Cosmic jets: their dynamics and the role of the magnetic field

Nektarios Vlahakis University of Athens

Outline

- introduction (observed jet characteristics)
- collimation-acceleration paradigm
- jet stability

Examples of astrophysical jets

(scale =1000 AU, $V_{\infty} = a few100$ km/s)

The jet from the M87 galaxy

(from Blandford+2018)

Superluminal Motion in the M87 Jet

 $\gamma_\infty \sim 10$

collimation at ∼100 Schwarzschild radii

The jet shape (Nakamura & Asada 2013)

(Hada+2013)

jet from the disk or the black hole?

Transverse profile (Mertens+2016)

- they manage to observe sheath rotation: the value favors disk-driven (and not BH-driven) jet
- the spine?

(Asada+2017)

X-ray binaries γ**-ray bursts**

mildly relativistic $\gamma = a$ few 100

Basic questions

- source of matter/energy?
- bulk acceleration?
- collimation?
- interaction with environment?

Theoretical modeling

 \mathbb{R} if energy source = thermal energy:

thermal acceleration is an efficient mechanism

gives terminal speed $\frac{m_p V_\infty^2}{2}$ ∞ 2 $\sim k_{\rm B}T_i$ for YSO jets or terminal Lorentz factors $\gamma_\infty m_p c^2 \sim k_{\rm B} T_i$ for relativistic jets in both cases needs high initial temperatures T_i to explain the

observed motions

☞ magnetic acceleration more likely

Polarization

(Marscher et al 2008, Nature)

observed $E_{\rm rad} \perp B_{\perp \rm los}$ (modified by Faraday rotation and relativistic effects)

Faraday RM gradients across the jet

helical field surrounding the emitting region (Gabuzda)

What magnetic fields can do

- \star extract energy (Poynting flux)
- \star extract angular momentum
- \star transfer energy and angular momentum to matter
- \star explain relatively large-scale acceleration
- \star self-collimation
- \star synchrotron emission
- \star polarization and Faraday RM maps

How MHD acceleration works

Beam¹ B_{p} \overline{E} Black hole \boldsymbol{E} J_{p} B_{φ}

A unipolar inductor (Faraday disk)

magnetic field + rotation

current $\leftrightarrow B_{\phi}$ Poynting flux $\frac{c}{4\pi}EB_{\phi}$ is extracted (angular momentum as well)

The Faraday disk could be the rotating accretion disk, or the frame dragging if energy is extracted from the ergosphere of a rotating black hole (Blandford & Znajek mechanism)

magnetic acceleration

• simplified nonrelativistic momentum equation along the flow

$$
\rho \frac{dV}{dt} = - \frac{B_{\phi}}{4 \pi \varpi} \frac{\partial}{\partial \ell} (\varpi B_{\phi}) \quad = \bm{J} \times \bm{B} \; \text{force}
$$

(ϖ = cylindrical distance, ℓ = arclength along flow)

• simplified Ferraro's law (ignore V_{ϕ} – small compared to $\varpi\Omega$)

$$
V_{\phi} = \varpi \Omega + VB_{\phi}/B_p \quad \Leftrightarrow \quad B_{\phi} \approx -\frac{\varpi \Omega B_p}{V} \quad \text{``Parker spiral''}
$$
\n• combine the two, use the mass-to-magnetic flux $\Psi_A = \frac{4\pi \rho V}{B_p}$
(constant due to flux-freezing)

$$
m\frac{dV}{dt} = -\frac{\partial}{\partial \ell} \left(\frac{S}{V} \right) \,, \quad m = \frac{\Psi_A}{A\Omega^2} \,, \quad S = \frac{\varpi^2 B_p}{A}
$$

(A is the magnetic flux – integral)

bunching function $S = \omega^2 B_p/A$ using the definition of $A, S =$ $2\pi\varpi^2B_p$ Z $\boldsymbol{B}_{\boldsymbol{p}}\cdot d\boldsymbol{a}$

thus S measures the ratio of the local over the mean poloidal magnetic field

it measures how bunched are the fieldlines at a given point

its variation along the flow measures the expansion of the flow, $S =$ $2\pi\varpi\delta\ell_\perp B_p$ A $\bar{\tilde{\omega}}$ $\delta\ell_\perp$ ∝ $\overline{\omega}$ $\delta\ell_\perp$

toy model

$$
m\frac{dV}{dt} = -\frac{\partial}{\partial \ell} \left(\frac{S}{V}\right)
$$

motion of a mass $m = \frac{\Psi_A}{A\Omega^2}$ in a velocity-dependent potential $\frac{S}{mV}$
corresponding energy integral = Bernoulli $\frac{V^2}{2} + \frac{S}{mV} = E$
The equation of particle motion can be written as a de-Laval

nozzle equation

$$
\frac{dV}{d\ell} = \frac{V\frac{dS}{d\ell}}{S - mV^3}, \qquad \frac{1}{S} \propto \frac{\delta\ell_\perp}{\varpi}
$$

