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The structure of Eberlein, uniformly
Eberlein and Talagrand compact spaces in Z(R")

by

Y. Farmaki (Athens)

Abstract. Well known compact spaces such as Eberlein, uniformly Eberlein and Talagrand
compact spaces can be considered as subsets of Z(RT). In this paper we give characterizations of
these classes of sets distinguishing them by their structure inside Z(RF). A consequence of these
results is an easy proof of Talagrand’s example of a Talagrand compact space which is not Eberlein
compact.

1. Introduction and preliminaries. Since the early sixties, various classes of com-
pact spaces generalizing compact metric spaces have been studied by many authors.
Thus, classes of Eberlein, uniformly Eberlein and Talagrand compact spaces were
defined and distinguished by means of examples. However, there did not exist
a characterization distinguishing them by their structure. Such characterizations are
contained in the present paper.

A compact Hausdorff space is called Eberlein compact (E. C.) iff it is homeo-
morphic to a weakly compact subset of a Banach space. Amir and Lindenstrauss ([1])
proved that every E. C. space is homeomorphic to a weakly compact subset of ¢,(I")
for some set I, where

co(I) = {fe R": for each >0 the set {ye I': | £(y)| > ¢} is finite}

(The weak topology on a weakly compact subset of cy(I") is exactly the topology
of point-wise convergence.)

An E. C. space will be called uniformly Eberlein compact (U.E. C.) iff it is
homeomorphic to a weakly compact subset of a Hilbert space. U. E. C. spaces
have been introduced by Benyamini-Starbird in [4], where they give an example
of an E. C. space which is not U. E. C.

A compact space K is called Talagrand compact (T. C.) iff the Banach space C(K)
in its weak topology is s -analytic.

S. Mercourakis proved in [7] that a compact space K is T. C. iff it is homeo-
morphic to a compact subset of a space

¢(Ty: 0eX) = {feR": f bounded and fl;_ € co(I',) for all o e X}
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where £ = NV and {I',: e} is a decomposition of a set I' with the property
I, T, if 0, <o, The space c¢(I',: 0€Z) has the topology of pointwise con-
vergence.

The classes of E. C., U. E. C., T. C. spaces have interesting stability properties
such as being invariant under continuous images ([3], [11]). M. Talagrand pro-
ved ([10]) that E.C. spaces are T.C. spaces and VaSak ([12]) (implicitly) and
Gulko ([5)) that every T. C. space is homeomorphic to a subset of Z(R") for some
set I where

Z(R") = {f: ' = R: the set {ye I': f(y) # 0} is at most countable}

Thus all these compact spaces may be considered as subsets of the space Z(R).

The present paper continues the study of E. C., U. E. C. and T. C. spaces separ-
ating these classes by means of their structure inside Z(R"). In a previous paper by
S. Argyros and the present author ([2]) we gave a characterization of U. E. C. sets
in the Banach space ¢,(I'). Extending the techniques of [2] to the present situation,
we give a similar characterization of the structure of U. E. C. sets in the locally
convex space Z(RT) (Theorem 2.10). We also characterize the structure of E.C.
and T. C. subsets of Z(R") (Theorems 2.9 and 2.11).

These characterizations separate the various classes of compact subsets of Z(RD).
Therefore imply a very simple proof of the properties of an example of Talagrand [11]
of a T. C. space which is not E. C.

If A is a set, card 4 or | 4] will denote its cardinality. o denotes the first infinite
cardinal. I, denotes the characteristic function of A4, e, = I, and x|, = x*I,
for xe R" and A< T.

Let o be a family of subsets of a set K.

(1) The family A" separates the points of K iff for any x,ye K, x # y, there
exists 4 e 4 such that 7,(x) # L(»).

