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INTRODUCTION — PRELIMINARIES

An important question for a Banach space is whether it contains an isomorphic
copy of some classical Banach spaces. The usual method of proving such resuits is via
basic seqiences. For example, James [2] has shown that if a Banach space contains
an unconditional basis, then it contains an isomorphic copy of ¢g, £ or it is reflexive.
This gives a partial answer to the famous open problem, namely the existence of a
subspace isomorphic to ¢g, £; or to a reflexive space in any Banach space and shows
that this problem is closely connected with the open problem, whether every Banach
space contain an unconditional basic sequence.

We say a sequence () of non-zero vectors in a Banach space X basic iff (zn) is
a Shauder basis for its closed linear span [£,]5%,. This means for every = € [Zn)2%

00
there exists a unique sequence (A,) of scalars such that z = Y Ann. Moreover,
n=1

(zn) is said unconditional if the series Y ep AnTn converges for every (gq) € {1, 1M,
n
Two basic sequences are called equivalent iff the convergence of the series »  Aq 2y,
™
is equivalent to that of 3~ Anys. In this case there is an isomorphism between the

spans [z,]7%.; and [yn}g"; which carries 2, to yn. This notion gives the ability to
recognize the existence of a classical Banach space via its usual base. Of course every
sequence (z,) in a Banach space X doesn’t contain a basic subsequence but we can
select a basic subsequence if (2,,) is seminormalized (i.e. 0 < 121"“1',;”) and weakly
null using the Bessaga-Pelczynski selection principle [1}.

In this paper, we extend notions and results related to basic sequences (such as
equivalence, unconditionality, e;t.c.) to arbitrary sequences in a Banach space. We
prove that if a Bangch space X has an unconditional {(not necessarily basic) sequence
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(x,) with 0 < inf lzwll and X = [2,]%., then X contains an isomorphic copy of ¢o,
£, or it is somewhat reflexive (Theorem 22). A Banach space X is called somewhat
reflexive if any subspace of X has a reflexive subspace with a basis. We also answer
the second problem affirmatively for the case of a Banach space with an unconditional
sequence (Theorem 19).

We give a criterion (Corollary 11) for a Banach space to contain £, isomorphically,
using the notion of an £,-sequence (a sequence (z,) such that the series ):.:zneﬂ
converges if and only if (a,) € 4, and 0 < iEf Hz.l]). The same result is irl.;rcwed
by Bessaga and Pelczynski [1] for the case of ¢g. We also characterize the class of
£,- or co-sequences as the class of those bounded sequences which are equivalent to
their bounded blocks (Theorem 13) extending M. Zippin’s Theorem [7] which gives
an analogous characterization for the basic sequences.

The central idea for proving such results is the close relation between a semi-

normalized sequence (x,) and the basic sequence (e,) of unit vectors in the space
n(=n),

Let (X, ||.|l) be a Banach space and (z,) a sequence of non zero vectors in X. The

<)

L
is a Banach space with respect to the norm [|(An)f = sup || 2 A,-a:,-". For every
ﬂ i=1

sequence (z,) such that 0 < A < |lzn|] < B for n € N we have that |[(Au)] <
o0

B Y |Aa] for every (As) € £' and sup [An] < ZJ(An )Y for every (As) € ¥(®=), Hence
i=1 n

vector space

i /\,-x,-

i=1

nEn) = {(,\n) e R™: sup

the set £(*=) is contained in £° and contains ;. As we prove in Propositions 8 and
9 if £(=e) = £1 (resp. L(¥») = £) then (z,) has a basic subsequence equivalent to
the usual basis of £; (resp. to the usual basis of ¢y). Also if w(#n) = £, for some
1 < p < oo then (z,) has a basic subsequence equivalent to the usual basis of £#
(Proposition 10). From a result of Odell [5] if a normalized weakly null sequence
(zn) has no subsequence equivalent to the unit vector basis of ¢o then there exists
a subsequence (zp,) so that £®») C ¢ and if a bounded sequence (z,) has no
subsequence equivalent to the unit vector basis of #; then for every subsequence
(zn,) of (zn) we have T(=) 2 £,

The unit vectors e, n € N form a basic sequence in £(*») with basic constant 1. It
is easy to see that £(*») = B(en) Also TG) = [¢,]., if and only if (e, ) is boundedly
complete and that the function T: [e,]* — Z(*) with T(z**) = T(z**(¢},)} is an
isometry onto £(*»} if and only if (e,) is shrinking. Hence L{*») is reflexive if and
only if (e,) is shrinking and boundedly complete. As we prove in Proposition 15, if
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5¥#») ig reflexive for some sequence (z,) with 0 < irgf |za|l, then (zn) has a basic
subsequence (zn,) which is shrinking and boundedly complete and also the space
[£]3%, is somewhat reflexive (Proposition 17). We don’t know whether X = [Zal2y
is reflexive in general, but it is easy to see that X is reflexive’if (z,,) is dense in X.

