
RAMSEY THEORY WITH MIXED TYPES OF SUBSTITUTION

V. FARMAKI AND S. NEGREPONTIS

Abstract. Taking as our starting point the Farah-Hindman-McLeod partition theorem
for located words over a finite alphabet, which we reprove, and defining a general notion
S of substitution for variable located words over a finite alphabet, which includes either
the Bergelson-Blass-Hindman type, or the Gowers type, or a mixture of these two types,
we build for every notion S of substitution a full Ramsey theory,namely we obtain (1) a
strong S-partition theorem for all the variable located words, (2) an S-partition theorem
for all the k-tuples of variable located words, and in fact for all the Schreier families of
order ξ, for every countable ordinal ξ, (3) an S-partition theorem for infinite sequences
of variable located words, and (4) an Ellentuck type characterization of S-completely
Ramsey partitions of the set of infinite sequences of located words over a finite alphabet.

Introduction

Gowers in [G], for the purpose of making the classical Carlson [C] and Furstenberg-

Katznelson [FK] Ramsey theory more useful to the theory of Banach spaces proved a

remarkable partition theorem (Theorem 5 in [G]). While it was not stated this way by

Gowers, this theorem can be natually stated in terms of the notion of variable located

words over a finite alphabet, introduced in the Bergelson-Blass-Hindman partition theory

[BBH], involving a novel concept of substitution for variable located words over a totally

ordered alphabet. Recently, a general partition theorem was proved by Farah, Hindman,

McLeod in [FHM] (Theorem 3.13), which results in combining, for the first time, the

Gowers [G] (Theorem 5), and the Bergelson-Blass-Hindman partition theorem for located

words [BBH] (Theorem 4.1).

In the present work, we take as our starting point the Farah-Hindman-McLeod par-

tition theorem; for completeness, we present a self-contained proof of their result for

the special case we are interested in Theorem 1.2 below. More specifically we define (in

Definition 2.1) a general notion S of substitution for variable located words over a finite

alphabet Σ to be a suitable set of transformations {Rα : α ∈ Σ}, where Rα can be of

the Bergelson-Blass-Hindman type, or of the Gowers type, or of a composition of the

two types (Remark 2.2). With the help of the Farah-Hindman-McLeod result, we obtain
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for every notion S of substitution (1) a strong S-partition theorem for variable located

words over a finite alphabet Σ (Theorem 2.3), and (2) an S-partition theorem for the

k-tuples (k ∈ N) of variable located words over a finite alphabet Σ, and in fact for all

the Schreier families of order ξ, for every countable ordinal ξ, of variable located words

over Σ (Theorem 3.5); in addition we establish (3) a Nash-Williams type S-partition

theorem for infinite orderly sequences of variable located words over a finite alphabet

(Theorem 4.15), and (4) an Ellentuck type characterization of the S-completely Ramsey

partitions of the set of infinite orderly sequences of variable located words over a finite

alphabet (in Theorem 5.7).

These theorems extend the Ramsey type theorems for variable located words over

a finite alphabet proved by Gowers [G] (Theorem 5), Bergelson-Blass-Hindman [BBH]

(Theorems 4.1, 5.1), Farah-Hindman-McLeod [FHM] (special cases of Theorem 3.13),

and the partition theorem for infinite sequences of variable located words proved by

Bergelson-Blass-Hindman [BBH] (Theorems 6.1). We note that the Gowers [G] and the

Farah-Hindman-Mcleod [FHM] papers do not deal with partition theorems on infinite

sequences of variable located words, of the Nash-Williams or Ellentuck type.

1. Partition theorems for located words over a finite alphabet

Let Σ be a finite alphabet. A located word over Σ is a function from a finite subset

of N = {1, 2, ...} into the alphabet Σ ([BBH]). So, if ϑ is the function with domain the

empty set, the set of all the located words over a non empty finite alphabet Σ is

L(Σ) = {w = wn1 . . . wnl : l ∈ N, n1 < · · · < nl ∈ N, wn1 , . . . , wnl ∈ Σ} ∪ {ϑ}, and

L(∅) = {ϑ}, in case Σ = ∅.
For a located word w = wn1 . . . wnl ∈ L(Σ) \ {ϑ}, we denote by dom(w) = {n1, . . . , nl}
the domain of w and we set dom(ϑ) = ∅.
Let Σ be a finite alphabet (empty or non-empty) and υ /∈ Σ an entity which is called a

variable. The set of all variable located words over Σ with variable υ is defined to be

L(Σ; υ) = L(Σ ∪ {υ}) \ L(Σ).

