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1 Introduction

This project is an implementation of range trees with fractional cascading, named
layered range trees in C++ using STL and generic programming techniques. Range
trees are multidimensional binary trees which are used to perform d-dimensional
orthogonal range searching. Range trees were discovered independently by sev-
eral people including Bentley[1], who also discovered kd-trees and Lueker, who
introduces the technique of fractional cascading for range trees [7]. An intro-
duction to orthogonal range searching, range trees and fractional cascading can
be found in [6, 9]. In [2] there is a presentation of a project of efficient imple-
mentations of range trees in 2-3 dimensions including layered ones and some
experimental results.

2 Complexity issues

The range trees answer a d-dimensional range query in time O(log? n + k), where
n is the whole set of points and k is the set of reported points. The construction
time and the space the tree consume are O(nlog? ' n). Using fractional cascading
we can be benefited by a logn factor in the last level of the tree and the resulting
time complexity become O(log?® ' n + k). Intuitively, fractional cascading perform
one binary search instead of two in the last level. The optimal solution to the
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orthogonal range search problem is due to Chazelle [5, 4] who propose a structure
with time complexity O(log® n+k) and O(n(logn/loglogn)® ') space consumption,
where c is a constant.

3 Range trees in CGAL

Although, CGAL library [3] provides some classes for range trees there is space
for optimizations in that package [10]. Firstly, there is a lack of recursive con-
struction of d-dimensional range tree and the only way to construct a range tree
of dimension d is to build a tree of dimension 1 and then make this an associative
range tree of a new one which will have dimension 2. Then one must build a tree
of dimension 3 with this tree as an associative tree and this technique continues
until the construction of the whole d-dimensional tree.

In addition to that, the package uses virtual functions, which increases the
run time and finally there is no fractional cascading.

The proposed approach uses nested templates for the representation of the
d-dimensional range tree which is defined in compilation time. The dimension of
the tree must be a constant and defined in the compilation time. In the last level
a fractional cascading structure is constructed.

For example a 4-dimensional range tree of size n with different kind of data at
each layer is given by the following nested templated definition.

Layered_range_tree <DataClass,
Layered_range_tree <DataClass,
Last_range_tree <DataClass>
>
> tree(n);

Note that for each layer i < d — 1 the same class Layered_range_tree is used.
The last two layers, in which the fractional cascading is implemented, use the
Last_range_tree class. The DataClass has the defintions of each layer's own data
along with the comparison operators.

4 Software implementation

Essentially, the project was implemented using the C++ language and the STL
library[11]. Concisely, the design uses methods from object oriented as well as
the generic programming style.




Representation. The trees are represented as stl vectors. The tree traversals
are implemented using index arithmetic i.e. node's 1 parent is |i/2], the left, right
child of i is 21 + 1 and 2i + 2 respectively. This method is optimal for a full, static,
binary tree and in our case the third is always hold. In order to have a full binary
tree we replicate the last (biggest in the fist dimension) point and in the worst case
we have a tree the half of which is useless with no effect to the time complexity
(the replicated nodes would not be visited). In this project we are interested in the
static case of range trees but the design is sufficient for a dynamic implementation
in which the tree nodes must also have some extra pointers. On the other hand,
dynamization of the fractional cascading structure is not trivial [8].

Construction. For the construction of the tree we need to sort the input data
with respect to the first coordinate and build recursively (top-down) the main
tree in linear time. For the associative trees we don't have to sort the input data
again. We build the associative trees in bottom-up manner. Every node merge
the sorted lists of its children in linear time starting from the leaves which are
trivially sorted. Note that this is essentially the same algorithm as merge-sort.

Memory consumption. Even the asymptotic complexity of space stated above
ensures that range tree needs a lot of memory. The only constraint in the num-
ber of dimensions of data is memory. Moreover, from the asymptotic complexity
follows that with fixed memory there is a trade of between the number of data
and number of dimensions.
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