Extending R. C. James’ Theorem [2] we prove that if (z4) is an unconditional
sequence with 0 < inf{jz,|}, then [£,]%%, has no subspace isomorphic to £t if and
only if (en) is shrinking, and [£:]3-, has no subspace isomorphic to cg if and only if
(en) is boundedly complete (Proposition 21). Hence, in this case we have that £{7»)
is reflexive if [£,]°%; has no subspace isomorphic to £y or co.

We call two sequences (z,) in X, (y) In Y equivalent if § < iﬁf Heall, 0 < iEf Hynll
and T(#») = L) As we prove in Proposition 2 the sequences (zn) and (yn) are
equivalent if and only if the series Y @nz, converges in X, iff the series Y an¥n

converges in Y. Hence this notion ofﬂequ_ivalence extends the usual notion fo,;' basic
sequences, Since T(**) = nlen) we have that every sequence (&) with 0 < ilgf {|&nll
is equivalent to the basic sequence (en).

" Our notation generally follows that of [4] where many notion and unproved state-

ments may be found. In particular we write (z,) for a sequence, 3"z, for a series

and [z,]%, for the closed linear span of a sequence (z,) in a Banach space.

Many of the notions of basic sequences can be defined in a meaninful way also for
arbitrary sequences in Banach spaces.

Definition 1. Let X, Y be Banach spaces and (zn), (yn) sequences in X, Y
respectively such that 0 < iaf llzall and 0 < inf||ys||. The sequences (zy,) and (y¥n)
n

are called equivalent if nlza) = B,

We show that this notion of equivalence extends the usual notion for basic se-

quences.

Proposition 2. Let (z,), (yn) be sequences in the Banach spaces X, Y respec-
tively, such that 0 < irgf lzn]} and 0 < iﬂf lynll. The following are equivalent:

(i) The sequences (zn), (yn) are equivalent.

(ii) The identity mapping I $(@n) s $n) js an isomorphism.

(i) The unit vector basic sequence (en) in X+ is equivalent (using the usual
notion) to the same basic sequence in nun),

(iv) The series Y anzn, an € R, converges in X if and only if Y anyn converges

n n

inY.
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Proof. (i) = (ii) Let (*=) = £(¥») and let I: £(*=) — £¥») be the identity
mapping. But 7 has closed graph; this is easy to see from the inequality

(*) sup |A.} € -Q-Jﬂf(-!%'—)% which holds for every (),) € £(*),
n 14} n

Therefore I is an isomorphism.
It is clear that (ii) implies (iii) and it is easy to see that (iii) implies (i) from
the equality £(¢») = L), The equivalence of (iii) and (iv) is a consequence of

the following observation. The series ) an, converges in X if and only if X anen
n n

converges in L), Indeed, if > anen converges in L) then Y. anx, converges

n n
m
L o] < |
fz=n

m
in X, because , Y aie; m for every n,m € N. On the other hand, if
f=n
m
> anz, converges in X, then for every £ > 0 there is ng € N such that " > asz; " <e
n i=n

m k

for every n,m € N with ng < n < m, hence u Y aeifl = sup 3 a,-:-:,-” < ¢ for
i=n ngkgm Fi=n

every n,m € N with no < n < m. It follows that Y a,e, converges in L{=»), O

n

In the next proposition we observe that if we perturb each element of a sequence
by a sufficiently small vector, then we get an equivalent sequence.