(2) The family " is point finite (point countabte) iff every x e K belongs to
finitely many (countable many) elements of 4"

(3) The family o is k-finite (k € N) iff any x e K belongs to at most k elements
of . |

ProrosiTioN 1.1 ([9], [3]). A compact space K is E.C. (U.E. C.) iff there
exists a family A of open F, subsets of K with the properties:

(i) A" separates the points of K.

(ii) There exists a decomposition {H ,,: me N} of A such that, for every meN,
A\ is point finite (A, is k(m)-finite for some k(m)eN).

ProroSITION 1.2 [7]. A compact space K is T.C. iff there exists a point-
countable family A of open F, subsets of K with the properties:

(i) o separates the points of K.

(ii) There exists a decomposition {A# ,: ceZ} (£ =NY) of A such that
H oy S H oy If 0y <0, and the families X, are point-finite for every ¢ € X.
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2. The characterizations of E. C., U. E. C. and T. C. sets.

2.1. DerINITION. For each subset K of X(R'), we denote by &(K) the set
E(K) ={feX(R"):3gekK,lg| = |fI}

2.2. PROPOSITION. Let K be a compact subset of the space Z(RF).

(@) If K is E.C. then §(K) is E.C.

(b) If K is U.E. C. then £(K) is U.E.C.

(c) If K is T.C. then 6(K) is T.C.

The proof will be based on the following Lemmas 2.4, 2.5.

2.3. Notation. Consider a compact subset K of Z(R") and an enumeration

(a,,b,): neN} of the open intervals with rational ends such that 0 ¢ [a,, b,].
For any (y,n)e I'xN put

Vim = {feK: f(y) e (a,, b))} -

It is easy to see that the family
A = {Vom: @ melxN}

atisfies the following properties:

- (i) o consists of open, F, subsets of X(R").

(ii) A" separates the points of K.

(iif) A is a point-countable family.

2.4. LEMMA. For every weakly compact subset K of the space co(A) and every
wint countable family {V,: t € T} of open F, subsets of K, such that 0 ¢ V, for allte T,
here exists a family {U;: 6 € A} of open F, subsets of K with the following properties:

(1) For each 6 € A there exists te T so that Us< V.

(2) For each te T there exists a countable 4, < A such that V, = \J {Us: d € 4,}.

(3) There exists a decomposition {A,: k€ N} of 4 so that the family {Us: 6 € A}
s point finite for every keN.

Proof. For every t € T and x € ¥; we can choose an open basic neighborhood
¥, of x contained in V;. Let

W, = {yekK: |y()—x()l <e, for I1<i<n,}
where n.eN, {27: 1<i<n}<A and ¢, is a rational number. Furthermore we
g
san choose &, so that |x(1)| > ?" for every Ae M, where M, = {A7: x(A})>0}.

Each ¥, is weakly Lindel5f, hence there exists a countable subset -[x,‘,: keN}

of ¥, so that V; = | W, . Define 4 =TxN and U; = Wy where & =(k, 1).
keN

It is easy to check that the family {U,: & € 4} satisfies properties (1) and (2).
For every finite subset M of A and ke N the set L = {teT: M, = M} is
at most countable (for the proof see ma 1.4 of [2]).
! — Fundamenta Mathematicae 128. 1 8 U
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Let {W(M,r): re N} be an enumeration of L.
For every (k, m,r)e N*® we define

1
A(k‘m'r)z{é = (?,k)EA: 8,‘.,:‘);, fo‘ = W(M,r)}

It remains to show that the family {U,: 6 € 4(k, m, r)} is point finite. Indeed,

if there exists y € () U;, where {5;: i€ I} is an infinite subset of 4(k, m, r), then
isl
1
[y (2] > e for every 2e M where M = |J My, (M; = M, for 6 = (¢, k)). But
~m iel

the set M is infinite, because the sets {M,,: iel} are pairwise different. This is
a contradiction and therefore condition (3) is also true.

