Simple waves in relativistic magnetized outflows

Nektarios Vlahakis (University of Athens)

Parts of this work in collaboration with: Konstantinos Sapountzis (Athens), Grigorios Katsoulakos (Heidelberg), Serguei Komissarov (Leeds), Arieh Königl (Chicago)

Outline

- Introduction to simple waves Riemann problem
- Applications to GRB outflows:
 - impulsive acceleration
 - rarefaction acceleration
 - axisymmetric model simulations

Simple waves

- Finite amplitude waves caused by pressure imbalances
- Form of the solution in the textbook case (1D nonrelativistic HD):

$$\label{eq:relation} \begin{split} \rho &= \rho(\xi), \quad P = P(\xi), \quad \mathbf{V} = V_x(\xi) \hat{x}, \\ \text{where } \xi &= \xi(x,t) \end{split}$$

- In the absence of scale $\xi = x/t$ (self-similarity)
- Relativistic MHD generalization: $\rho=\rho(\xi), \ \ P=P(\xi), \ \ V=V_x(\xi)\hat{x}+V_z(\xi)\hat{z}, \ \ B=B_y(\xi)\hat{y}$ where $\xi=x/t$

The Riemann problem

Initially two uniform states are in contact.

If the total pressure is not the same and (or) the *x*-velocities are different, two travelling waves are formed (shock or rarefaction).

Rarefaction simple waves

• when $\rho_R/\rho_L = 0$ (vacuum on the right) a simple rarefaction wave forms

Possible cases:

Solving the problem

Katsoulakos & NV in preparation (see also Marti+1994, Lyutikov 2010)

For the rarefaction, solve the MHD equations (all quantities functions of x/t). For the shock, solve the jump conditions for various shock speeds. The solution is found requiring same total pressure and x-velocity at CD.

GRB application 1: impulsive acceleration (Granot, Komissarov & Spitkovsky 2011)

- the crossing of the two curves gives the maximum γ
- even tiny ρ_R/ρ_L affect γ_{max}

GRB application 2: rarefaction acceleration

GRB application 2: rarefaction acceleration

GRB application 2: rarefaction acceleration

Rarefaction simple waves with $V_z \neq 0$ Komissarov, Vlahakis & Königl 2010

At t = 0 two uniform states are in contact:

• when $\rho_R/\rho_L = 0$ simple rarefaction wave

for the cold ultrarelativistic case the MHD equations (through the Riemann invariants) imply

$$V_x = \frac{c}{\gamma_j} \frac{2\sigma_j^{1/2}}{1 + \sigma_j} \left[1 - \left(\frac{\rho}{\rho_j}\right)^{1/2} \right], \ \gamma = \frac{\gamma_j \left(1 + \sigma_j\right)}{1 + \sigma_j \rho/\rho_j}, \ \rho = \frac{4\rho_j}{\sigma_j} \sinh^2 \left[\frac{1}{3} \operatorname{arcsinh} \left(\sigma_j^{1/2} - \frac{\mu_j x}{2 t}\right) \right]$$
$$V_{head} = -c \frac{\sigma_j^{1/2}}{\gamma_j}, \qquad V_{tail} = c \frac{1}{\gamma_j} \frac{2\sigma_j^{1/2}}{1 + \sigma_j}, \qquad \Delta \vartheta = \frac{V_{tail}}{c} < \frac{1}{\gamma_i}$$

The colour image in the Minkowski diagram represents the distribution of the Lorentz factor and the contours show the worldlines of various fluid parcels (see also Aloy & Rezzolla 2006 for HD, Mizuno+2008 for MHD simulations)

Simulation results

Komissarov, Vlahakis & Königl 2010

(see also Tchekhovskoy, Narayan & McKinney 2010)

Steady-state rarefaction wave

Sapountzis & Vlahakis (2013)

- "flow around a corner"
- planar geometry
- ignoring B_p (nonzero B_y)
- similarity variable x/z (angle θ)
- generalization of the nonrelativistic, hydrodynamic rarefaction (e.g. Landau & Lifshitz)

$$heta_{ ext{head}} = -rac{\sigma_j}{\gamma_j}$$
 $heta_{ ext{tail}} = rac{2\sigma_j^{1/2}}{\gamma_j(1+\sigma_j)}$
 $\sigma = (\sigma_j \gamma_j x_i/z)^{2/3}$

$$\sigma = 1 \text{ al } r = \sigma_j \gamma_j |x_i| = 7 \times 10^{11} \sigma_j \left(\frac{|x_i|}{R_\star/\gamma_j}\right) \left(\frac{R_\star}{10R_\odot}\right) \text{ cm}$$

The frozen pulse approximation

Introduced by Piran+1993 for HD flows and extended by NV & Königl (2003) in the MHD case.

In a superfast magnetosonic, ultrarelativistic flow any possible disturbance is travelling with it and cannot affect the neighbouring parts. As a result the evolution of each fluid parcel is essentially steady-state.

In mathematical terms, if we change coordinates from (x, z, t) to (x, z, s = ct - z) the approximate equations do not contain derivatives $\frac{\partial}{\partial s}$.

Axisymmetric model

Solve steady-state axisymmetric MHD eqs using the method of characteristics (Sapountzis & Vlahakis in preparation)

Reflection of the wave from the axis

Reflection causes sudden deceleration – standing shock

The role of the environment

• for nonzero ρ_{ext} Riemann problem: rarefaction on the left state / contact discontinuity / shock on the right

Numerical simulations with PLUTO (preliminary results)

Left: $\gamma_j = 10$, $\sigma_j = 10$ (RW hit the axis at $z/r_j \sim \gamma_j/\sqrt{\sigma_j} \approx 3$) Middle: 10 times lower density and pressure outside Right: $\gamma_j = 20$, $\sigma_j = 5$ (note the different *z*-scale; $z/r_j \sim \gamma_j/\sqrt{\sigma_j} \approx 9$)

helical B (MHD-c), *t=200*, *B*₀=0.2

(Their σ is < 0.36 and the jet is not cold. Also $\rho_j \ll \rho_{out}$ and $P_j = 1.5P_{out}$.)

Summary

Simple (rarefaction) waves could significantly affect the dynamics of GRB outflows

- ★ contribute to the jet bulk acceleration
- \star make magnetically accelerated GRB jets with $\gamma\vartheta\gg 1$
- create series of shocks (that are standing and do not depend on the engine activity)