Proposition 3. Let X be a Banach space and (z,,), (yn) two sequences in X such
that 0 < inf(|z,|| and 0 < inf{ly|] . If 3" llzs — || < 0o then (z,) is equivalent to
n n n

(n)-

. T Hi n
Proof. Let{),) € Z(*»), Then 3 A,-y,-“ DY )\,':c,-“ 4+l >0 Az — yg)“ <
U il imd
n o
sup if > A2y N + (sup |An]) - 3 He: — y;l] holds for every n € N. Hence (An) € Bl¥=)
n izl n =1
since (A,) is bounded. | O

Lemma 4. Let X be a Banach space and (zn) a sequence in X such that 0 <
Gk

inf ||2.||. If (uy) is a block sequence of (z,) withuy = Y a;z;, a5 € R and py < gr <
n ' 1=pg

Pr41 for every k € N, such that 0 < irgf“ukll then the sequence (u) is equivalent to
o
the corresponding basic sequence (vi) in £*~) where vy, = > aje; for every k € N,
. i=ps
Proof. It iseasy to see that [Jui|| < Jue]} for every k € N, hence § < irklf i -

The sequence (z,) is equivalent to the unit vector sequence (en) in B(#») because
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2len) = £(=»), Thus, from Proposition 2 the series 2. Axup converges in X if and
3
only if the series 3 Axvi converges in (=), Hence, the sequence (u) is equivalent
3
to the sequence (v;) in £(=»), O

The existence in a Banach space of subspaces isomorphic to the classical Banach
spaces plays a central role in the study of the space. The next results give criteria
for the embedding of ¢ of £, for 1 < p < 00 in a Banach space.

Definition 5. A sequence (z.) in a Banach space X such that 0 < mf Nzl is

called an £p-sequence for some 1 < p < oo (resp. co-sequence) iff it is eqmvaient to
the usual basis of £, (resp. of cp).

As corollaries of the previous results we have the next two propositions.

Proposition 6. Let X be a Banach space, (z,) a sequence in X such that 0 <
mf[lxnu and 1 < p < 0o. The following are equivalent:

(i) The sequence (zy,) is an £y-sequence (resp. co-sequence).

(i) Z(=») = £, (resp. £(=») = £},

(iii) The identity mapping I: £(») — % (resp. I: £(#n) ., g ) is an isomorphism.

(iv) The unit vector basic sequence (e,) in (=) js equivalent to the usual basis
of £, (resp. of cg).

(v) The series 3 anz, converges in X if and only if (a,) € £y (resp. (an) € cp).

n

Proposition 7. Let (2,.) be a sequence in a Banach space X. If (a:n) is an £,-
sequence for some 1 < p < oo (resp. a co-sequence) tben every block sequence (uy)

of (z,) with up = Z ari, a; ER, pr < ¢ < pk+1 fo; every k € N, such that
_pk

Y aje '" < o0 is also an £,-sequence (resp. a co-sequence),
i=p ,

Proof. Applying Lemma 4 we have that the sequence (u;) in X is equivalent

to the basic sequence (v¢) in £(*~) where v = Z aje; for every k € N. Since (z,)
i=py

is an fp-sequence, the basic sequence (en) in E(=) is equivalent to the usual basis

of £,. Since (vi) is bounded it is also equivalent to the usual basis of £,. Therefore,

(uz) is an £,-sequence.

The proof for co-sequences is similar. L1

We shall prove in Theorem 13 that the property of £,- and co-sequences which is
described in the’previous Proposition characterizes the class of these sequences,
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Remark. Bessaga and Pelczynski proved in [1] that a sequence (z,) in a Ba-
nach space X such that 0 < inf{lz,}} is a co-sequence if and only if it is weakly
n
oG
unconditionally Cauchy (i.e. ) |f(z,)| < oo for every f &€ X*).
izl *
Since a co-sequence (&) is weakly null, it follows from the Bessaga-Pelczynski
selection principle [1] that it has a basic sequence (z,,). The subsequence (z,,) is
also a cg-sequence and hence equivalent to the usual basis of ¢p. Thus we have:

Proposttion 8. Let X be a Banach space. Every ep-sequence in X has a basic
subsequence equivalent to the usual basis of ¢g.

We shall prove the same result in the situation of £,-sequences.

Proposition 9. Let X be a Banach space. Every fi-sequence in X has a basis
subsequence equivalent to the usual basis of ¢;.

" Proof. Let(z,)bean #-sequence in X. Then (z,) is bounded and it doesn’t
converges in X. lndeed, from Proposition 6 the unit vector basic sequence (e,) in
n(Ex) jg equivalent to the usual basic of £;, hence there are A, B > () such that

k
A’Zlanl g
n=l

holds for every £ € N and a, ..., ax € R. 1t follows that [Jz,]| = [len]] < B for every
n € N. Suppose now that (z,) converges in X. Take &y € N such that B+ 1 < koA
and ng € N such that ||z, — 2| < ﬁ—)« for every n,m € N with ng < n < m. Then

k

< B> lanl

n=1

k

E Ap€n

n=1

we have,
Tlu—f'k() ﬂ.()+)\ A
B4+ 1< kAL —1Yleplil = -z, < B+ —<B+1
" " n—_;ﬂ( e n:gw( ' N Zko <o

a contradiction. Hence (z,) does not converge in .

