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co-SUBSPACES AND FOURTH DUAL TYPES 
VASILIKI A. FARMAKI 

(Communicated by John B. Conway) 

ABSTRACT. For a separable Banach space X, we define the notion of a co+- 
type on X and show that the existence of such a type is equivalent to the 
embeddability of co in X. All these types are weakly null and fourth dual (i.e. 
of the form r(x) = llx +J g9 for g E X****)- We define the II+-dual types on X 
(these are generated by sequences in X**) and prove that they coincide with 
the fourth dual types on X. We also prove that co+-types are fourth dual 
types. 

Introduction. The concept of a type on a separable Banach space X (i.e. a 
function of the form r(x) = limn llx+x, I) has proved very fruitful in the isomorphic 
theory of Banach spaces in recent years. For example, Maurey proved in [4] that a 
separable Banach space X contains 11 if and only if there exists g E X** such that 
IIx+gII = lIx-glI for all x E X. In the language of types, this means that X admits 
a symmetric second dual type (i.e. a type r of the form r(x) = r (-x) = lix + 911 for 
some g E X**) as defined by Haydon and Maurey [2]. 

Maurey's results were refined by Rosenthal in [6], where the important class 
of 11+-types was introduced and shown to coincide with the class of second dual 
types. The existence of such types is characteristic of nonreflexive separable Banach 
spaces and implies that the positive face of the unit ball of 11 embeds in X almost 
isometrically. Rosenthal also defined IP-types for 1 < p < oo, and showed that their 
existence implies the almost isometric embeddability of IP (for p < oo) or c0 (for 
p = oo) in X. For p = 1 and p = oo the converse also holds [4, 6]. 

In the first part of this note we introduce the notion of a co+ -type and prove that 
co+-types have properties analogous to those of the 11+-types. For example, their 
existence implies that the positive face of the unit ball of c0 embeds in X almost 
isometrically. Also, a symmetric type is an l?-type if and only if it is a co+-type, 
in just the same way that a symmetric type is an 11-type if and only if it is an 
l-type [6]. 

The existence of an I'+-type on X does not imply that 11-embeds in X. It is 
therefore rather striking that the existence of a nontrivial co+-type is equivalent to 
the embeddability of c0 in X (Theorem 1.8). 

In the second part of this note it is shown that all co+ -type are of the form 
r(x) = llx + glj with g E X(4) (X(4) is the fourth dual space of X). We show that 
all such functions are indeed types, and we call them fourth dual types. 
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Limits of sequences of second-dual types are themselves types, called dually 
generated. Within this class we define 11+-dual types, analogously to Rosenthal's 
11+-types and show (Theorem 2.6) that 11+-dual types are precisely the fourth dual 
types. Using this theorem, we are able to characterize fourth dual types of the form 
r(x) = llx + gil where g is a Baire-1 element of X(4). 

The class of fourth dual types provides interesting questions for further study. 
Throughout this article, we denote by X a real separable infinite dimensional 

Banach space. X**, X(3) and xt4) are the second, third and fourth duals of X, 
respectively. For a subset A of X, conv A denotes the convex hull of A and conv A 
the closure of conv A. Also [A] denotes the closed linear span of A. 

1. co+-types and co-subspaces. 
DEFINITIONS 1.1. A function r: X -* R is a type on X if there exists a sequence 

(xn) in X such that 

(1) r(x)=limllx+xnll forxEX. 
n 

If (xn) satisfies (1) we say that (xn) generates r. 
A type r on X is: 
trivial if there is a y E X with r(x) = jlx + yll for x E X, 
normalized if r(O) = 1, 
symmetric if r(x) = r(-x) for x E X 
an lP-type for 1 < p < oo if there exists a sequence (xn) in X such that 

r(x) = limlim lix + axn + bxmll 
n m 

for x E X and a, b E R with (ialP + IbIP)"/P = 1 (where we set (lalI? + Iblj?)/1" - 

max(lal, ibl)) and 
an 11+ -type if there exists a sequence (xn) in X such that 

r(x) = lim lim llx + axn + bxm 
n m 

for x EX and a,b> 0with a+b = 1. 
These definitions follow Rosenthal [6], where we refer the reader for more details. 
We introduce the following 
DEFINITION 1.2. A function r: X -p R is a co+-type if there exists a sequence 

