c0-Subspaces and Fourth Dual Types<br>Author(s): Vasiliki A. Farmaki<br>Source: Proceedings of the American Mathematical Society, Vol. 102, No. 2 (Feb., 1988), pp. 321-328<br>Published by: American Mathematical Society<br>Stable URL: http://www.jstor.org/stable/2045883<br>Accessed: 09/06/2009 04:04

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.


[^0]
# $c_{0}$-SUBSPACES AND FOURTH DUAL TYPES 

VASILIKI A. FARMAKI

(Communicated by John B. Conway)


#### Abstract

For a separable Banach space $X$, we define the notion of a $c_{0^{+}}-$ type on $X$ and show that the existence of such a type is equivalent to the embeddability of $c_{0}$ in $X$. All these types are weakly null and fourth dual (i.e. of the form $\tau(x)=\|x+g\|$ for $g \in X^{* * * *}$ ). We define the $l^{l^{+}}$-dual types on $X$ (these are generated by sequences in $X^{* *}$ ) and prove that they coincide with the fourth dual types on $X$. We also prove that $c_{0+\text {-types are fourth dual }}$ types.


Introduction. The concept of a type on a separable Banach space $X$ (i.e. a function of the form $\left.\tau(x)=\lim _{n}\left\|x+x_{n}\right\|\right)$ has proved very fruitful in the isomorphic theory of Banach spaces in recent years. For example, Maurey proved in [4] that a separable Banach space $X$ contains $l^{1}$ if and only if there exists $g \in X^{* *}$ such that $\|x+g\|=\|x-g\|$ for all $x \in X$. In the language of types, this means that $X$ admits a symmetric second dual type (i.e. a type $\tau$ of the form $\tau(x)=\tau(-x)=\|x+g\|$ for some $g \in X^{* *}$ ) as defined by Haydon and Maurey [2].

Maurey's results were refined by Rosenthal in [6], where the important class of $l^{1^{+}}$-types was introduced and shown to coincide with the class of second dual types. The existence of such types is characteristic of nonreflexive separable Banach spaces and implies that the positive face of the unit ball of $l^{1}$ embeds in $X$ almost isometrically. Rosenthal also defined $l^{p}$-types for $1 \leq p \leq \infty$, and showed that their existence implies the almost isometric embeddability of $l^{p}$ (for $p<\infty$ ) or $c_{0}$ (for $p=\infty)$ in $X$. For $p=1$ and $p=\infty$ the converse also holds $[4,6]$.

In the first part of this note we introduce the notion of a $c_{0^{+}}$-type and prove that $c_{0+- \text { types }}$ have properties analogous to those of the $l^{l^{+}}$-types. For example, their existence implies that the positive face of the unit ball of $c_{0}$ embeds in $X$ almost isometrically. Also, a symmetric type is an $l^{\infty}$-type if and only if it is a $c_{0^{+}}$-type, in just the same way that a symmetric type is an $l^{1}$-type if and only if it is an $l^{1^{+}}$-type [6].

The existence of an $l^{l^{+}}$-type on $X$ does not imply that $l^{1}$-embeds in $X$. It is therefore rather striking that the existence of a nontrivial $c_{0^{+}}$-type is equivalent to the embeddability of $c_{0}$ in $X$ (Theorem 1.8).

In the second part of this note it is shown that all $c_{0+-}$-type are of the form $\tau(x)=\|x+g\|$ with $g \in X^{(4)}\left(X^{(4)}\right.$ is the fourth dual space of $\left.X\right)$. We show that all such functions are indeed types, and we call them fourth dual types.

[^1]Limits of sequences of second-dual types are themselves types, called dually generated. Within this class we define $l^{1^{+}}$-dual types, analogously to Rosenthal's $l^{1^{+}}$-types and show (Theorem 2.6) that $l^{1^{+}}$-dual types are precisely the fourth dual types. Using this theorem, we are able to characterize fourth dual types of the form $\tau(x)=\|x+g\|$ where $g$ is a Baire-1 element of $X^{(4)}$.

The class of fourth dual types provides interesting questions for further study.
Throughout this article, we denote by $X$ a real separable infinite dimensional Banach space. $X^{* *}, X^{(3)}$ and $X^{(4)}$ are the second, third and fourth duals of $X$, respectively. For a subset $A$ of $X, \operatorname{conv} A$ denotes the convex hull of $A$ and $\overline{c o n v} A$ the closure of conv $A$. Also $[A]$ denotes the closed linear span of $A$.

