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Classes of nonseparable Banach spaces
with no universal element

by
V. FARMAK] (Athens)

Abstract. In this paper we show that certain classes of nonseparable Banach spaces have
no universal element. In particular, we show that for every infinite cardinal « the class of (@) of
all weakly compactly generated Banach spaces which have topological weight at most o and
whose dual spaces have the Radon-Nikodym property contains no universal element. The same
is true for the class @& (x) of all reflexive Banach spaces with topological weight at most a.

Introduction. A Banach space X is said to be universal for a class &/ of
Banach spaces iff each member of & is isomorphic to a closed linear
subspace of X. The Banach-Mazur theorem ([3]) asserts that the space of all
continuous scalar-valued functions on the closed unit interval is universal for
the class of separable Banach spaces. W. Szlenk proved in {13] that the class
of all Banach spaces with separable dual contains no universal element. The
basic tool in his proof is the “index” of a Banach space. He also showed that
there is no separable reflexive Banach space universal for the class of all
separable reflexive Banach spaces.

The purpose of the present paper is to extend these results to the
nonseparable case. First we show (Theorem 9) that for every infinite cardinal
« the class #(x) of all reflexive Banach spaces with topological weight at
most a- contains no universal element.

A Banach space X is said to have the Radon-Nikodym. property (R.N.P)
iff given any finite measure space (S, Z, ) and any X -valued measure m on
T with finite total variation and absolutely continuous with respect to u, m is
the indefinite integral of an X-valued Bochner integrable function on § with
respect to p. There are several equivalent formulations of the R.N.P. (see
{61). C. Stegall [11] characterized conjugate Banach spaces X* having the
RN.P. as those spaces for which any separable subspace of X has a
separable dual (see [9] and [12] for other equivalences). It is known that if
X* is separable, or if X is reflexive, then X* has the R.N.P. ({71, [10)).

A Banach space X is said to be weakly compactly generated (W.CG.)
whenever there exists a weakly compact subset K of X whose linear span is
dense in X (see [6]). An especially interesting property of a W.C.G. Banach
space X is that the closed unit ball of its dual X* is, in its weak-star
topology, Eberlein compact (i.c. homeomorphic to a weakly compact subset
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of some Banach space) ([1]). In particular, the closed unit ball of X* is weak-
star sequentially compact. It is clear that every separable Banach space and
every reflexive Banach space is W.C.G.

Extending Szlenk’s index, we prove the results which are obtained in
[13] in the more general setting of W.C.G. Banach spaces whose dual spaces
have the R.N.P. More precisely, we show (Theorem 8) that for every infinite
cardinal « there is no universal element in the class o7 (x) of all W.C.G.
Banach spaces which have topological weight at most « and whose dual
spaces have the R.N.P.

This result gives a partial answer to the problem posed by Benyamini,
Rudin and Wage in [4], namely, whether for every infinite cardinal o the
class W(a) of all W.C.G. Banach spaces with topological weight at most «
has a universal element.

Notation. Throughout this paper, capital letters X, Y, ... denote Banach
spaces and X* denotes the (topological) dual of X. By the w-topology of X
we mean the X*-topology on X and by the w*-topology of X* the X-
topology on X* ([8]). The symbol w-linm X, = X (resp. w*-lirxln Jfx =1) denotes

that the sequence {x,} in X converges to x in the w-topology (resp. the
sequence {f,} in X* converges to [ in the w*-topology).

Ordinal numbers are denoted by &, {, 5, 9. We shall denote the first
nonzero ordinal number which has no predecessor by w. Cardinal numbers
are denoted by a, B, y, 6. For every cardinal o, we denote by o™ the least
cardinal § such that a < B ([5], §1).

For every topological space X, we denote by w(X) the topological
weight of X (ie. the cardinality of a minimal base of the space) and by d(X)
the density character of X (i.e. the cardinality of a minimal dense subset
of X). .

We start by defining an index for every Banach space which is similar to
Szlenk’s index ([13]).