2.5. LeMMA. For every comipact subset K of the space ¢(A,: ¢ € X) and each
point countable family {V,: te T} of open F, subsets of K such that 0¢ V, for all
te T, there exists a point countable family {Us: 6 € A} of open F, subsets of K with
the properties (1), (2) of Lemma 2.4 and

(4) There exists a decomposition {A,: o €2} (Z = N") of 4, so that 4, €4,
if oy <o, and the family {Uy: & € 4,} is point finite for every ¢ X.

Proof. As in the proof of the previous lemma, let 4 = T'xN and U; = W,

for every & = (t, k) € 4. Obviously the family {U;: d € 4} is point countable,and
has the properties (1), (2).
For every ce X and (k,m,r)e N? define the sets

1
Afk,m.r] = {5 =(t,k)ed: Byt > ;};,fo_. = W(M,r), and M_\-g‘ EAa.}-

The family {U;: 6 € 45 ,,,} is point finite. This is true because if there cxists

1
y€ () Us, where {8;: ie I} is an infinite subset of AGe,m,ry» then [y(A)| > —  for
iel m

every A€ |J M;,. This is a contradiction because () M;, is an infinite subset of A4,
iel iel
and y|y, € co(4,)-
Furthermore, it is clear that if ¢, <o, then 4%, , S 4% .0 -

For every ¢ = (0(1), 0(2), ...) € 2 denote by 4, the set )  A{&h5),

T
Isk<€a(l)
l€Em=a(2)
1£r£a(3)

Obviously, this decomposition {4,: o € £} of 4 satisfies property (4), and the
proof of the lemma is complete.

Proof of Proposition 2.2. We can assume that the set X satisfies the property
x(y) >0 for any xe K, yeI. (Otherwise we consider the continuous mapping
G: K — K, defined by G(x) = |x|. By [3], [11], the set K, = G(K)is E. C., U. E. C.,
T.C,if XK is E.C, U.E.C, T.C. respectively.) In the sequel

N = {V(?,"): ('}‘, H)E FXN}
is the family described in 2.3.
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(2) If Kis E. C. there exists a homeomorphism f: K — ¢,(A) for some 4, with
the property f(0) = 0. The family {f (Viom): (y,m)e I'x N} consists of open F,
subsets of the set f(K), separates its points and is point countable. From Lemma 2.4
there exists another family {4;: 5 € 4} of open F, subsets of f(K), which satisfies
properties (1), (2), (3).

We set U; = f7'(A4;) for every de 4. It is easy to check that the families
{Vom: (9, m)eT'xN} and {U;: b€ 4} also satisfy the properties (1), (2), (3) of
Lemma 2.4.

Let 6 € 4 and x € U;. We can choose an open neighborhood V. of x which is
contained in U; and has the form

Vi={yek: yOie(d,d),1<i<n)

where, for every 1<i<n,, ¢f, di are rational numbers, positive if x(37) >0 and
¢ = —d; otherwise.
The family {V,: x e Uy} is an open cover of Uj so there exists a countable sub-

cover {Vy,,.,0 HEN].

For every s = (e}, ..., ;) e {—1, 1}™ let

Vi={redK): pO)e (&, §d)), 1<i<n}
and

E= {Vign O;m)edxN,se {1, 1}™ew}.

E consists of open F, subsets of &(K) and separates its points.
Define a decomposition of E as follows:

Euwy = (Vagy: €4, 5€ {—1,1}@m} for (k,p)eN?

The family Ey ,y is point finite, because if y e ) Vits,m» Where
ieN

{ Vi:.s(,,.;: ieN}< E(k,p),

then the set
B={5ed: 6 =6, for some ieN}

is an infinite subset of 4,.
This implies that |y/e ) Viwony» 50 () Us # @, which is a contradiction.
deB de B

The claim (a) now follows from Rosenthal’s characterization of E. C. sets (1.1).

(b) This is analogous to the proof of Proposition 1.3 of [2], which dealt with the
special case of a U. E. C. subset of co(I).