## 1. $c_{0+-t y p e s ~ a n d ~} c_{0}$-subspaces.

Definitions 1.1. A function $\tau: X \rightarrow \mathbf{R}$ is a type on $X$ if there exists a sequence $\left(x_{n}\right)$ in $X$ such that

$$
\begin{equation*}
\tau(x)=\lim _{n}\left\|x+x_{n}\right\| \quad \text { for } x \in X \tag{1}
\end{equation*}
$$

If ( $x_{n}$ ) satisfies (1) we say that $\left(x_{n}\right)$ generates $\tau$.
A type $\tau$ on $X$ is:
trivial if there is a $y \in X$ with $\tau(x)=\|x+y\|$ for $x \in X$,
normalized if $\tau(0)=1$,
symmetric if $\tau(x)=\tau(-x)$ for $x \in X$,
an $l^{p}$-type for $1 \leq p \leq \infty$ if there exists a sequence $\left(x_{n}\right)$ in $X$ such that

$$
\tau(x)=\lim _{n} \lim _{m}\left\|x+a x_{n}+b x_{m}\right\|
$$

for $x \in X$ and $a, b \in \mathbf{R}$ with $\left(|a|^{p}+|b|^{p}\right)^{1 / p}=1$ (where we set $\left(|a|^{\infty}+|b|^{\infty}\right)^{1 / \infty}=$ $\max (|a|,|b|))$ and
an $l^{1^{+}}$-type if there exists a sequence $\left(x_{n}\right)$ in $X$ such that

$$
\tau(x)=\lim _{n} \lim _{m}\left\|x+a x_{n}+b x_{m}\right\|
$$

for $x \in X$ and $a, b \geq 0$ with $a+b=1$.
These definitions follow Rosenthal [6], where we refer the reader for more details.
We introduce the following
Definition 1.2. A function $\tau: X \rightarrow \mathbf{R}$ is a $c_{0^{+}}$type if there exists a sequence $\left(x_{n}\right)$ in $X$ such that

$$
\begin{equation*}
\tau(x)=\lim _{n} \lim _{m}\left\|x+a x_{n}+b x_{m}\right\| \tag{2}
\end{equation*}
$$

for $x \in y$ and $a, b \geq 0$ with $\max (a, b)=1$.
If $\left(x_{n}\right)$ satisfies (2), we say that $\left(x_{n}\right) c_{0^{+}}$-doubly generates $\tau$.
Obviously a $c_{0^{+}}$-type is a type (take $a=1$ and $b=0$ ) and an $l^{\infty}$-type is a $c_{0^{+}}$-type. Moreover the $l^{\infty}$-types are precisely the symmetric $c_{0^{+}}$-types (the proof is similar to the proof of Proposition 1.5 in [6].)

Definition 1.3. (a) Let $A \subset X$. An element $x \in X$ is a $c_{0^{+}-\text {convex combi- }}$ nation of members of $A$ if there exist $n \in \mathbf{N}$, nonnegative scalars $\lambda_{1}, \ldots, \lambda_{n}$ with $\max \left(\lambda_{1}, \ldots, \lambda_{n}\right)=1$ and $x_{1}, \ldots, x_{n} \in A$ such that $x=\sum_{i=1}^{n} \lambda_{i} x_{i}$. The set of all $c_{0^{+}}$convex combinations of members of $A$ is denoted by $c_{0^{+}-\operatorname{conv}} A$.
(b) Let $\left(x_{n}\right)$ and $\left(y_{m}\right)$ be sequences in $X .\left(y_{m}\right)$ is called a sequence of far-out $c_{0^{+}}$-convex combinations of $\left(x_{n}\right)$ if for every $l \in \mathbf{N}$ there exists a $k \in \mathbf{N}$ such that

$$
y_{m} \in c_{0^{+}-\operatorname{conv}\left\{x_{n}: n \geq l\right\} \quad \text { for every } m \geq k . . . ~}^{\text {. }}
$$

DEFINITION 1.4. Let $\tau$ be a type on $X$. A sequence $\left(x_{n}\right)$ in $X c_{0^{+}}$strongly generates $\tau$ if every sequence $\left(y_{m}\right)$ of far-out $c_{0^{+}}$-convex combinations of $\left(x_{n}\right)$ generates $\tau$.