(xn) in X such that 

(2) r(x) = lim lim lix + axn + bxm 
n m 

for x E y and a,b > 0 with max(a,b) = 1. 
If (xn) satisfies (2), we say that (xn) co+-doubly generates r. 
Obviously a c0+-type is a type (take a = 1 and b = 0) and an l0-type is a 

co+-type. Moreover the l?-types are precisely the symmetric co+-types (the proof 
is similar to the proof of Proposition 1.5 in [6].) 

DEFINITION 1.3. (a) Let A C X. An element x E X is a co+-convex combi- 
nation of members of A if there exist n E N, nonnegative scalars A1, . . ., An with 
max(A1,.., An) = 1 and xj,...,xn E A such that x _ = Aixi. The set of all 
co+-convex combinations of members of A is denoted by c0+- conv A. 
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(b) Let (xn) and (Yin) be sequences in X. (Ymn) is called a sequence of far-out 
co+ -convex combinations of (xn) if for every I E N there exists a k E N such that 

Ym e co+-conv{xn: n > I} for every m > k. 

DEFINITION 1.4. Let r be a type on X. A sequence (xv) in X co+-strongly gen- 
erates r if every sequence (Ym) of far-out co+ -convex combinations of (x") generates 
1-. 

The following theorem is analogous to Theorem 1.6 of [61 which deals with 1'+- 
types. We write a -', b for nonnegative a, b and e > 0 if la - bl < E. 

THEOREM 1.5. Let r be a type on X and (xn) a sequence in X. 
(a) The sequence (xn) co+ -strongly generates r if and only if for every e < 0 and 

x E X there is an 1 E N such that 

(3) lix + yll- r(x)I <e for all y E co+ -conv{x: n > l1}. 
(b) If (xn) co+ -strongly generates r, then r is a co+ -type on X and (x,) co+ - 

doubly generates r. 
(c) If (xn) co+ -doubly generates r, then there exists a subsequence (yin) of (xn) 

which co+ -strongly generates r. 

PROOF. This theorem can be proved using methods analogous to Rosenthal's. 
We give a shorter proof (of (c)) using techniques of Maurey in [4]. 

(c) According to Definition 1.2, we have r(x) = limn limm lix + ax, + bxmlI for 
x e X and a, b > 0 with max(a, b) = 1, or equivalently 

(4) limlim llx +axn + bxmll = limllx +max(a,b)xnll1 for xe X and a,b>0. 
n m n 

Since X is separable, we can find an increasing sequence (Fm) of finite subsets 
of X with X = Um Fm. Let (Ei) be a sequence of real positive numbers so that 

.- ei < 1/2i. We can assume that llxnII = 1 for all n E N. 
Using Ascoli's theorem, we select inductively a subsequence (yin) of (xn) so that 

lim jlx + ayn + bxn j em lim llx + max(a, b)xn n ~~~~~n 
for all x E Fn + m. Ball [Yl,Y2,* * , ym_] and 0 < a, b < 1. 

Let e > 0 and x e X. If x e Fno, choose I e N such that 1/21 <e and mo <1. 
We claim that, 

(5) lllx+yll-r(x)l <e fory eco-conv{y, *:m>l}- 
Indeed, let y = EN- Aiyi with Al, A+?, ... ., AN > 0 and max(Al,..., AN) 1. We 
have that 

N N-1 

x + Aiyi || N lm x + AiYi + ANxn 

i=l i=l 

N-2 

E CN+C__1 lim X + Aiyi + max(AN, AN-1)xn 

Finally 
N 

X + A i i lim lix + max(A,,.. . , AN)xnl r(x). 
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Thus the claim is true. Hence, by continuity, (5) holds for x c X. By (a), it follows 
that (Yin) co+-strongly generates r. 