(¢) If K'is a T. C. set there exists a homeomorphism f: K — ¢(4,: o€ 2)
for some set 4 = (J 4, ([7]), with the property f(0) = 0.

oelX

The family {f(V(,,»: (v, n) e I'xN)} satisfies the assumption of Lemma 2.5,
so there exists another family {4;: 6 € 4} of open F, subsets of f (K) which satisfies
its conclusions.
2$
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If we set U = f~%(4;) for every §e 4, the families {V(, .y (y,n)e T'xN}
and {U;: & € 4} satisfy properties (1), (2) and (4) of Lemma 2.5.

As in (2), we define, for every d € 4 and x € Uy, the open neighborhoods ¥ of x
and the corresponding open F, subsets V; of & (K) for every se {—1, 1}"~.

The set Uy is Lindeldf, therefore there exists a countable subset {x(s ,y: peN}
of U such that U; = U Vm a5

The family E = {V;‘H i O, WedxN,se{—1,1}"s@w} separates the points
of #(K) and is point countable. Decompose E into sets £, 4, (4, 0) € N x Z, where

Eyq = {V-:taam: 0 EA’}

Recall that the family {U;: d € 4,} is point finite and if ¢, <o, then 4, = 4,,°
It is therefore easy to check that the family E, , is point finite and if o <o, then

E(u.c:) = E(J-l.o‘z) ‘

For every o = (0(1),0(2),..)eX set E,= U E,,, where ¢ = (c(2),
- pseo(l)

6(3),..)e2.

The families E, are point finite for any o€ X and E, S E,, if 6, <0,.

The fact that £(K) is T. C. now follows by Proposition 1.2.

PROPOSITION 2.6. Let K be a compact subset of X(R") and co(K) its closed
convex hull.

(@) If K is E. C. then co(K) is E. C.

(b) If K is U. E.C. then co(K) is U.E.C.

(¢) If K is T. C. then co(K) is T.C.

The proof is an immediate consequence of results of S. Mercourakis [7].

LeMMA 2.7. Let K be a subset of XZ(R").

(@) If xeco(&(K)) and A is a subset of I' then x|, € co(6(K)).

(b) If Ly, L,, ..., L, are pairwise disjoint, finite subsets of T, py Iy, +...+paIy,
eco(&(K)) and 0<a<m1n{p1,. s Pu} then a(Ip, +...+1,,) € co(6 (K)).

(c) If x e co(&(K)) and x(y) > a for every y € suppx then a-Iypx € co(&(K)).
(suppx = {y e I': x(y) # 0}).

Proof. (a) and (b) are easy (see [2], Lemma 1.6).

(c) The support of x is countable, say suppx = {y;: kEN}. If y = alyppx

then y is the pointwise limit of the sequence (,),.y Where y, = a Z ¢;, According
to (2) and (b) y, € co(£(X)), so yeco(£(K)). e
The next combinatorial lemma is a special case of Hajnal’s theorem [6].
LemMA 2.8 ([8]). Let me N and {A;: i€ I} be a countable family (card] = w)
of subsets of I with card A; < m (m e N) for i € I. Then there exists an infinite subset I
of I, such that if iy # i, are elements of I, then i, ¢ A,.

‘We are now able to give the characterization of the structure of Eberlein compact
subsets of X (RF).
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THEOREM 2.9. Let K be a compact subset of £(R"). The following are equivalent:
1. The set X is E. C.

2. For every e> 0 there exists a decomposition {F(”. meN‘ of r, such rhat
for every xe K and me N

card{ye I'Y: |x(@)|>e)<w.

. 4

Proof. (2=1) By compactness of K, for every y € I' there exists an M,eN
such that |x(y) < M, for every xe K.
Let

._2 >
;’_j={xeK:}—<x(y)4{} where
: n n
jedl = u‘EZ —-aM,+1<j<—1 or3<;-€_nM+i}

The sets V7 ; are open F, subsets of K and (J V. {xek: [x ()l > 1}
jeA'*‘ n
The family A = {V} ;: yeI',neN,je ]} separates the points of K.