The following theorem is analogous to Theorem 1.6 of [6] which deals with $l^{1^{+}}$. types. We write $a \sim_{\varepsilon} b$ for nonnegative $a, b$ and $\varepsilon>0$ if $|a-b|<\varepsilon$.

THEOREM 1.5. Let $\tau$ be a type on $X$ and $\left(x_{n}\right)$ a sequence in $X$.
(a) The sequence $\left(x_{n}\right) c_{0^{+}}$-strongly generates $\tau$ if and only if for every $\varepsilon<0$ and $x \in X$ there is an $l \in \mathbf{N}$ such that

$$
\begin{equation*}
|\|x+y\|-\tau(x)|<\varepsilon \quad \text { for all } y \in c_{0^{+}}-\operatorname{conv}\left\{x_{n}: n \geq l\right\} \tag{3}
\end{equation*}
$$

(b) If $\left(x_{n}\right) c_{0^{+}-s t r o n g l y ~ g e n e r a t e s ~} \tau$, then $\tau$ is a $c_{0^{+-}}$type on $X$ and $\left(x_{n}\right) c_{0^{+-}}$ doubly generates $\tau$.
(c) If $\left(x_{n}\right) c_{0^{+}}$-doubly generates $\tau$, then there exists a subsequence $\left(y_{m}\right)$ of $\left(x_{n}\right)$ which $c_{0^{+}}$-strongly generates $\tau$.

Proof. This theorem can be proved using methods analogous to Rosenthal's. We give a shorter proof (of (c)) using techniques of Maurey in [4].
(c) According to Definition 1.2, we have $\tau(x)=\lim _{n} \lim _{m}\left\|x+a x_{n}+b x_{m}\right\|$ for $x \in X$ and $a, b \geq 0$ with $\max (a, b)=1$, or equivalently
(4) $\lim _{n} \lim _{m}\left\|x+a x_{n}+b x_{m}\right\|=\lim _{n}\left\|x+\max (a, b) x_{n}\right\| \quad$ for $x \in X$ and $a, b \geq 0$.

Since $X$ is separable, we can find an increasing sequence $\left(F_{m}\right)$ of finite subsets of $X$ with $X=\overline{\bigcup_{m} F_{m}}$. Let $\left(\varepsilon_{i}\right)$ be a sequence of real positive numbers so that $\sum_{i=m}^{\infty} \varepsilon_{i}<1 / 2^{m}$. We can assume that $\left\|x_{n}\right\|=1$ for all $n \in \mathbf{N}$.

Using Ascoli's theorem, we select inductively a subsequence $\left(y_{m}\right)$ of $\left(x_{n}\right)$ so that

$$
\lim _{n}\left\|x+a y_{m}+b x_{n}\right\| \sim_{\varepsilon_{m}} \lim _{n}\left\|x+\max (a, b) x_{n}\right\|
$$

for all $x \in F_{m}+m$. Ball $\left[y_{1}, y_{2}, \ldots, y_{m_{-1}}\right]$ and $0 \leq a, b \leq 1$.
Let $\varepsilon>0$ and $x \in X$. If $x \in F_{m_{0}}$, choose $l \in \mathbf{N}$ such that $1 / 2^{l}<\varepsilon$ and $m_{0}<l$. We claim that,

$$
\begin{equation*}
|\|x+y\|-\tau(x)|<\varepsilon \quad \text { for } y \in c_{0}-\operatorname{conv}\left\{y_{m}: m \geq l\right\} \tag{5}
\end{equation*}
$$

Indeed, let $y=\sum_{i=l}^{N} \lambda_{i} y_{i}$ with $\lambda_{l}, \lambda_{l+1}, \ldots, \lambda_{N} \geq 0$ and $\max \left(\lambda_{l}, \ldots, \lambda_{N}\right)=1$. We have that

$$
\begin{aligned}
\left\|x+\sum_{i=l}^{N} \lambda_{i} y_{i}\right\| & \sim_{\varepsilon_{N}} \lim _{n}\left\|x+\sum_{i=l}^{N-1} \lambda_{i} y_{i}+\lambda_{N} x_{n}\right\| \\
& \sim_{\varepsilon_{N}+\varepsilon_{N-1}} \lim _{n}\left\|x+\sum_{i=l}^{N-2} \lambda_{i} y_{i}+\max \left(\lambda_{N}, \lambda_{N-1}\right) x_{n}\right\|
\end{aligned}
$$

Finally

$$
\left\|x+\sum_{i=l}^{N} \lambda_{i} y_{i}\right\| \sim \sum_{i=l}^{N} \varepsilon_{i} \lim _{n}\left\|x+\max \left(\lambda_{l}, \ldots, \lambda_{N}\right) x_{n}\right\|=\tau(x) .
$$

Thus the claim is true. Hence, by continuity, (5) holds for $x \in X$. By (a), it follows that ( $y_{m}$ ) $c_{0^{+}}$-strongly generates $\tau$.