We set

L0(Σ; υ) = {w = wn1 . . . wnl ∈ L(Σ; υ) : Σ ⊆ {wn1 , . . . , wnl}} ⊆ L(Σ; υ).

We endow the set L(Σ ∪ {υ}) with a relation defining for w, u ∈ L(Σ ∪ {υ})

w < u⇔ either ϑ ∈ {w, u} or w, u 6= ϑ and max dom(w) < min dom(u).
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For two located words w, u ∈ L(Σ ∪ {υ}) such that w < u we define the concatenating

located word w ? u ∈ L(Σ ∪ {υ}) as follows:

if w = wn1 . . . wnr , u = um1 . . . uml ∈ L(Σ ∪ {υ}) \ {ϑ} we set

w ? u = wn1 . . . wnrum1 . . . uml , and

w ? ϑ = ϑ ? w = w and ϑ ? ϑ = ϑ for every w ∈ L(Σ ∪ {υ}).

Let Σ be a totally ordered finite alphabet with cardinality k ∈ N ∪ {0} and a variable

υ /∈ Σ. Then we define the function

Sk+1 : L(Σ ∪ {υ}) −→ L(Σ) as follows:

In case Σ = ∅, we set S1(w) = ϑ for every w ∈ L({υ}).
In case Σ = {α1, . . . , αk}, k ∈ N, we set Sk+1(ϑ) = ϑ, and for w = wn1 . . . wnl ∈
L(Σ ∪ {υ}) \ {ϑ} we set Sk+1(w) = ϑ if wni = α1 for every 1 ≤ i ≤ l, and

Sk+1(w) = um1 . . . ums if {m1 < · · · < ms} = {n ∈ {n1, . . . , nl} : wn 6= α1} 6= ∅, where,

for 1 ≤ i ≤ s, umi = αj−1 if wmi = αj, 1 < j ≤ k, and umi = αk if wmi = υ.

We remark that dom(Sk+1(w)) ⊆ dom(w) , Sk+1(w ? u) = Sk+1(w) ? Sk+1(u) for every

w, u ∈ L(Σ ∪ {υ}) with w < u and that Sk+1(L(Σ ∪ {υ})) = L(Σ).

We define the functions Sik+1 : L(Σ ∪ {υ}) −→ L(Σ ∪ {υ}) for every i ∈ N ∪ {0}, by

the rule: S0
k+1 to be the identity function on L(Σ ∪ {υ}), S1

k+1 = Sk+1 and Si+1
k+1(w) =

Sk+1(S
i
k+1(w)) for every w ∈ L(Σ ∪ {υ}). Observe that Sik+1(w) = ϑ for every i ≥ k + 1

and w ∈ L(Σ ∪ {υ}).
Also, for a finite alphabet Σ with cardinality k ∈ N ∪ {0} and a variable υ /∈ Σ we

define the functions

T k+1
q : L(Σ ∪ {υ}) −→ L(Σ ∪ {υ}), for every 0 ≤ q ≤ k + 1 as follows:

In case Σ = ∅, we set T 1
0 (w) = ϑ and T 1

1 (w) = w for every w ∈ L(υ).

In case Σ = {α1, . . . , αk} for k ∈ N, we set T k+1
q (ϑ) = ϑ for every 0 ≤ q ≤ k + 1, and for

w = wn1 . . . wnl ∈ L(Σ ∪ {υ}) \ {ϑ} we set

T k+1
k+1 (w) = w,

T k+1
0 (w) = wm1 . . . wms if {m1 < · · · < ms} = {n ∈ {n1, . . . , nl} : wn 6= υ} 6= ∅, and

T k+1
0 (w) = ϑ if wni = υ for every 1 ≤ i ≤ l, and for 1 ≤ q ≤ k

T k+1
q (w) = un1 . . . unl , where, for 1 ≤ i ≤ l, uni = αq if wni = υ and uni = wni if wni ∈ Σ.