Let {F,(f): meN} be the decomposition of I' corresponding to & = 1 Decom-
n

pose X into the families (£, ,} where, for every (n,m)eN?2,

K wmy = (V3.5 )rEI"(") and je A}}.

We shall prove that every A", » is point finite. Suppose, to the contrary, that
there exists xe () Vj, ; where {V, ;;: iel} is an infinite subset of K, m.
iel

1
Then |x(y,)> B for every ie 1. This is a contradiction, because {y;: ie I} is an

1
infinite subset of Psf)

(1=>2) Denote by K, the set co(& (K u {e,: yeI})). Using Propositions 2.2
and 2.6, the set K, is E. C.,, so there exists a homeomorphism f: K; = co(4)
satisfying f(0) = 0 and || f(x)| <1 for every x € K.

For a fixed number ¢ O<e<1 and any y e I, define the open sets

vV, = {xEKI: |x(y)]>£}.

Note that 0¢ V, and d, = ge, belongs to ¥, by Lemma 2.7. Since ¥, is open
there exists a basic neighborhood W, of f(d,) with W, <= f(V,). Let

= {yef(K): [fW@)@A)—-y@Dl <e, for every 1<i<n,}
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where {11, ..., 4.} €4 and &,>0 for every ye I. Since 0¢ W, there is A! = 1
|/ (d )(j'}r)l
Hence it is easy to see that
| /() (4,)
@ o) > LEEN S o por it ye

For each y € I' we can choose a finite subset S, of I' and 0 < g < 2 such that

£
2 <s;}

the set

U, = {xeK,: |x(0)] < & for any deS,—{y} and | x(y)— =

is an open neighborhood of d,, contained in the set f “YW,).
Notice that the set

Ay ={0el: |f(d)(2) > 2e,} is finite .
For every (n, m)e N put

. 1
I = {?E r: 1 f@)) >~ and card(S, u 4,) <m}.

The family {F{,’;),,.} (n,m)e N?} is a decomposition of I.
The proof of the theorem will be complete if we can prove the claim:
For any xe€ K, and (n, m)e N>

card{ye I'(;)): x> ¢} < .

Suppose, to the contrary, that there exists an x € K, and (#, m) € N2 such that
the set 4 = {ye F(,,m, |x(y)| > &} is infinite.

According to Lemma 2.8, there exists an infinite subset B of A such that for Y1 V2
clements of B, with y; # y,, y; ¢ 4,, U Sy

Let x; = [x|. Then the functions x,, x,|z and y = g Y, e, belong to the set K,
yeR

according to Lemma 2.7.
Therefore ye () U, because for every y, % y, in B holds 71 ¢ S,,. Conse-

yER

quently f(30e N W, and by (%)
yeB

T T |f(y)(2,)!>’f(d’w*"

for every ye B.

This is a contradlct:on because for ever
Y P # Y in B A, #7¢ A4 d
f(,V) € Cg(.{i)! ; b . L Y2 71 Yy2 (?1 ¢ n) an

2n
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If K is U. E. C., the cardinality of the sets {y e I' : |x(y)| > &} can be control-
led. In fact, we have the following characterization:

TreOREM 2.10. Let K be a compact subset of Z(R"). The fol!owmg are equi-
valent:

1. The set K is U. E. C.

2. For every &> 0 there exists a decomposition {I'®: m e N} of T and a sequence
{k(m): meN}, such that for every xe K and me N

card{ye I'®: |x(y)| > &} <k(m).