DEfinition $1.6[1]$. A type $\tau$ on $X$ is called weakly null if there exists a sequence $\left(x_{n}\right)$ in $X$ such that $w-\lim _{n} x_{n}=0$ and $\left(x_{n}\right)$ generate $\tau$.

Using Theorem 1.5 we prove that every $c_{0^{+}}$-type is weakly null.
Proposition 1.7. Every $c_{0^{+}}-$type on $X$ is weakly null. Moreover, for each sequence $\left(x_{n}\right)$ in $X$, which $c_{0^{+}}$-strongly generates a type $\tau$ on $X$, we have $w$ $\lim _{n} x_{n}=0$.

Proof. Let $\tau$ be a $c_{0^{+}}$-type on $X$ and $\left(x_{n}\right)$ a sequence in $X$ which $c_{0^{+}}$-strongly generates $\tau$. According to Theorem 1.5(a) for $x=0$ and $\varepsilon=1$, there exists an $l \in \mathbf{N}$ such that

$$
\begin{equation*}
\|y\| \leq 1+\tau(0) \quad \text { for every } y \in c_{0^{+}}-\operatorname{conv}\left\{x_{n}: n \geq l\right\} \tag{6}
\end{equation*}
$$

Hence for each increasing sequence ( $n_{k}$ ) of natural numbers with $n_{k} \geq l$ for $k \in \mathbf{N}$, we have

$$
\lim _{k} \frac{\left\|x_{n_{1}}+\cdots+x_{n_{k}}\right\|}{k}=0
$$

Thus the sequence $\left(x_{n}\right)$ is weakly null.
Using all previous results we now give a criterion for the embeddability of $c_{0}$ in a separable Banach space.

THEOREM 1.8. Let $X$ be a separable Banach space. Then $c_{0}$ embeds in $X$ if and only if there exists a nontrivial $c_{0^{+}}-t y p e ~ o n ~ X$.

Proof. If $c_{0}$ embeds in $X$, then there exists a nontrivial $l^{\infty}$-type on $X$, as Rosenthal has proved in [6]. But every $l^{\infty}$-type is a $c_{0^{+}}$-type.

Conversely, let $\tau$ be a nontrivial $c_{0^{+}}$type on $X$ and $\tau(0)=1$. According to Theorem 1.5(c) there exists a sequence $\left(x_{n}\right)$ in $X$ which $c_{0^{+}}$-strongly generates $\tau$. This sequence is weakly null by Proposition 1.7. We can assume that $\left\|x_{n}\right\|=1$ for all $n \in \mathbf{N}$. Also, according to Theorem 1.5(a) (for $x=0$ and $\varepsilon=1$ ), there exists an $l \in \mathbf{N}$ such that

$$
\begin{equation*}
\|y\| \leq 2 \text { for every } y \in c_{0^{+}-\operatorname{conv}}\left\{x_{n}: n \geq l\right\} \tag{7}
\end{equation*}
$$

In particular

$$
\begin{equation*}
\left\|\sum_{n \in F} x_{n}\right\| \leq 2 \quad \text { for all finite subsets } F \text { of }\{n \in \mathbf{N}: n \geq l\} \tag{8}
\end{equation*}
$$

Thus there exists a subsequence $\left(y_{m}\right)$ of $\left(x_{n}\right)$ which is basic, normalized and satisfies $\left\|\sum_{m \in F} y_{m}\right\| \leq 2$ for all finite $F \subseteq \mathbf{N}$; then $\left(y_{m}\right)$ is equivalent to the unit vector basis of $c_{0}$.
2. Fourth dual types. In this section $X$ denotes a separable, nonreflexive infinite-dimensional real Banach space. The space $X$ is identified (via the canonical embedding) with a subspace of $X^{* *}$ and $X^{* *}$ with a subspace of $X^{(4)}$ (the fourth dual of $X$ ).