DEFINITION 1.6 [1]. A type r on X is called weakly null if there exists a sequence 
(xn) in X such that w-limn xn = 0 and (xn) generate r. 

Using Theorem 1.5 we prove that every co+-type is weakly null. 

PROPOSITION 1.7. Every co+-type on X is weakly null. Moreover, for each 
sequence (Xn) in X, which co+-strongly generates a type r on X, we have w- 
limn Xn = 0. 

PROOF. Let r be a co+ -type on X and (xn) a sequence in X which co+ -strongly 
generates r. According to Theorem 1.5(a) for x = 0 and E = 1, there exists an 
1 E N such that 

(6) IIYII-< 1 + r(O) for every y E co+-conv{xn: n > 1}. 

Hence for each increasing sequence (nk) of natural numbers with nk > 1 for k E N, 
we have 

lim || ni + + xnk|| = o 
k k 

Thus the sequence (xn) is weakly null. 
Using all previous results we now give a criterion for the embeddability of co in 

a separable Banach space. 

THEOREM 1.8. Let X be a separable Banach space. Then co embeds in X if 
and only if there exists a nontrivial co+ -type on X. 

PROOF. If co embeds in X, then there exists a nontrivial l?-type on X, as 
Rosenthal has proved in [6]. But every l?'-type is a co+-type. 

Conversely, let r be a nontrivial co+-type on X and r(O) = 1. According to 
Theorem 1.5(c) there exists a sequence (xn) in X which co+-strongly generates r. 
This sequence is weakly null by Proposition 1.7. We can assume that llxnll = 1 for 
all n E N. Also, according to Theorem 1.5(a) (for x = 0 and E = 1), there exists 
an 1 E N such that 

(7) IIYII < 2 for every y E co+-conv{xn: n > 1}. 
In particular 

(8) Xn < 2 for all finite subsets F of {n E N: n > 1}. 
nEF 

Thus there exists a subsequence (Ym) of (xn) which is basic, normalized and 
satisfies ZY,EmEF Ymi11 < 2 for all finite F C N; then (Ym) is equivalent to the unit 
vector basis of co. 

2. Fourth dual types. In this section X denotes a separable, nonreflexive 
infinite-dimensional real Banach space. The space X is identified (via the canonical 
embedding) with a subspace of X** and X** with a subspace of X(4) (the fourth 
dual of X). 

DEFINITION 2. 1. Let r: X -- R be a function. A sequence (X,*) in X** dually 
generatesr if 

(9) r(x) = lim llx + x**II for every x E X. 
n 



co-SUBSPACES AND FOURTH DUAL TYPES 325 

If (xv*) dually generates a function r, then r is a type on X. Indeed, for every 
n E N the functions rn: X -) R with r (x) = lix + xn*ii are types on X (in fact 
11+-types, cf. [6]) and limnrn(x) = r(x) for x E X. But it is known that the set 
T(X) of all types on X is a closed subset of Rx with respect to the topology of 
pointwise convergence [3]. 

DEFINITION 2.2. Let r: X -+ R be a function. A sequence (x**) in X** strongly 
dually generates r if every sequence (ym*) of far-out convex combinations of (x**) 
[6, Definition 1.5] dually generates r. 

If a sequence in X** strongly-dually generates a function r, then obviously r is 
a type on X; r is called an l1+-dual type. 

PROPOSITION 2.3. Let r be a type on X and (x**) a sequence in X**. Then 
(X**) strongly dually generates r if and only if for every e > 0 and x E X there is 
an 1 E N such that 

(10) llx +y**11-r(x)I <e for everyy E conv{x**: n > l}. 

PROOF. If (xn*) does not satisfy (10) for some E < 0, x E X and all 1 E N, then 
we can choose inductively a sequence (ym*) of far-out convex combinations of (x**), 
so that (y**) does not dually generate r. Hence (x**) does not strongly generate r. 
The converse is immediate. 

DEFINITION 2.4. A function r: X -- R is called a fourth-dual type on X if there 
exists a g E X(4) so that 

(11) r(x) = llx + gll for every x E X. 