We remark that, for every 0 ≤ q ≤ k + 1, dom(T k+1
q (w)) ⊆ dom(w), T k+1

q (w ? u) =

T k+1
q (w) ? T k+1

q (u) for every w, u ∈ L(Σ ∪ {υ}) with w < u, T k+1
q (w) = w for every

w ∈ L(Σ) and that T k+1
q (L(Σ ∪ {υ})) = L(Σ) if 0 ≤ q ≤ k.
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Definition 1.1. Let k ∈ N, Σ = {α1, . . . , αk} be a non-empty totally ordered finite

alphabet and a variable υ = αk+1 /∈ Σ. For every 0 ≤ p ≤ k we consider the alphabets

Σ0 = ∅, Σp = {α1, . . . , αp} and the variables υp = αp+1 /∈ Σp respectively. According to

the previously mentioned terminology, for every 0 ≤ p ≤ k are defined the functions

Sp+1 : L(Σp ∪ {υp}) −→ L(Σp), and

T p+1
q : L(Σp ∪ {υp})→ L(Σp) for every 0 ≤ q ≤ p.

For 0 ≤ p ≤ k, we define the family of functions from L(Σp ∪ {υp}) to L(Σp),

Fp+1 = {Sp+1} ∪ {T p+1
q : 0 ≤ q ≤ p}.

Since L(Σp+1) = L(Σp ∪ {υp}) for every 0 ≤ p ≤ k, by convolution, we can define for

each 0 ≤ p ≤ k the family Up of functions from L(Σ ∪ {υ}) to L(Σp) ⊆ L(Σ) defining

Uk+1 = {T k+1
k+1 }, where T k+1

k+1 : L(Σ ∪ {υ}) → L(Σ ∪ {υ}) is the identity map, and for

0 ≤ p ≤ k

Up = {F ◦G : G ∈ Up+1, F ∈ Fp+1}.

With the previously mentioned definitions we can state a general partition theorem

for located words over a finite totally ordered alphabet (Theorem 1.2 below), which

unifies and extends the partition theorems for located words proved by Gowers in [G]

and Bergelson-Blass-Hindman in [BBH] (see Remark 1.4). This theorem follows from the

more general partition theorem for layered partial semigroups proved by Farah, Hindman,

McLeod in [FHM] (Theorem 3.13). For completeness, we present here a self-contained

proof of the special case of their theorem with which we are concerned in this paper.

Theorem 1.2 ([FHM]). Let k ∈ N, Σ = {α1, . . . , αk} be a finite alphabet and υ /∈ Σ a

variable. For every finite coloring L(Σ ∪ {υ}) = A1 ∪ · · · ∪Ar of L(Σ ∪ {υ}), there exist

a sequence (wn)n∈N in L0(Σ; υ) with wn < wn+1 for every n ∈ N and 1 ≤ ip ≤ r for every

1 ≤ p ≤ k + 1 such that

H1(wn1) ? . . . ? Hλ(wnλ) ∈ Aik+1
∩ L0(Σ; υ)

for every λ ∈ N, n1 < · · · < nλ ∈ N, H1, . . . , Hλ ∈
⋃k+1
q=1 Uq with T k+1

k+1 ∈ {H1, . . . , Hλ},
and, for 1 ≤ p ≤ k,

H1(wn1) ? . . . ? Hλ(wnλ) ∈ Aip ∩ L0({α1, . . . , αp−1};αp)

for every λ ∈ N, n1 < · · · < nλ ∈ N, H1, . . . , Hλ ∈
⋃p
q=1 Uq with {H1, . . . , Hλ} ∩ Up 6= ∅.

A particular case of Theorem 1.2 gives the following:
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Corollary 1.3. Let k ∈ N, Σ = {α1, . . . , αk} be a finite alphabet and υ /∈ Σ a variable.

For every finite coloring L(Σ; υ) = A1 ∪ · · · ∪ Ar of L(Σ; υ) and every finite coloring

L(Σ) = C1 ∪ · · · ∪Cs of L(Σ), there exist a sequence (wn)n∈N in L(Σ; υ) with wn < wn+1

for every n ∈ N and 1 ≤ i0 ≤ r, 1 ≤ j0 ≤ s satisfing

H1(wn1) ? . . . ? Hλ(wnλ) ∈ Ai0

for every λ ∈ N, H1, . . . , Hλ ∈ {T k+1
q : 0 ≤ q ≤ k + 1} ∪ {Sqk+1 : 0 ≤ q ≤ k} with

T k+1
k+1 = S0

k+1 ∈ {H1, . . . , Hλ}, n1 < · · · < nλ ∈ N, and

H1(wn1) ? . . . ? Hλ(wnλ) ∈ Cj0

for every λ ∈ N, H1, . . . , Hλ ∈ {T k+1
q : 0 ≤ q ≤ k} ∪ {Sqk+1 : 1 ≤ q ≤ k} with

{H1, . . . , Hλ} ∩
(
{T k+1

q : 0 ≤ q ≤ k} ∪ {Sk+1}
)
6= ∅, n1 < · · · < nλ ∈ N.