Definition 2.1. Let $\tau: X \rightarrow \mathbf{R}$ be a function. A sequence $\left(x_{n}^{* *}\right)$ in $X^{* *}$ dually generates $\tau$ if

$$
\begin{equation*}
\tau(x)=\lim _{n}\left\|x+x_{n}^{* *}\right\| \quad \text { for every } x \in X \tag{9}
\end{equation*}
$$

If ( $x_{n}^{* *}$ ) dually generates a function $\tau$, then $\tau$ is a type on $X$. Indeed, for every $n \in \mathbf{N}$ the functions $\tau_{n}: X \rightarrow \mathbf{R}$ with $\tau_{n}(x)=\left\|x+x_{n}^{* *}\right\|$ are types on $X$ (in fact $l^{1^{+}}$-types, cf. [6]) and $\lim _{n} \tau_{n}(x)=\tau(x)$ for $x \in X$. But it is known that the set $T(X)$ of all types on $X$ is a closed subset of $\mathbf{R}^{X}$ with respect to the topology of pointwise convergence [3].

Definition 2.2. Let $\tau: X \rightarrow \mathbf{R}$ be a function. A sequence $\left(x_{n}^{* *}\right)$ in $X^{* *}$ strongly dually generates $\tau$ if every sequence $\left(y_{m}^{* *}\right)$ of far-out convex combinations of $\left(x_{n}^{* *}\right)$ [6, Definition 1.5] dually generates $\tau$.

If a sequence in $X^{* *}$ strongly-dually generates a function $\tau$, then obviously $\tau$ is a type on $X ; \tau$ is called an $l^{1^{+}}$-dual type.

Proposition 2.3. Let $\tau$ be a type on $X$ and ( $x_{n}^{* *}$ ) a sequence in $X^{* *}$. Then $\left(x_{n}^{* *}\right)$ strongly dually generates $\tau$ if and only if for every $\varepsilon>0$ and $x \in X$ there is an $l \in \mathbf{N}$ such that

$$
\begin{equation*}
\left|\left\|x+y^{* *}\right\|-\tau(x)\right|<\varepsilon \quad \text { for every } y \in \overline{\operatorname{conv}}\left\{x_{n}^{* *}: n \geq l\right\} \tag{10}
\end{equation*}
$$

Proof. If ( $x_{n}^{* *}$ ) does not satisfy (10) for some $\varepsilon<0, x \in X$ and all $l \in \mathrm{~N}$, then we can choose inductively a sequence $\left(y_{m}^{* *}\right)$ of far-out convex combinations of $\left(x_{n}^{* *}\right)$, so that ( $y_{m}^{* *}$ ) does not dually generate $\tau$. Hence ( $x_{n}^{* *}$ ) does not strongly generate $\tau$. The converse is immediate.

DEfinition 2.4. A function $\tau: X \rightarrow \mathbf{R}$ is called a fourth-dual type on $X$ if there exists a $g \in X^{(4)}$, so that

$$
\begin{equation*}
\tau(x)=\|x+g\| \quad \text { for every } x \in X \tag{11}
\end{equation*}
$$

In this case we write $\tau=\tau_{g}$.
It is not immediate that a fourth dual type is a type on $X$. In fact, as we prove in Theorem 2.6, the fourth dual types are precisely the $l^{1^{+}}$-dual types on $X$, so they are types on $X$. The proof of Theorem 2.6 will use a concrete construction of a strongly dually generating sequences for $\tau_{g}$. What is more, this sequence can be obtained from any given sequence of convex bounded sets $W_{n}, n \in \mathbf{N}$, in $X^{* *}$ such that $g \in \tilde{W}_{n}$ for every $n \in \mathbf{N}$, as described in Theorem 2.5 below. For any subset $A$ of $X^{* *}$ (or of $X^{(4)}$ ) $\tilde{A}$ denotes the weak* closure of $A$ in $X^{(4)}$.

THEOREM 2.5. Let $g \in X^{(4)}$ and $W_{1} \supset W_{2} \supset \cdots$ be bounded convex subsets of $X^{* *}$ such that $g \in \bigcap_{n=1}^{\infty} \tilde{W}_{n}$. Then there exist convex subsets $L_{1} \supset L_{2} \supset \cdots$ of $X^{* *}$ so that
(a) $W_{n} \supset L_{n}$ for every $n \in \mathbf{N}$, and
(b) if $x_{n}^{* *} \in L_{n}$ for every $n \in \mathbf{N}$, then the sequence $\left(x_{n}^{* *}\right)$ strongly dually generates $\tau_{g}$.