In this case we write r = tg. 
It is not immediate that a fourth dual type is a type on X. In fact, as we prove 

in Theorem 2.6, the fourth dual types are precisely the 11+-dual types on X, so 
they are types on X. The proof of Theorem 2.6 will use a concrete construction of 
a strongly dually generating sequences for rg. What is more, this sequence can be 
obtained from any given sequence of convex bounded sets Wn, n E N, in X** such 
that g E Wn for every n E N, as described in Theorem 2.5 below. For any subset 
A of X** (or of X(4)) A denotes the weak* closure of A in X(4). 

THEOREM 2.5. Let g E X(4) and W1 D D ... be bounded convex subsets 
of X** such that g E Ao=L1 Wn. Then there exist convex subsets L1 D L2 D ... of 
X** so that 

(a) Wn D Ln for every n E N, and 
(b) if x** E Ln for every n E N, then the sequence (x**) strongly dually generates 

g9 

PROOF. We may assume that g 0 X. Let F, H be finite subsets of X and X(3) 
respectively, E > 0 and L a bounded and convex subset of X**. If 

L9HE = {1 E L: iil+xii < (1+E)ijg+xjj for all x E F and g(f)-e < f(l) for f E H} 

then LgFHE is a convex subset of L and if g E L then g E L (Lemma 2.5 in 
[6]). t 

Let {x1,x2,. .. } be a dense, countable subset of X and Fn = {X1, x2. .. *xn} 
for every n E N. We choose finite subsets H1 C H2 C . of the unit ball of X(3) 
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such that 

(12) max(g+x)(f)>19g+xX|-1/n forxEFn. 

Set Ln = WgFf H 1/ for every n E N. The sets Ln are convex, decreasing and 
satisfy (a). We prove that they also satisfy (b). For each n E N choose xn* E Ln. 
If x = xn, (no E N) then 

(13) IIx** + xjj < (1 + 1/n)jig + xjj for every n > no 

because x E Fn for every n > nO. On the other hand, for every n E N, f E Hn and 
x E Fn 

(14) f(x** + x) > g(f) - 1/n + f(x) = (g + x)(f) - 1/n. 

Hence for x = xno we have 

(15) lIxn* + xll > max f(xn* + x) > max (g + x)(f) - 1/n > jig + xjj - 1/2n. 
fEH n fEHn 

Relation (15), combined with (13), shows that 

(16) rg(x) =limllx+x**Il for everyx E {Xl, X2,... *} 
n n 

Since {x1, x2, . . . } is dense in X 

(17) rg(x) = limlIx+x**II for every x EX. 
n 

Hence (x4*) dually generates rg and since the sets Ln (n E N) are convex and 
decreasing, it follows that (x**) strongly dually generates rg. 

THEOREM 2.6. Let X be a separable Banach space. A function r: X - y R is 
a fourth dual type on X if and only if it is an 11+ -dual type on X. 

PROOF. Let r = rg be a fourth dual type on X. Using Theorem 2.5 for Wn = 

{x E X**: llxil < ilgl1} (n E N) we can find a sequence (Xn*) in X** which strongly 
dually generates r. Conversely, if r is an 11+-dual on X and (x4*) C X** strongly 
dually generates r, then using again Theorem 2.5 for Wn = conv{xi**: i > n} and 
g E fln?L1 Wn, we find a sequence (yn*) of far-out convex combinations of (x4*) 
which strongly dually generates rg. Thus r = rg. 

The proof of the following corollary is entirely analogous to Corollary 2.2 in [6], 
making use of Theorem 2.5. 

COROLLARY 2.7. Let r be a type on X, (x4*) a sequence in X** dually gener- 
ating r and Wn = conv{x**: i > n} for every n E N. Then (x4*) strongly dually 
generates r if and only if r = rg for g c fnlL1 Wn. 

Using Theorems 2.5 and 2.6 we give a characterization of a fourth dual type rg, 
where g is a Baire-1 element of X(4) i.e. a weak* limit in X(4) of a sequence in 
X**. Similar results for double dual types are found in [6]. 