Remark 1.4. (i) The particular case of the previous corollary, where H1, . . . , Hλ ∈
{Sqk+1 : 0 ≤ q ≤ k}, is an equivalent reformulation, with the terminology of located

words, of Gowers partition theorem, proved in [G] (Theorem 5).

(ii) The particular case of the previous corollary, where H1, . . . , Hλ ∈ {T k+1
q : 0 ≤

q ≤ k + 1}, is a consequence of the partition theorem for located words proved by

Bergelson,Blass and Hindman in [BBH] (Theorem 4.1).

We are proceeding now to a proof of Theorem 1.2. Firstly, we will refer some fundamen-

tal known results about the left compact semigroups and we will prove Proposition 1.6,

which has central role in the proof of Theorem 1.2. Also, for completeness, we will

mention some basic notions about ultrafilters.

Left compact semigroups. A non-empty, left compact semigroup is a semigroup (X,+),

X 6= ∅ endowed with a topology T such that (X,T) is a compact Hausdorff space and

the maps fy : X −→ X with fy(x) = x+ y for x ∈ X are continuous for every y ∈ X.

Let (X,+) be a semigroup. An element x of X is called idempotent of (X,+) if

x + x = x. According to a fundamental result due to Ellis ([El]), every non-empty, left

compact semigroup contains an idempotent. On the set of all idempotents of (X,+) is

defined a partial order ≤ by the rule

x1 ≤ x2 ⇐⇒ x1 + x2 = x2 + x1 = x1.

An idempotent x of (X,+) is called minimal for X if every idempotent x1 of X satisfing

the relation x1 ≤ x is equal to x.
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In the following proposition are summarized some facts concerning to minimal idem-

potents (see [FK], [HiS]). We mention that a subset I of X is called two-sided ideal of

(X,+) if X + I ⊆ I and I +X ⊆ I.

Proposition 1.5. Let (X,+) be a non-empty, left compact semigroup.

(i) X contains an idempotent x1 minimal for X.

(ii) For every idempotent x of X there exists an idempotent x1 of X which is minimal

for X and x1 ≤ x.

(iii) Every two-sided ideal of X contains all the minimal for X idempotents of X.

(iv) An idempotent x of X is minimal for X if and only if x is contained in the

smallest two-sided ideal of X.

(v) If x is a minimal idempotent for X and x1 + x (resp.x+ x1) is an idempotent of

X, for some x1 ∈ X, then x1 + x (resp. x+ x1) is a minimal idempotent for X.

Now we will state and prove a result about minimal idempotents which has central role

in the proof of Theorem 1.2. An analogous result for idempotents (not necessarily mini-

mal) has be proved in [To] and also a similar result stated for layered partial semigroups

has be proved in [FHM].

Proposition 1.6. Let (X,+) be a non-empty, left compact semigroup, I ⊆ X be a

closed two-sided ideal of X and T : X −→ X be a continuous homomorphisms on X. If

T k = T k+1 for some k ∈ N, then for a given idempotent x0 ∈ T k(X) minimal for T k(X)

there exists an idempotent x ∈ I minimal for X such that

(1) x ≤ T (x) ≤ · · · ≤ T k(x) = x0, and

(2) T i(x) ∈ T i(I) is a minimal idempotent for T i(X) for every i ∈ {1, . . . , k}.

Proof. We will prove it by induction on k. Let T = T 2 and let an idempotent x0 ∈ T (X)

minimal for T (X). Then T (x0) = x0. According to Proposition 1.5, there exists an

idempotent x ∈ I minimal for X with x ≤ x0. Then T (x) ≤ T (x0) = x0. Since x0 is

minimal for T (X), we have x ≤ T (x) = x0.