1. DerFiNmTioN. Let 4 be a bounded subset of a Banach space X and B a

- bounded w*-compact subset of the dual space X*. To a fixed £ > 0 and to
each ordinal number { we assign by transfinite induction a set Py(s, 4, B) as
follows:

(1.1)  Py(e, 4, B)= B;

(12)  Priqfe, 4, B) = {fe X*: there are sequences {x,} in 4 and {f}} in
Py(e, A, B) such that w-limx, =0, w*limf, =/ and lim sup|f,(x,)
n " "

=&}
(1.3) For every ordinal number ¢ which has no predecessor

Pe(e, 4, B) = ( P,(z, A, B).
[$34
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If w(X)=o then we define
n(e, A, B)=sup{¢ <a*: Py(e, A, B) # @}
Let S and S* be the closed unit balls of X and X* respectively. For
every £ > 0 we define (s, X)= nle, S, S*), the e-index of X.
The ordinal number #(X) = supn (e, X) is called the index of the Banach
>0

space X. The following is immediate: .
Levma 2 ([13]). (a) If &1 26,>0, 4, S 4, cX and B, £ B, = X
(A, A,, By, By are bounded and By, B, w*-compact) then for every ordinal &

(2.1) Pe(e1, Ay, By) € P;(ea, Az,. B»),
(2.2) n(ey, Ay, By) < n(ez, Az, Ba).

by If T X-»Yis an isomorphism, A a bounded.subset of X and B a
bounded w*-compact subset of X*, then for every ordinal £

(2.3) P (e, A, B)=T*(P(e, T(4), (T*™" (B))),
(24 (e, A, By =nle, T(4), (T~ *(B)

where T*: Y* - X* is the adjoint of T. .
Lemma 3. Let X be a W.C.G. Banach space with w(X) =« such that lis
dual X* has the RN.P. If Ais a bounded subset of X, B a lzoundfd w*-
compact subset of X* and & > 0, the sets P;(e, A, B), where 0<¢ <a’, have
the following properties:
(3.1) Pe(e, A, B) is w*-compact.
(32) Peei(e, 4, B) S Py(s, A, B)
P{.‘.l(ﬁ, A, B)#P‘:(E, A, B). ' ‘
Proof. We shall first prove condition (3.1) by transﬁnitq 11‘1ducuon.
The inductive hypothesis is obviously true for £ =0, and it is also true
for every ordinal ¢ which has no predecessor if it holds for every ordinal
o< CNTW% suppose that, for an arbitrary. ordinal & (0< ¢ <at), t'h; s;t
Py(e, A, B) is w*-compact. The space X is W.C.G. so. the set B wlx; t ;
w*-topology is homeomorphic to a weakly compact §upset *of some : .afna:lzd
space ([1]). The set Pgyy (e, A, B) is a subset of B, so ¥t is w*-compact if a
only if for every sequence {f} of Pyiile, A, B) which converges to some

B we have fe Pg.y (e, A, B). . )
e Let {fn} & Pgit 1(1. A, B) and w*lim f,, =f By Definition 1 there exist

and if P, A, By#@  then

sequences {fu.) in Pele, 4, B) and {x,,} in A such that

w-lim fru,n = fms w-li't.nx,,,,,, =0,
n

im sup|fp,a(*ma =& for every me N.
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We set

C = {xp (M, MeN?}, D={f, . (m n)eN?},

E =C" (the w-losure of C), F =D"" (the w*-closure of D).

The w-topology in E is metrizable, because E is a bounded subset of the
Banach space X, generated by C, which has a separable dual because X*
has the RN.P.

The w*-topology in F is also metrizable because F with the w*-topology
is homeomorphic to a weakly compact subset of some Banach space; hence
d(F)=w(F) = o.

Therefore one can choose a sequence {(my, n,)} of pairs of integers such
that

W*-li’l“n Jrgm, =15 w-li'rtn Xomgm, = 0, ]imksup S mpm )| = &.

Thus fe P, (¢, A, B). Hence the set 'Pcﬂ(e, A, B) is w*-compact and
the proof of condition 3.1 is complete.

For every ordinal number 0 < ¢ <a* each fe P,y i(s, A, B) is a w*-
limit of elements of P;(e, A, B), hence, by 3.1, JePs(s, A, B). Therefore
Pyi1(e, A, B) is a subset of Py(e, A, B). Finally, since X* has the RN.P, X
is an Asplund space ([12]). It is therefore an easy consequence of Proposition
5 of [2] that Py, (g, A, B) # P(e, A, B) for every 0 ¢ < a®.

ProrosiTion 4. If X is a W.C.G. Banach space with w(X) =a and if its
dual space X* has the RN.P,, then 5(X) <a*.

Proof. If 4 and B are bounded subsets of X and X* respectively with
B w*-compact, and if ¢ > 0, then n(e, A, B) <a*, because from Stegall's
theorem [11] we have w(X) = w(X*) and according to Lemma 3 and the
Cantor-Baire theorem there exists an ordinal ¢ <a’ such that

Pie, A,B)# @ and P,,,(s, 4, B)=0.
Therefore according to Lemma 2 it is true that
n(X) =supn(1/k, X) = supn(l/k, S, S*) <a*
keN keN

and the proof is complete.