THEOREM 2.8. Let r be a type on X. There exists a Baire-1 element g of X(4) 
such that r = rg if and only if there exists a sequence (x4*) in X** which is weakly 
Cauchy and strongly dually generates r. 

PROOF. Let r = Tg for some g E X(4) and (x4*) a sequence in X*. weak*- 
converging in X(4) to g. Using Theorem 2.5 for Wn = conv{x**: i > n} and 
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g E nfn=L1 Wl we find a sequence (y**) of far-out convex combinations of (x**) 
which strongly dually generates r. Moreover (yn*) converges weak* in X(4) to g. 
For the converse, let (xn*) be a sequence in X** which strongly dually generates 
r, and is weakly Cauchy. If g E X(4) is the weak* limit of (x4*) in X(4) and 

Wn = conv{x**: i > n}, then g E n,l?=L Wn, and hence by Theorem 2.5, r = Tg. 
From the previous theorem and the fact that, if a sequence has no weak-Cauchy 

subsequence, it has a subsequence equivalent to the usual basis of 11 [5], we have 

COROLLARY 2.9. Let X be a separable Banach space. If 11 does not embed in 
X**, then for every 11+ -dual type r on X there is a Baire-1 element g of X(4) with 

= _ g 

Finally, using Theorem 2.6, we shall prove that every co+-type is a fourth dual 
type on a separable Banach space. 

PROPOSITION 2.10. Every co+ -type on X is a fourth dual type on X. More- 
over if (xn) C X co+-strongly generates r, then the sequence (yn*) in X** with 

Yn* * - limm,u (xn + + Xm) (U any nontrivial ultrafilter orb N) strongly dually 
generates r. 

PROOF. Let (xn) be a sequence in X which co+-strongly generates r. According 
to Proposition 2.3 it is sufficent to prove that for every E > 0 and x E X there is 
an I E N such that 

(18) 1lix + y*||-r(x)I < e for every y** E conv{yn*: n > l}. 

Since (xn) co+-strongly generates r, Theorem 1.5(a) implies that for x c X and 
E > 0 there exists an 1 e N such that 

(19) IIIx+yI I-r(x)I <E for every yE co+-conv{xn: n> l}. 

Take Ynm = Xn + * + xm for n, m E N. For all natural numbers nk > * * > 

n? > I and scalars a,,..., ak > 0 with a1 + a2 + + ak = 1, we have 

(20) conv{alynim + * * + akynkm: m > nk} C co+-conv{xn: n > l}. 

If y** E conv{y*: n > l} then y** -w*- limm,u a,Ynm + + akynkmI where 
<nl? < ... < nk and a,, .. ., ak > 0 with a, + + ak = 1. Relations (20) and 

(19) imply that 

(21) llx + y**11 < lim llx + alynlm + * + akynkm I < E + r(X); 
m,U 

on the other hand, using the Hahn Banach theorem 

(22) r(x) - e < llx + Y**j1. 

Thus'(18) follows, and hence r is an 11+-dual type on X. According to Theorem 
2.6, r is a fourth dual type on X. 

ACKNOWLEDGMENT. The author wishes to thank Professor S. Negrepontis for 
his very helpful comments and suggestions. 



328 V. A. FARMAKI 

BIBLIOGRAPHY 

1. S. Argyros, S. Negrepontis and Th. Zachariades, Weakly stable Banach spaces, Israel J. Math. 
57 (1987), 68-88. 

2. R. Haydon and B. Maurey, On Banach spaces with strongly separable types, J. London Math. 
Soc. 33 (1986), 484-498. 

3. J. L. Krivine and B. Maurey, Espaces de Banach stables, Israel J. Math. 39 (1981), 273-295. 
4. B. Maurey, Types and 11-subspaces, Longhorn Notes, The University of Texas, Functional 

Analysis Seminar, 1982-83, pp. 123-137. 
5. H. Rosenthal, A characterization of Banach space containing 11, Proc. Nat. Acad. Sci. U.S.A. 