Now we claim that (x, ) has no weak Cauchy subsequence. The result will follow
from the claim by H. P. Rosenthal’s fundamental result [6]. It need only be proved
that (z) is not weak Cauchy, because from Proposition 7 every subsequence of (z,)
is also an {;-sequence. Let (z,) be weak Cauchy. Since (z,) does not converge in
X, there is an ¢ > 0 and a subsequence (y,) of (x,,) such that Jysn—1 — yar]l > ¢ for
every A € N. Let uy = yax—; —yaa for every A € N. Then the sequence (u,) is weakly
null and lJuxl] > ¢ for every A € N. Hence from the Bessaga-Pelczynski selection
principle [1], (ux) has a basic subsequence (u,,) which according to Proposition 7 is
also an ¢)-sequence. Thus (ux,) is equivalent {(using the usual notion} to the usual
basis of £; and weakly null, a contradiction. O
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Proposition 10. Let X be a Banach space and 1 < p < co. every £,-sequence in
X has a basic subsequence equivalent to the usual basis of £,.

Proof. Let (x,) be an £,-sequence in X for some 1 « p < oo. Then (z,)
is bounded and weakly null. Indeed, from Proposition 6 the identity mapping I:
5(Zn) s £, is an isomorphism, hence (e, ) is bounded, weakly null in %:(#x) and a basis

o0
of (==}, Let T: £(*») — X be the linear map defined by T( 3 anen) = § Cpp.
n=1 n=l

Then T is well defined and bounded. Hence (z, ) is bounded and weakly nuli sequence
in X.

From the Bessaga-Pelczynski selection principle {1}, (z,) has a basic subsequence
(s, ), which from Proposition 7 is also an £,-sequence. The sequence (£»,) is there-
fore equivalent to the usual basis of £,. : O

Corollary 11. A Banach space X has a subspace isomorphic to £, for some
1 < p < 0o (resp. to eq) if and only if it contains an {,-sequence (resp. co-sequernce).

Proof. H X has a subspace isomorphic to £, (resp. cp) then it has a basic
sequence (z,) equivalent to the usual basis of £, (resp. of co). Thus, (zn) is an £,-
(co-) sequence.

Let (z,) be an £,-sequence (resp. co-sequence) in X. According to Proposition 8,
9 and 10 there is a basic subsequence (z,, ) of (2,) which is equivalent to the usual
basis of £, (resp. of co).

Using the notions that we have defined, we are able to extend to arbitrary se-
quences M. Zippin’s Theorem [7], which characterizes in a very strong sense the
basic sequences which are equivalent to the usual basis of ¢g or £,. a

Lemma 12. Let X be a Banach space and (z,) a sequence of a non zero vectors
in X. For every (a,) € £(*») there is a sequence of signs (O) such that

1 n
! Zaiaixz'
=1

i=

n
E 8;‘(1,'6,‘
izl

holds for every n € N.

Proof. Firstly, Jajei|| = |larz:{], hence we may set 8; = 1. Suppose that the
signs 81, Oz, ..., Or have been chosen such that

n n
Z@mie; E@gaimi holds for every n = 1,2,..., k.
i=1 i=1
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k
£ “ Y. a,-(?;:c,'-!—ak.;,lz;,H”, then set Jp41 = 1. In the other case set

121

k
If H “; a;ag &g

k k
Or4+1 = —1, because if " b agaga:,~+ak+1a:k+1|| < “ > a,-agx,-" then for every f € X~
f=1

fu=1

k k
such that [[f]] = 1 and u > a,—B,—x,-“ = Y ;8 f(x:) we have f(ar41 zr4+1) < 0 and so
f=1 izl

k
> a0z — apgr1rg
i=1

k
§ a;0;e;
=1

k

Z ¢;0;z;
=1

k41

Z a;0;%;

=1

k
Z zaiaif(wi) ~ a1 Zep1 f{ Tk} >
i=1

k41

Z a;0; 25

iz

= . Hence we have the equality =

0

Theorem 13. Let X be a Banach space. A normalized sequence (z,) in X is an
¢,-sequence for some 1 < p < 00 or a co-sequence if and only if (z,,) is equivalent

: gk
to any of its blocks (uy) with up = Y a;z;, a; € R and pp < g < pr+1 for every

TPk

g5
Z ageg“l < 0.

fmpy

k € N, such that 0 < irklf“uk“ and sup “
k

Proof. That an £,-sequence or a co-sequence is equivalent to any such block
sequence has been shown in Proposition 7.

