooc” + oy

Equilibrium condition

B3, — B}

78 L()Zgb dllg
+ — =
Ao

dco

0.

— £0P00
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Linearized equations

Q(w ) 2 ¢ ) t) — QO(w) + Ql(w) eXp [Z(m¢ + kz — wt)]

( Y

Blz
By
1Bl

10 x 12 array &1
function of w,w , k Vi,

UNIVERSITY OF |OANNINA 20 May 2022



reduces to (4 equations in real space)

i(y1>+i<f'11 F12><y1)20
dwo \ Yo D\ Foa1 Fa2 Y2 ’

where the (complex) unknowns are

Vi dl1
g = i 1 | yo = II; + Y1 allp
Wo w dw

(D, F;; are determinants of 10 x 10 arrays).
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Eigenvalue problem

solve the problem inside the jet
- (attention to regularity condition on
the axis)

1

similarly in the environment
(solution vanishes at ~o)
jet

(matter + EM field) Match the solutions at r;:

[v1] =0, [y2] =0 —
dispersion relation

* spatial approach: w = Rw and
Rk = Rk(w), Sk = Sk(w)

environment

* temporal approach: k£ = Rk and
Rw = Rw(k), Sw = Sw(k)
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Sinnis & Vlahakis in preparation

temporal analysis of a cold, nonrotating jet

Yo , Poo constants

B @
BOZ — 0 = Bqu — BOZ—7
1 + (@ /o) o
B . . B2 /~2
@, controls =2 and B, the magnetization o = o/
B- 4mpo

external medium: uniform, static, unmagnetized
density ratio n (external over axial)
(We also solved for cold, uniformly magnetized environments.)

pressure equilibrium at jet surface
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What to expect

nonrelativistic Iinear studies predict growth rates (in comoving

frame) I, (Appl et al)
10 wo
' FCO
in the lab frame I' =
<7y >

for typical values va = /-5 ~ 1, wo ~ 0.1w;, <y>~5
the growth rate is ~ 0.2¢/w;

typical growth times ~ 5w ;/c

nonlinear effects become important after a few 10z,
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Results (Re=solid, Im=dashed)
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A hyper-unstable mode appears!
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Summary

* magnetic field + rotation — Poynting flux extraction

* the collimation-acceleration mechanism is very efficient —
provides a viable explanation for the bulk acceleration in all jets
(relativistic or not)

x acceleration efficiency = 50%

* environment significantly affects jet dynamics in the
acceleration-collimation zone (jet-shape, spatial scale of )
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~ typical instability growth length = a few tens w;
volume or surface instabilities

* a hyper-unstable surface mode tends to appear for heavy jets
with mildly relativistic speeds, high magnetizations, only for
B, < |By

* Interesting to analyze the nonlinear evolution via simulations
(preliminary results show that the jet relaxes to a new
quasi-steady-state)

UNIVERSITY OF |OANNINA 20 May 2022



Thank you for your attention

UNIVERSITY OF |OANNINA 20 May 2022