Proof. (2=>1) As in Theorem 2.9 we define the family 2 of open F, subsets
of K, which separate the points of K. For (n,m,l)e N3, let

1
Hgmy = {Vyj: A€ F,Ef) such that card 4} </ and je A}}.

1
Clearly {A (a,mn} is a decomposition of . Further, # ) is k(m,;)-!-ﬁnitc.

(The proof is analogous to the corresponding one in 2.9). Hence Proposition 1.1
implies that K is U. E. C.

(1=2) Let K be the set co(€ (K u {e,: ye I'})). Using the Propositions 2.2
and 2.6 the set X; is U. E.C. So there exists a homeomorphism f: K; — /5(4)
satisfying £(0) = 0 and || f(x)|| <1 for every xe X,.

For a fixed 0 < e <1 we define the decomposition {I'(),): (n,m)eN?} of I'
as in the proof of Theorem 2.9. It now follows, using methods analogous to the ones
in [2], (Theorem 1.7), that, for any xe K|

card{ye ' y: |x()| > &} < (2n)*"

and the proof of the theorem is complete.

In the following theorem, we characterize T. C. subsets of Z (R") as subsets
of a space ¢(I',: o€ X), thus improving a result of Mercourakis [7], to the effect
that T. C. spaces are homeomorphic to compact subsets of ¢(I',: o € Z).

THEOREM 2.11. Let K be a compact subset of £ (R"). The following are equivalent:

(1) The set K is T. C.

(2) There exists a decomposition {I',: ¢ € L} af I' such that I',, < T,, if 0, <0,
and {x|r,: xe K}= Co(I',) for every oceZ.

Proof. (2)=(1) K is a subset of ¢(I',: ceZ) so Kis T.C.

(D=(2) If K, = co(¢(K U {e,: yeI) then K, is T.C. according to Propo-
sitions 2.2 and 2.6. So there exists an homeomorphism f: K; — ¢(4,: 6 €2)
satisfying f(0) = 0 and || f(x)]| <1 for every xc K.

As in the proof of Theorem 2.9, we define for fixed 0 << 1and 4 € I, the open
sets ¥, < K,, W,= f(V,), U, f~'(W,) and the finite subsets 4, of I'.
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For every (n,m)eN? and o€ Z, set
' 1
I‘(,,,,,, o= {'p el': Led,,|fd)2)l> y and card(s, U 4,) {m} .

We claim that:
M T'=U{lame: 1, meN?* cek};

) If 0, <0, then I'gym, o) S Tnym, a2)5

() card{y € I u o |X()| > e} < ;3
for every xe K, (n,m)eN? and e Z.

It is easy to check that conditions 1 and 2 are true. Suppose that condition 3 is
false and that the set A = {y € I'%, o: x(y)| > ¢} is infinite for some x e K and
(n, m, o) € X. Then, by Lemma 2.8, we can choose an infinite subset B of A such that

2
for y,, 7, elements of B, y, ¢ A,, U S,,. Therefore, the element y = 5 Za e, of K;
ye

satisfies the relation ye () U, and for every y; # y, in B, A, # Ay,.

7E€B
Consequently

FG)e N W, and therefore | £(3)()] >21_n

yeB
for every y e B. This is a contradiction because {,: y € B} is an infinite subset of 4,

and f(»)]4, € ¢o(4,). Therefore condition 3 holds.
For every ce X, set o* = (6(3),0(4),...)€X

I f:’ = U T E:]. m, a¥)
1<n<e(1)
1E€m=a(2)
and
) N
F(crl,nr:,...) = () Fd'n for (01! T3, ) ex”.
neN
We then have

.I (4) Ir= U {P(n.v:..-.): (0'1, Oz, ) EZN};
() If (o4, 03, ...)< (01, 03, ...) then

F(n.a’z....) = r(oi.ci,-..);

(6) card {? € "r(d;.c:....): 1x(?)| > 3]‘ <o
for every xe K, ¢>0 and (64, 05,...) € Z~.
Conditions 4 and 5 are consequences of 1 and 2. Condition 6 is true because for

1
every &> 0 there exists an ne N such that &> o But, for all xe K.

card{y € I'y,..on..y0 [X()] > &} <card {y e I'c] ok x| > &} <

card{ver(n) |xG)I > }
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s 1
which is finite by condition 3 and the definition of FE:). Hence

xh"{n,”‘ P ) € CO(F(m.d‘z. ..,))

and the proof of the theorem is complete.