Proof. We may assume that $g \notin X$. Let $F, H$ be finite subsets of $X$ and $X^{(3)}$ respectively, $\varepsilon>0$ and $L$ a bounded and convex subset of $X^{* *}$. If
$L_{F, H, \varepsilon}^{g}=\{l \in L:\|l+x\|<(1+\varepsilon)\|g+x\|$ for all $x \in F$ and $g(f)-\varepsilon<f(l)$ for $f \in H\}$ then $L_{F, H, \varepsilon}^{g \cdot}$ is a convex subset of $L$ and if $g \in \tilde{L}$ then $g \in \tilde{L}_{F, H, \varepsilon}^{g}$ (Lemma 2.5 in [6]).

Let $\left\{x_{1}, x_{2}, \ldots\right\}$ be a dense, countable subset of $X$ and $F_{n}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ for every $n \in \mathbf{N}$. We choose finite subsets $H_{1} \subset H_{2} \subset \cdots$ of the unit ball of $X^{(3)}$
such that

$$
\begin{equation*}
\max _{f \in H_{n}}(g+x)(f)>\|g+x\|-1 / n \quad \text { for } x \in F_{n} \tag{12}
\end{equation*}
$$

Set $L_{n}=W_{n_{F_{n}, H_{n}, 1 / n}}^{g}$ for every $n \in \mathbf{N}$. The sets $L_{n}$ are convex, decreasing and satisfy (a). We prove that they also satisfy (b). For each $n \in \mathbf{N}$ choose $x_{n}^{* *} \in L_{n}$. If $x=x_{n_{0}}\left(n_{0} \in \mathbf{N}\right)$ then

$$
\begin{equation*}
\left\|x_{n}^{* *}+x\right\|<(1+1 / n)\|g+x\| \quad \text { for every } n \geq n_{0} \tag{13}
\end{equation*}
$$

because $x \in F_{n}$ for every $n \geq n_{0}$. On the other hand, for every $n \in \mathbf{N}, f \in H_{n}$ and $x \in F_{n}$

$$
\begin{equation*}
f\left(x_{n}^{* *}+x\right)>g(f)-1 / n+f(x)=(g+x)(f)-1 / n . \tag{14}
\end{equation*}
$$

Hence for $x=x_{n_{0}}$ we have

$$
\begin{equation*}
\left\|x_{n}^{* *}+x\right\| \geq \max _{f \in H_{n}} f\left(x_{n}^{* *}+x\right)>\max _{f \in H_{n}}(g+x)(f)-1 / n>\|g+x\|-1 / 2 n \tag{15}
\end{equation*}
$$

Relation (15), combined with (13), shows that

$$
\begin{equation*}
\tau_{g}(x)=\lim _{n}\left\|x+x_{n}^{* *}\right\| \quad \text { for every } x \in\left\{x_{1}, x_{2}, \ldots\right\} \tag{16}
\end{equation*}
$$

Since $\left\{x_{1}, x_{2}, \ldots\right\}$ is dense in $X$

$$
\begin{equation*}
\tau_{g}(x)=\lim _{n}\left\|x+x_{n}^{* *}\right\| \quad \text { for every } x \in X \tag{17}
\end{equation*}
$$

Hence ( $x_{n}^{* *}$ ) dually generates $\tau_{g}$ and since the sets $L_{n}(n \in \mathbf{N})$ are convex and decreasing, it follows that ( $x_{n}^{* *}$ ) strongly dually generates $\tau_{g}$.

THEOREM 2.6. Let $X$ be a separable Banach space. A function $\tau: X \rightarrow \mathbf{R}$ is a fourth dual type on $X$ if and only if it is an $l^{1^{+}}$-dual type on $X$.