For the converse, according to Proposition 6 it need be proved that the unit vector
sequence (e, ) in £(¥n) is equivalent either to the usual basis of £, for some 1 £ p <
or the usual basis of ¢g. Using M. Zippin’s Theorem [7] is need only be proved that
(en) is equivalent to each of its normalized blocks.

_First notice that for every choice of signs (8,) the sequence (z,) is equivalent
to (Opx,). Hence the sequence (e,) is equivalent to (Jnen) in L(#») according to
Proposition 7. Thus (e,) is an unconditional basic sequence in PHCEN

gk
Let v = ) aie;, where a; € R, pr < q¢ < pr+1 and llvxf = 1 for every £ € N.

e Ik 13
3 a;0ie Iu = ” Z a,-B,-:r:,-u holds

From Lemma 12 there are signs §; such that “

i=pk =P
gk g% gx
for every k € N. Set uy = Z a;z;, v, = Z a;0ie; and uj, = Z a;0;x; for every
1=p) LE 1 TPk

k € N. Since (e,) is an unconditional basic sequence in X(*»), there is M > 0 such
that & < luill = vl < M holds for every k € N. By the hypothesis we get that
(u}) is equivalent to (z,). According to Lemma 4 the sequence (u},) is also equivalent
to (v},). Hence (v,) is equivalent to (e,) in £(®»). By the unconditionality of (en)
we have that (vg) is equivalent to (e,,). This completes the proof. ' O
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Corollary 14. Let X be a Banach space and (z») a normalized sequence in X.
If (2,)) is equivalent to all its normalized blocks then (zn) has a basic subsequence
equivalent to the usual basis of ¢y or of some £, for 1 € p < 00,

For the next two Propositions, we are concerned with the case where niE=) s
reflexive.

Proposition 15. Let X be a Banach space and (z,) a sequence in X such that
0 < inf {jz,||. IF£&~) is reflexive, then (zn) has a basic subsequence (25, ) such that
n .

[z, 152, Is a reflexive subspace of X.

Proof. [If £(#») is reflexive, then (e,) is weakly null in (®») and a basis
o0 2%
of ©(#=), The linear map T': T~} — X defined by T(Z anen) = ¥ GpZy, is

%31 n=1
bounded, hence () is weakly null sequence in X.

It follows from [1] that (2,) has a basic subsequence {2y, ), which from Lemma 4 is
equivalent to the basic sequence (eq, ) in ). Since [en, ]32.) is a reflexive subspace
of £(#n), the vector space [2,,]$2, is also reflexive. {

 Lemma 16. Let X be an infinite dimensional Banach space, (zn) a sequence in
X such that 0 < inf||2,|] and X = [£,]3%, and Y an infinite dimensional closed
subspace of X with a basis (y). Then there is a basic block sequence (uz) of (%)
which is equivalent to a bounded block sequence (wi) of (yn)-

Proof. We construct the sequences (ug), (wx) inductively. Pick z; € Y with

Hzil} = 1. Let wy = ip,-yg with 7 € N and g € R, such that [lz; — wil} < gb,
where K is the basis ’c—onstant of (yn). Let now u; = g;pl Aiz; withpy < €N
and A; € R, such that [|z; — w1]] < gk Thus we have Jlw — 1| < 3%

Now Y N [2n]3%,, 41 is an infinite dimensional subspace of Y, hence [Zalpeg 41 N
[¥n]3%,, 41 is also an infinite dimensional subspace of Y. We pick z; € [2n]3%g, 41 N

Ty
U]y 41 With |22l = 1. Let wy = 3, puy withm <7 € N and g5 €R, such

t=1“1+1
42
that |}z2 — wal| < 331—}—(——_5, Also let up = Y Mz with g1 <p2 < gz€Nand ); €R,

. "xpg
such that ||2z2 — u2]| < z5§5- Then we have {Jus — waf < 72+ We continue in an -
obvious manner.

The sequence (w;) obtained in this way is a block basis of (y,) and § < [Jw]} < :
o

holds for every k € N. Since Y [lwi —uz|| < 3% it follows by [3] that (uz) is a basic
k=1

sequence and equivalent to {(wg). 0
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Proposition 17. Let X be a Banach space and (z,,) a sequence in X such that
0< il’lf eall and X = [2a)3%,. If 5(#n) is reflexive then X is somewhat reflexive

space.