After the characterization of E. C. sets described in Theorem 2.9, the question
arises whether the decomposition of I" can be made independent of ¢, as for T. C.
sets. (i.e. the x| € ¢o(I',) for all x e K).

This is impossible in general, as shown by Example 2.15 below. However, if K
consists of characteristic functions of subsets of I, then the decomposition can easily
be. made independent of &, by choosing & = 4 in Theorem 2.9. Thus, we have:

COROLLARY 2.12. Let I' be a nonempty set and £ a family of subsets of I' such
that the set K = {Is: S o4} is a compact subset of Z(R"). The set K is E.C. iff
there exists a decomposition {I',,: meN} of I' satisfying the condition

card(Sn I,) <o

Jor every Se . of and meN.

For the case of U. E. C. subsets of Z(R") which consist of characteristic func-
tions, we have from Theorem 2.10 the following corollary. This corollary was proved
in [2] for the special case where K consists of characteristic functions of finite sub-
sets of I'.

COROLLARY 2.13. Let & be a family of subsets of a set I' such that the set
K = {Is: Se o} is a compact subset of Z(R"). The set K is U. E. C. iff there exists
a decomposition {I',,; me N} of I and a sequence {k (m)} of natural numbers satisfying
the condition
card(S n T, <k(m)
for every Se o and meN.

The characterization of E. C. and T. C. subsets of X (R") given by Theorems 2.9
and 2.11 gives a very simple proof that Talagrand’s example [11] is a T. C. space
which is not E. C.

EXAMPLE 2.14. Denote the set N by X and define the families £ = {{o}: 0 € X}
and, for every neN,

={ScZX:|S/=22,¥s,0eS0],=0l, and o(n+1) # o(n+1)}

where d|, = (c(1),0(2),...,c(m))eN"
Let &« =Bu( U «,) and K = {Is: Se}. It is easy to check that the
neN

set K is a compact subset of Z(R%).
_ For every g€ X define

Z,={ceZ: g<o}.
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Then {%,: o€ X} is a decomposition of X and %, =%, if o, <o,. Also,

{x|s,: xe K} = ¢o(Z,) because

card(Sn Z,)<o(n+1) for every Se o .

Hence X is T.C. by Theorem 2.11.
Assume K is E.C. Then from Corollary 2.12 there exists a decomposition
{Z,,: me N} of X such that

card(Sn Z,)<w for every Se s and meN.

From Baire’s theorem there exists an m, € N such that the closure of Z,, has
a non-empty interior. If x e (Z,,,)° we can find an open set ¥, = {ye 3: y| o= X}

so that V. < Z,,. Hence for every ke N there exists y, € Vi X, where
V:: = {yEZ: ylnn = xim) and y(ﬂo-i-l) = k} 2

The set S = {y;: keN} belong to o and is a subset of X, . Therefore
card(S n Z,,) = w. This is a contradiction, hence K is not an E. C. space.
In the following example we describe a compact subset of a space Z (R") which

is E.C,, in fact U.E. C., but there does not exist a decomposition {I',: me N }
of I' such that
{(xIr,: xeK}=co(l,) for every meN.