Proof. Let $\tau=\tau_{g}$ be a fourth dual type on $X$. Using Theorem 2.5 for $W_{n}=$ $\left\{x \in X^{* *}:\|x\| \leq\|g\|\right\}(n \in \mathbf{N})$ we can find a sequence ( $x_{n}^{* *}$ ) in $X^{* *}$ which strongly dually generates $\tau$. Conversely, if $\tau$ is an $l^{1^{+}}$-dual on $X$ and $\left(x_{n}^{* *}\right) \subset X^{* *}$ strongly dually generates $\tau$, then using again Theorem 2.5 for $W_{n}=\operatorname{conv}\left\{x_{i}^{* *}: i \geq n\right\}$ and $g \in \bigcap_{n=1}^{\infty} \tilde{W}_{n}$, we find a sequence $\left(y_{n}^{* *}\right)$ of far-out convex combinations of ( $x_{n}^{* *}$ ) which strongly dually generates $\tau_{g}$. Thus $\tau=\tau_{g}$.

The proof of the following corollary is entirely analogous to Corollary 2.2 in [6], making use of Theorem 2.5.

COROLLARY 2.7. Let $\tau$ be a type on $X,\left(x_{n}^{* *}\right)$ a sequence in $X^{* *}$ dually generating $\tau$ and $W_{n}=\operatorname{conv}\left\{x_{i}^{* *}: i \geq n\right\}$ for every $n \in \mathbf{N}$. Then ( $x_{n}^{* *}$ ) strongly dually generates $\tau$ if and only if $\tau=\tau_{g}$ for $g \in \bigcap_{n=1}^{\infty} \tilde{W}_{n}$.

Using Theorems 2.5 and 2.6 we give a characterization of a fourth dual type $\tau_{g}$, where $g$ is a Baire-1 element of $X^{(4)}$, i.e. a weak* limit in $X^{(4)}$ of a sequence in $X^{* *}$. Similar results for double dual types are found in [6].

ThEOREM 2.8. Let $\tau$ be a type on $X$. There exists a Baire- 1 element $g$ of $X^{(4)}$ such that $\tau=\tau_{g}$ if and only if there exists a sequence $\left(x_{n}^{* *}\right)$ in $X^{* *}$ which is weakly Cauchy and strongly dually generates $\tau$.

Proof. Let $\tau=\tau_{g}$ for some $g \in X^{(4)}$ and ( $x_{n}^{* *}$ ) a sequence in $X^{*}$, weak*converging in $X^{(4)}$ to $g$. Using Theorem 2.5 for $W_{n}=\operatorname{conv}\left\{x_{i}^{* *}: i \geq n\right\}$ and
$g \in \bigcap_{n=1}^{\infty} \tilde{W}_{n}$ we find a sequence $\left(y_{n}^{* *}\right)$ of far-out convex combinations of $\left(x_{n}^{* *}\right)$ which strongly dually generates $\tau$. Moreover ( $y_{n}^{* *}$ ) converges weak* in $X^{(4)}$ to $g$. For the converse, let $\left(x_{n}^{* *}\right)$ be a sequence in $X^{* *}$ which strongly dually generates $\tau$, and is weakly Cauchy. If $g \in X^{(4)}$ is the weak* limit of $\left(x_{n}^{* *}\right)$ in $X^{(4)}$, and $W_{n}=\operatorname{conv}\left\{x^{* *}: i \geq n\right\}$, then $g \in \bigcap_{n=1}^{\infty} \tilde{W}_{n}$, and hence by Theorem 2.5, $\tau=\tau_{g}$.

From the previous theorem and the fact that, if a sequence has no weak-Cauchy subsequence, it has a subsequence equivalent to the usual basis of $l^{1}$ [5], we have

Corollary 2.9. Let $X$ be a separable Banach space. If $l^{1}$ does not embed in $X^{* *}$, then for every $l^{1^{+}}$-dual type $\tau$ on $X$ there is a Baire- 1 element $g$ of $X^{(4)}$ with $\tau=\tau_{g}$.

Finally, using Theorem 2.6, we shall prove that every $c_{0^{+}}$-type is a fourth dual type on a separable Banach space.

Proposition 2.10. Every $c_{0^{+}}$-type on $X$ is a fourth dual type on $X$. Moreover if $\left(x_{n}\right) \subset X c_{0^{+}}$-strongly generates $\tau$, then the sequence ( $y_{n}^{* *}$ ) in $X^{* *}$ with $y_{n}^{* *}=w^{*}-\lim _{m, U}\left(x_{n}+\cdots+x_{m}\right)(U$ any nontrivial ultrafilter or $\mathbf{N})$ strongly dually generates $\tau$.