Assume that the result is true for some k ≥ 1. Let T k+1 = T k+2 and let an idempotent

x0 ∈ T k+1(X) minimal for T k+1(X). Set X1 = T (X), I1 = T (I) and T1 : X1 −→ X1 the

restriction of T to X1. By the induction hypothesis, since T k1 = T k+1
1 , there exists an

idempotent y ∈ I1 minimal for X1 such that y ≤ T(y) ≤ · · · ≤ T k(y) = x0 and T i(y) is a

minimal idempotent for T i+1(X) for every i ∈ {1, . . . , k}.
Let Y = {z ∈ I : T (z) = y}. Then Y and Y + y are non-empty, left compact

semigroups. Hence, Y +y contains an idempotent z0 +y, with z0 ∈ Y , minimal for Y +y.
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Set x = y + (z0 + y). Then x ∈ I is an idempotent of X, T (x) = y and x ≤ y. Also,

x is a minimal idempotent for X. Indeed, let x1 be an idempotent for X with x1 < x.

According to Proposition 1.5, there exists an idempotent x2 ∈ I minimal for X with

x2 ≤ x1 < x. Then T (x2) ≤ T (x) = y. Since y is a minimal idempotent for X1, we

have that T (x2) = y. Hence, x2 ∈ Y and consequently x2 = x2 + y ∈ Y + y. According

to Proposition 1.5(v), x is a minimal idempotent for Y + y, since z0 + y ∈ Y + y is a

minimal idempotent for Y + y and x = y + (z0 + y) is an idempotent of Y + y with

y = y + y ∈ Y + y. Since x2 ≤ x1 < x and x2 ∈ Y + y, we have x2 = x and consequently

that x1 = x. �

Ultrafilters. Let X be a non-empty set. An ultrafilter on the set X is a zero-one finite

additive measure µ defined on all subsets of X. The set of all ultrafilters on the set X is

denoted by βX. So, µ ∈ βX if and only if

(i) µ(A) ∈ {0, 1} for every A ⊆ X and µ(X) = 1, and

(ii) µ(A ∪B) = µ(A) + µ(B) for every A,B ⊆ X with A ∩B = ∅.

For x ∈ X is defined the ultrafilter µx on X corresponging a set A ⊆ X to µx(A) = 1

if x ∈ A and µx(A) = 0 if x /∈ A. The ultrafilters µx for x ∈ X are called principal

ultrafilters on X. So, µ is a non-principal ultrafilter on X if and only if µ(A) = 0 for

every finite subset A of X. It is easy to see that for µ ∈ βX and A ⊆ X with µ(A) = 1

we have µ(X \ A) = 0, µ(B) = 1 for every B ⊆ X with A ⊆ B and µ(A ∩ B) = 1 for

every B ⊆ X with µ(B) = 1.

The set βX becomes a compact Hausdorff space if it be endowed with the topology T

which has basis the family {A∗ : A ⊆ X}, where A∗ = {µ ∈ βX : µ(A) = 1}. It is easy

to see that (A ∩ B)∗ = A∗ ∩ B∗, (A ∪ B)∗ = A∗ ∪ B∗ and (X \ A)∗ = βX \ A∗ for every

A,B ⊆ X. We always consider the set βX endowed with the topology T.

Let a function T : X −→ Y . Then the function

βT : βX −→ βY with βT (µ)(B) = µ(T−1(B)) for µ ∈ βX and B ⊆ Y

is continuous.

If (X,+) is a semigroup, then a binary operation + is defined on βX corresponding to

every µ1, µ2 ∈ βX the ultrafilter µ1 + µ2 ∈ βX given by

(µ1 + µ2)(A) = µ1({x ∈ X : µ2({y ∈ X : x+ y ∈ A}) = 1}) for every A ⊆ X.

With this operation the set βX becomes a semigroup and for every µ ∈ βX the function

Tµ : βX −→ βX with Tµ(µ1) = µ1 + µ is continuous.