ProposiTioN 5. If T is an isomorphism Jrom a Banach space X onto a
subspace of a W.C.G. Banach space Y, then 1(X) < n(Y). Moreover, if T is
Isometric, then n(e, X) < n(e, Y) for every &> 0,

Proof. Let w(Y)=0, Y, = T(X) and K, K*, 8, §*, K, K* be the
closed unit balls of Y, Y* X, x* Y, Y* respectively.

We shall first show that

(*) N, Y1) <ne,'Y)  for evéry ¢ >0,
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This will follow immediately if we can. prove the claim:

If fe Ps(e, Ky, KY) (058 <a*) then there exists an extension f* of f
such that f*ePyi(e, K, K¥). : | o

Proof of the claim. The claim is obviously true for £ =0 an'd if it
holds for every ordinal 0 < { < ¢ where ¢ has no prede(fe{ssor, then it also
holds for & This is an immediate consequence of Deﬁngtlon 1. -

Let us assume that the claim is true for some ordinal 0 <* E< calz |
JePs. (e Ky, K?) then there are sequences {f,} in P;(e, K, K}) an {xn}
in K, such that

w"‘-li:n fa=1 w-linmx,, =0 and limnsupl Fulxl = €.

By the inductive hypothesis there exists, for every ne N, an extenfion floff,

such that f}eP,(e, K, K¥). The sequence { f,.,‘} has a w*-convergent

subsequence  { f,,i}, because the set K* with the w*-topology is

homeomorphic to a weakly compact subset ?f a Banach space (li_l’_?. :;:;
i i i xtension O

w-lim fa=S" Tt is easy to check that f' is an e

1eP,, (e, K, K*). This proves the claim. '
/ Si;(l:e T: X — Y, is an isomorphism, there exist real numbers M, N >0
such that

(»#) T(M-S) =K, = T(N"S)
(if Tis isometric, then M =N =1). Therefore according to Lemma 2 we get
‘ < MB Y,
"(Es X) N N s 41 )

Finally, using condition (#), we have n(X) < n(Y) and :f T is isometric,
n(e, X) <n(e, Y) for every &> 0. v
Let {X,: ye T} be a nonempty family of Banach spaces. For 1< p< oo,
the symbol yl,,(X,)yer denotes the Banach space of all elements x = (X,),er of
the Cartesian product [] X, such that
yel

el = (X, ) < oo.
yel

Similarly (X x 1;)00 denotes the Cartesian product of the Banach spaces
X and Y with the norm
1, Pl = max il 1yl
LemMa 6. If X is a W.C.G. Banach space whose dual X* has the R.N.P,
then n(e, (X x1,),) = n(e, X)+1 (I, = L(N)). ‘ . ‘
The proof of this lemma is similar to the corresponding one in Szlenk’s
paper [13]. S :
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ProPoSITION 7. For every cardinal number o and for each ordinal number
0< ¢ <a® there exists a reflexive Banach space X, such that w(X, J<aand
(X = ¢

Proof. Let o be an infinite cardinal. We set X, = I,,

Xgsy = (Xa x )
X{ = lz(Xc)c<¢

Obviously the spaces X, are reflexive for all 0 < ¢ <a™ and w(X,) < o We
shall show inductively that n(e, X,) > £ for every 0 < ¢ <a™ and 0 <e < 1.
If n(e, X;) > ¢, then according to Lemma 6, n{e, X1 ) = n(e, Xp)+1
=¢+1 for every 0 <s < 1. '
If £ has no predecessor and n(g, X;) 2 { for every ordinal 0 < { < ¢, then,
using the fact that the spaces X, are contained isometrically in X, for all
0<{ <¢, and applying Proposition 5 we get

n(e, Xg) > sup n(e, X) = sup {=¢.
0sy<s o<t <g

for every 0 < ¢ <a™,
for each ordinal O < ¢ <«* having no predecessor.

Hence for every 0<¢ <a™ we have (e, X)=¢& for 0<e <1 and
hence n(X,) > ¢.

TueoreM 8. Let « be an infinite cardinal number and sf (a) the class of
all weakly compactly generated (W.C.G.) Banach spaces with topological weight
ar most o whose duals have the Radon—Nikodjm property (R.N.P.). The class
o (@) has no universal element.

Proof. If o/(a) has a universal element X, then n(X)<a® by
Proposition 4. But by Proposition 7, there exists Ye.o/(x) with n(Y)
2 n(X)+1 > n(X), contradicting Proposition 5.

THEOREM 9. Let a be an infinite cardinal and #(x) the class of all
reflexive Banach spaces with topological weight at most «, Then () has no
universal element.

Proof. Analogous to the proof of Theorem 8.
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