Vlahakis+2000 nonrelativistic solution

first S increases then decreases (differential collimation)

 S_{∞} ~ 1 so the Bernoulli integral gives the value of V_{∞}

higher $S_{\text{max}} \rightarrow$ higher acceleration efficiency

in V00 $S_{\text{max}} \approx 4.5$ and acceleration efficiency $\gtrsim 90\%$

Vlahakis & Königl 2003, 2004 relativistic solutions

acceleration efficiency $\gtrsim 50\%$

Simulations of special relativistic jets (e.g. Komissarov+2009)

energy flux ratios:

left: density/field lines, right: Lorentz factor/current lines (jet shape $z \propto r^{1.5})$

Even in general relativistic magnetohydrodynamic jet simulations (the latest Chatterjee+2019)

Basic questions: collimation

hoop-stress:

+ electric force

degree of collimation ? Bole of environment?

☞ transfield component of the momentum equation for relativistic jets simplifies to $\mathcal{R}\approx \gamma^2\varpi$

since $\mathcal{R}^{-1} \approx -\frac{d^2\varpi}{dz^2} \approx \frac{\varpi}{z^2}$ $\frac{\varpi}{z^2}$ it gives power-law $\gamma \approx z/\varpi$ (for parabolic shapes $z \propto \omega^a$, γ is a power of ω)

☞ role of external pressure

 $p_{\rm ext} = B_{\rm co}^2/8\pi \simeq (B^{\hat\phi})^2/8\pi\gamma^2 \propto 1/\varpi^2\gamma^2$

- if the pressure drops slower than z^{-2} then
	- \star shape more collimated than $z \propto \omega^2$
	- \star linear acceleration $\gamma \propto \varpi$
- if the pressure drops as z^{-2} then
	- ★ parabolic shape $z \propto \varpi^a$ with $1 < a < 2$
	- \star first $\gamma \propto \varpi$ and then power-law acceleration $\gamma \sim z/\varpi \propto \varpi^{a-1}$
- if pressure drops faster than z^{-2} then
	- \star conical shape

 \star linear acceleration $\gamma \propto \varpi$ (small efficiency) UNIVERSITY OF CRETE 7 November 2019

Basic questions

• source of matter/energy? disk or central object, rotation+magnetic field

- \bullet bulk acceleration \checkmark
- \bullet collimation \checkmark
- interaction with environment? P_{ext} is important especially in relativistic jets

2nd level of understanding

 \mathbb{F} distribution of B in the source? (advection vs diffusion, instabilities in disks?)

- ☞ details of jet physics near rotating black holes (pair creation in stagnation surface) – energy extraction from the black hole?
- ☞ detailed study of the interaction with environment (Riemann problem – shock and rarefaction waves)
- ☞ jet stability (Kelvin-Helmholtz? current driven?)
- ☞ nonthermal radiation particle acceleration shocks or reconnection ? connection with instabilities ?
- ☞ polarization maps and comparison with observations

credit: Boston University Blazar Group

Stability analysis

• are astrophysical jets stable?

• 3D relativistic MHD simulations hard to cover the full jet range (formation and propagation zone + environment) interesting results for the jet-formation region (McKinney & Blandford, Tchekhovskoy, Narayan & McKinney)

- our approach (Charis Sinnis & Vlahakis in preparation):
- focus on the propagation phase
- assume cylindrical unperturbed jet
- add perturbation $Q(\varpi, z, \phi, t) = Q_0(\varpi) + Q_1(\varpi) \exp[i(m\phi + kz - \omega t)]$ (with complex ω) and linearize

Eigenvalue problem

- solve the problem inside the jet (attention to regularity condition on the axis)
- similarly in the environment (solution vanishes at ∞)
- The matching of the solutions at ϖ_i gives the dispersion relation $\omega = \omega(k,m)$
- find the growth rate $\Im\omega$ and the eigenfunctions

- \star typical growth rate = $\Im\omega \sim 0.1c/\varpi_{ij}$
- \star growth length \approx growth time ($c = 1$) a few tens of jet radii
- \star for highly magnetized jet the instability is more important inside the volume of the jet
- \star for low magnetized jet it is Kelvin-Helmholtz-type

Simulations of two-component jets (Millas & Vlahakis in preparation)

Summary

- \star magnetic field + rotation \rightarrow Poynting flux extraction
- \star the collimation-acceleration mechanism is very efficient $$ provides a viable explanation for the bulk acceleration in all jets (relativistic or not)
- \star acceleration efficiency $\gtrsim 50\%$
- \star environment significantly affects jet dynamics (jet-shape, spatial scale of γ)
- \star typical instability growth length = a few tens ϖ_j volume or surface instabilities depending on the magnetization