EXAMPLE 2.15 (in cooperation with S. Argyros). As in Example 2.14 we define
the family o = B U ( U #,) of subsets of X. For every S in U &, there exists

neN nelN

only one n € N such that Se «,. If Se s, we define the function s = 115. For
n

1
every g€ X and ke N we define y* = e

Denote by
K={): Se U #,} v {ys: keN,ce X} u {0}
neN

The set K is a compact subset of X (R*). To prove this it is enough to show that
if {x;}ier is a met in K which converges to x e [—1, 1] then xe K. Tt is clear that

1
{x(0): ceX}c {—: HEN} v {0}.
n
1 1
If x(oy) = i and x(o,) = 7 for k # A in N then there exists ie J such that

1 1
x(oy) = % and x,(a;) = T This is a contradiction, therefore x =0 or x = é L

for some ke N and S< 3.
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Let cardS>2 and o, # 0, in S. Then there exists ie such that x{o;)
1 1
= x{0,) = % Therefore x; = ;;1//,t where S; € o/, and then {¢, 0,} € /,. Hence

x€ K and consequently K is compact.

We will prove that K is U. E. C. using Theorem 2.10. For every & = 2 define
n

the sets

G
Ek:,)...knu ={0eZ: ol,4y = (ky, oo\ kit 1)}

for every (ky, ... kysq) €N"YL,
These sets form a decomposition of 2 and it is easy to check that

1

o 1
card {a ezf,:;),__,,‘m): x(o) > —} <1
n

for every xe K and (ky, ..., k,+) e N"*L,

In the sequel we shall show that there doesn’t exist a decomposition
{Z,: meN} of Z such that

{xl5,.: xe K} = ¢o(Z,) for every meN.

Let {Z,,: me N} be a decomposition of X. According to Baire’s theorem, there
exists an mg € N so that (Z,,,)° # @. In the same way as in Example 2.14 there exists
no €N and Se &, such that card(Sn Z,,) = o.

1 1
If yg = —1Ig and ¢ < —, then
ng Ny

card{og € 2, |{¥(0)| > &} = card(S n Z,,,) = ®

0 Y45, does not belong to ¢y(Z,,)-
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Automorphisms of the Loeb algebra
by

David Ross (fowa City)

Abstract. Let (2, L(£2), L(u)) be a uniform hyperfinite probability space in a sufficiently satu-
rated nonstandard model of analysis. We prove: 1. Every automorphism of the measure algebra
over £ is induced by an invertible point transformation. 2. Some automorphisms are not given by
internal transformations. 3. The restriction of every automorphism to a small subalgebra is given
by an internal transformation.

We discuss applications to ergodic theory and hyperfinite measure theory.

1. Introduction. Suppose T is an invertible transformation, measurable in both
senses, of a probability space (X, B, m). T induces a Boolean (¢-) automorphism
® = &y of the measure algebra [B] associated with (X, B, m). Considerations from
Ergodic Theory motivate the converse question: When is a given automorphism &
induced by a transformation T'?

The answer in “always” for most common spaces (von Neumann [14],
Choksi [4]). For those spaces (X, B, m) and automorphisms @ of [B] not induced
by a transformation, some authors have asked weaker questions, for example (Pan-
zone and Segovia [15]), whether @ is induced by a transformation T of a thick
subset of X.

We consider here the question when (X, B, m) is the uniform hyperfinite pro-
bability space (2, L(£2), L(p)) deeply investigated by Loeb [13], Anderson [1] and
others. This space has a variety of “universality” properties (Anderson [1],
Hoover [9], Keisler [12]) which allow questions about more general or common
spaces to be reduced to questions about Q. (For a further discussion, see Section 5.)

Our main result, Theorem 4.1, is that in the presence of sufficient saturation,
every measure algebra automorphism is indeed given by a permutation of €.

Since in application the most useful transformations of Q are the internal ones,
we consider whether the transformation in Theorem 4.1 can always be taken to be
internal. Theorem 4.3 gives a negative answer. However, the restriction of @ to any
sufficiently small subset of [L(®)] is induced by an internal permutation; this is
Theorem 4.4. (Another proof of Theorem 4.4, using Hall’'s “Marriage Lemma”,
appears in Ross [16].)

We give some applications of these results in Section 5. Proposition 5.1 shows
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