Proof. Let Z be a nonreflexive subspace of X. Then Z contains a basic
sequence (y) and let Y = [y,]o%,. According to Lemma 16 there is a block sequence
(wi) of (yn) which is equivalent to a basic block sequence (ug) of (zn). I up =

a%

Y. a;z; with a; € R and pr < q¢ < pr41 for every k € N, then by Lemma 4

t=pg

the basic sequence {uz) is equivalent to the basic sequence (vg) in T, where
L]

v = . aje; for every k € M. Since [vz]3%, 1s 2 reflexive subspace of v(#n), the
E=pi

subspaces [u]52, and [wg]g2, of X are also reflexive. Hence Z contains a reflexive

subspace with a basis. 0

Definition 18. A sequence (z,) in a Banach space X is called unconditional iff

whenever a series ) @pZp, Gy € R converges in X the convergence is unconditional.
n

Theorem 19. Let X be an infinite dimensional Banach space, (zn) an uncon-
ditional sequence in X and X = [zn]3%,. Then every infinite dimensional closed
subspace Y of X has an unconditional basic sequence.

Proof. Let (yn) be a basic sequence in Y. According to Lemma 16 there is
basic block sequence (wy) of (y») which is equivalent to a basic block sequence (ug)
of (zn). Since () is unconditional, (ug) is also unconditional. Hence, (wg) is an
unconditional basic sequence in Y. W

Proposition 20. Let X be an infinite dimensional Banach space and {(z) an
unconditional sequence in X such that 0 < iﬁf”a:,,” and X = [£4]2,. Then X has
a subspace isomorphic to £, for some 1 < p < o0 (resp. to cg) if and only if the
subspace [e,]3%, of B ») contains a subspace isomorphic to £, (resp. to co).

Proof. LetY isa subspace of X isomorphic to Z,, then from Lemma 16 there
is a basic block sequence (u;) of (zn) which is equivalent to the usual basis of £,. By
Lemma 4 there is a block sequence (vx) of (en) in (=) which is equivalent to (u).
Hence {vi) is equivalent to the usual basis of £,.

Conversely, if [e,]7%; has a subspace isomorphic to £, then there is a normalized
block sequence (vg) of (es) equivalent to the usual basis of £,. Let vp = % a;e;

i=py

with a; € R and pr < ¢k < Pr41 for every k € N. By Lemma 12 there are sings O

such that
9k (43
E a;0:e; | = _S_ a;0;T;
f‘:pk i:pk
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holds for every k € N.

Ik qk
Set vl = ), a;0;e; and up = Y. aid;x; for every E € N. Since (en) is an
i=Pk i=pi

unconditional basic sequence in T@») the sequence {v}) is squivalent to (vk) and
there is M > 0 such that 77 < [luell = v, il < M holds for every k € N. By Lemma
4 the sequence (ug) is equivalent to (v},), hence (ui) is an £y-sequence in X. The
result follows from Corollary 11.

The proof for ¢q is similar. O

From Proposition 20 we get immediately the following results which extend R. C.
James Theorem [2] related to unconditional basic sequences to arbitrary uncondi-
tional sequences.

Proposition 21. Let X be an infinite dimensional Banach space and (z,) an
unconditional sequence in X such that 0 < inf ||za|] and X = [zali%a- Then:
n

(i) X has no subspace isomorphic to £y if and only if the unit vector basic sequence
(en) In v(#n) is shrinking

(i) X has no subspace isomorphic to cq if and only if the basic sequence (en) in
v¢{=x) js boundedly complete.

Proof. Since(zy)isan unconditional sequence in X the basic sequence (en)in
¥(#n) is also unconditional. From [2] we have that (en) is shrinking if and only if the
subspace [en]oky of s¥(z=) has no subspace isomorphic to £, and (e,) is boundedly
complete if and only if {en]a=q has ne subspace isomorphic to co. The result is now
obvious from Proposition 20. (]

Theorem 22. Let X be an infinite dimentioanl Banach space and (zn) an uncon-
ditional sequence in X such that 0 < inf ||za)] and X = [zalo%,- Then X contains a
n

subspace isomorphic to £y, co or X is somewhat reflexive.

Proof. If X has no subspace isomorphic to ¢g or £; then from Proposition 20
we have that the unit vector basic sequence (e) in B ») is shrinking and boundedly
complete. Hence [ex]o%y = 7(zn) and TC») is reflexive. According to Proposition
17 X is somewhat reflexive. 0O
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