Proof. Let $\left(x_{n}\right)$ be a sequence in $X$ which $c_{0+-}$-strongly generates $\tau$. According to Proposition 2.3 it is sufficent to prove that for every $\varepsilon>0$ and $x \in X$ there is an $l \in \mathbf{N}$ such that

$$
\begin{equation*}
\left|\left\|x+y^{* *}\right\|-\tau(x)\right|<\varepsilon \quad \text { for every } y^{* *} \in \overline{\operatorname{conv}}\left\{y_{n}^{* *}: n \geq l\right\} . \tag{18}
\end{equation*}
$$

Since $\left(x_{n}\right) c_{0^{+}}$-strongly generates $\tau$, Theorem 1.5(a) implies that for $x \in X$ and $\varepsilon>0$ there exists an $l \in \mathbf{N}$ such that

$$
\begin{equation*}
|\|x+y\|-\tau(x)|<\varepsilon \quad \text { for every } y \in \overline{c_{0^{+-}} \operatorname{conv}}\left\{x_{n}: n \geq l\right\} . \tag{19}
\end{equation*}
$$

Take $y_{n m}=x_{n}+\cdots+x_{m}$ for $n, m \in \mathbf{N}$. For all natural numbers $n_{k} \geq \cdots \geq$ $n_{1} \geq l$ and scalars $a_{1}, \ldots, a_{k} \geq 0$ with $a_{1}+a_{2}+\cdots+a_{k}=1$, we have

$$
\begin{equation*}
\operatorname{conv}\left\{a_{1} y_{n_{1} m}+\cdots+a_{k} y_{n_{k} m}: m \geq n_{k}\right\} \subset c_{0^{+}}-\operatorname{conv}\left\{x_{n}: n \geq l\right\} \tag{20}
\end{equation*}
$$

If $y^{* *} \in \operatorname{conv}\left\{y_{n}^{* *}: n \geq l\right\}$ then $y^{* *}=w^{*}-\lim _{m, U} a_{1} y_{n_{1} m}+\cdots+a_{k} y_{n_{k} m}$, where $l \leq n_{1} \leq \cdots \leq n_{k}$ and $a_{1}, \ldots, a_{k} \geq 0$ with $a_{1}+\cdots+a_{k}=1$. Relations (20) and (19) imply that

$$
\begin{equation*}
\left\|x+y^{* *}\right\| \leq \lim _{m, U}\left\|x+a_{1} y_{n_{1} m}+\cdots+a_{k} y_{n_{k} m}\right\| \leq \varepsilon+\tau(x) \tag{21}
\end{equation*}
$$

on the other hand, using the Hahn Banach theorem

$$
\begin{equation*}
\tau(x)-\varepsilon \leq\left\|x+y^{* *}\right\| . \tag{22}
\end{equation*}
$$

Thus (18) follows, and hence $\tau$ is an $l^{1^{+}}$-dual type on $X$. According to Theorem 2.6, $\tau$ is a fourth dual type on $X$.

Acknowledgment. The author wishes to thank Professor S. Negrepontis for his very helpful comments and suggestions.

## Bibliography

1. S. Argyros, S. Negrepontis and Th. Zachariades, Weakly stable Banach spaces, Israel J. Math. 57 (1987), 68-88.
2. R. Haydon and B. Maurey, On Banach spaces with strongly separable types, J. London Math. Soc. 33 (1986), 484-498.
3. J. L. Krivine and B. Maurey, Espaces de Banach stables, Israel J. Math. 39 (1981), 273-295.
4. B. Maurey, Types and $l^{1}$-subspaces, Longhorn Notes, The University of Texas, Functional Analysis Seminar, 1982-83, pp. 123-137.
$\rightarrow$ H. Rosenthal, A characterization of Banach space containing $l^{1}$, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413.
5. $\quad$, Double dual types and the Maurey characterization of Banach spaces containing ${ }^{1}$, Longhorn Notes, The University of Texas, Functional Analysis Seminar, 1983-84, pp. 1-36.

Department of Mathematics, Section of Mathematical Analysis and its Applications, University of Athens, Panepistemiopolis, 15781 Athens, Greece


[^0]:    American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

[^1]:    Received by the editors July 7, 1986 and, in revised form, October 9, 1986.
    1980 Mathematics Subject Classification (1985 Revision). Primary 46B25, 46B10.
    Key words and phrases. Types on Banach spaces, $c_{0^{+}}$-types, weakly null types, $l^{1^{+}}$-dual types, fourth dual types, generation of types, isomorphic embedding.