71 (1974), 2411-2413. 
6. __, Double dual types and the Maurey characterization of Banach spaces containing 11, Long- 

horn Notes, The University of Texas, Functional Analysis Seminar, 1983-84, pp. 1-36. 

DEPARTMENT OF MATHEMATICS, SECTION OF MATHEMATICAL ANALYSIS AND ITS 

APPLICATIONS, UNIVERSITY OF ATHENS, PANEPISTEMIOPOLIS, 157 81 ATHENS, GREECE 


	Article Contents
	p. 321
	p. 322
	p. 323
	p. 324
	p. 325
	p. 326
	p. 327
	p. 328

	Issue Table of Contents
	Proceedings of the American Mathematical Society, Vol. 102, No. 2 (Feb., 1988), pp. 221-442
	Front Matter
	Some Amalgam Structures for Bianchi Groups [pp. 221-229]
	Elliptically Embedded Subgroups of Polycyclic Groups [pp. 230-234]
	Rings Graded by Polycyclic-by-Finite Groups [pp. 235-241]
	Path-Lifting for Grothendieck Toposes [pp. 242-248]
	One-Relator Quotients and Free Products of Cyclics [pp. 249-254]
	Multiplicities of the Eigenvalues of the Discrete Schrödinger Equation in any Dimension [pp. 255-260]
	Derivations and (Hyper)Invariant Subspaces of a Bounded Operator [pp. 261-267]
	Extensions of Certain Compact Operators on Vector-Valued Continuous Functions [pp. 268-270]
	A Counterexample to the Nodal Domain Conjecture and a Related Semilinear Equation [pp. 271-277]
	An Estimate for Certain Meromorphic Univalent Functions [pp. 278-282]
	Extremal Problems for Lorentz Classes of Nonnegative Polynomials in L Metric with Jacobi Weight [pp. 283-289]
	Weighted Norm Inequalities for Multipliers [pp. 290-294]
	A Characterization of L-Improving Measures [pp. 295-299]
	Spectrum of the Product of Operators [pp. 300-302]
	Fatou's Lemma in Infinite-Dimensional Spaces [pp. 303-310]
	On Hörmander's Ratio Theorems [pp. 311-316]
	Smooth Convex t-Norms Do Not Exist [pp. 317-320]
	c-Subspaces and Fourth Dual Types [pp. 321-328]
	Analyticity of the Interface of the Porous Media Equation After the Waiting Time [pp. 329-336]
	A Counterexample to an F. and M. Riesz-Type Theorem [pp. 337-340]
	Regular Variation in R [pp. 341-348]
	On Extreme Points of Families Described by Subordination [pp. 349-354]
	On the Relation Between C-Algebras of Foliations and Those of Their Coverings [pp. 355-360]
	L Multipliers; A New Proof of an Old Theorem [pp. 361-364]
	Strongly Commuting Selfadjoint Operators and Commutants of Unbounded Operator Algebras [pp. 365-372]
	A Construction of Finite and σ-Finite Invariant Measures in Measure Spaces [pp. 373-380]
	A Note on the g-Function [pp. 381-382]
	Decidable Sentences Over Polynomial Rings [pp. 383-388]
	Completeness Theorem for Singular Biprobability Models [pp. 389-392]
	Vector-Valued Stochastic Processes. II. A Radon-Nikodým Theorem for Vector-Valued Processes with Finite Variation [pp. 393-401]
	Expansion of Discrete and Closure-Preserving Families [pp. 402-406]
	Spans of Simple Triods [pp. 407-415]
	The Separable Representations of U(H) [pp. 416-420]
	Two Questions on Heegaard Diagrams of S [pp. 421-425]
	Tautness and Locally Finitely-Valued Alexander-Spanier Cochains [pp. 426-430]
	Unstable Compositions Related to the Image of J [pp. 431-436]
	On Forbidden Minors for GF(3) [pp. 437-440]
	Shorter Notes: Vector Measures with Values in the Compact Operators [pp. 441-442]
	Back Matter