Hence, if (X,+) is a semigroup, then βX becomes a left compact semigroup.
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Proof of Theorem 1.2. Let k ∈ N, Σ = {α1, . . . , αk} be a finite alphabet and αk+1 = υ /∈
Σ be a variable. We set Xk+1 = L(Σ ∪ {αk+1}) the set of all the located words over

Σ ∪ {αk+1}, Vk+1 = L(Σ;αk+1) ⊆ Xk+1 the set of all the variable located words over

Σ with variable αk+1 and V 0
k+1 = L0(Σ;αk+1) ⊆ Vk+1. We endow the set Xk+1 with an

operation + defining for w = wn1 . . . wnr , u = um1 . . . uml ∈ Xk+1 the located word

w + u = vk1 . . . vks ∈ Xk+1,

where {k1, . . . , ks} = {n1, . . . , nr} ∪ {m1, . . . ,ml} and, for 1 ≤ i ≤ s, vi = wi if i /∈
{m1, . . . ,ml}, vi = ui if i /∈ {n1, . . . , nr}, vi = αmax{p,q} if wi = αp and ui = αq for some

p, q ∈ {1, 2, . . . , k + 1}.
Observe that (Xk+1,+) is a semigroup and w + u = w ? u for every w, u ∈ Xk+1 with

w < u.

Since (Xk+1,+) is a semigroup, βXk+1 has the structure of a left compact semigroup

as described above. For every A ⊆ Xk+1 and w ∈ Xk+1 we set

Aw = {u ∈ A : w < u} and

θA =
⋂
{(Aw)∗ : w ∈ Xk+1}.

where (Aw)∗ = {µ ∈ βXk+1 : µ(Aw) = 1}.
Claim 1 If A is a non-empty subset of Xk+1 and satisfies

(i) w + u ∈ A for every w, u ∈ A with w < u and

(ii) for every n ∈ N there exists u ∈ A with n < min dom(u),

then θA ⊆ A∗ is a non-empty left compact subsemigroup of βXk+1 and contains non-

principal ultrafilters on Xk+1.

Indeed, for every w ∈ Xk+1 the set (Aw)∗ = βXk+1 \ (Xk+1 \Aw)∗ is a compact subset

of βXk+1 , so θA is a compact subset of βXk+1. The set A satisfies property (ii), so for

every w ∈ Xk+1, we have Aw 6= ∅ and consequently (Aw)∗ 6= ∅, since µu ∈ (Aw)∗ for

u ∈ Aw. Also, according to property (ii), the family {(Aw)∗ : w ∈ Xk+1} has the finite

intersection property and consequently θA 6= ∅. Since A satisfies property (i), (θA,+) is

a semigroup. Indeed, for µ1, µ2 ∈ θA and w ∈ Xk+1

µ1 ? µ2(Aw) = µ1({u1 ∈ Aw : µ2({u2 ∈ Aw+u1 : u1 + u2 ∈ Aw}) = 1}) =

= µ1({u1 ∈ Aw : µ2(Aw+u1) = 1}) = µ1(Aw) = 1.

Hence, θA is a non-empty left compact subsemigroup of βXk+1.

Let 1 ≤ p ≤ k + 1. We denote by Xp = L({α1, . . . , αp}) ⊆ Xk+1 the set of all the

located words over the alphabet {α1, . . . , αp}, by Vp = L({α1, . . . , αp−1};αp) ⊆ Xp the
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set of all the variable located words over the alphabet {α1, . . . , αp−1} with variable αp

and we set V 0
p = L0({α1, . . . , αp−1};αp) ⊆ Vp. Finally, let X0 = {ϑ}.

According to the Claim 1, θXp, θVp, θV
0
p are non-empty left compact subsemigroups of

βXk+1 such that θV 0
p ⊆ θVp ⊆ θXp for every 1 ≤ p ≤ k+1. Moreover, θV 0

p is a two sided

ideal of θXp, for every 1 ≤ p ≤ k + 1. Indeed, for 1 ≤ p ≤ k + 1, µ1 ∈ θV 0
p , µ2 ∈ θXp

and w ∈ Xk+1 we have

µ1 ? µ2((V
0
p )w) = µ1({u1 ∈ (V 0

p )w : µ2({u2 ∈ (Xp)w+u1 : u1 + u2 ∈ (V 0
p )w}) = 1}) =

= µ1({u1 ∈ (V 0
p )w : µ2((Xp)w+u1) = 1}) = µ1((V

0
p )w) = 1 = µ2 ? µ1((V

0
p )w).

Notice that θX0 = {µϑ} ⊆ βXk+1 and that θXp ⊆ θXp+1 ⊆ θXk+1 for every 0 ≤ p ≤ k.

According to Definition 1.1, we have for every 1 ≤ p ≤ k + 1 the functions

Sp : Xp −→ Xp−1, and T pq : Xp → Xp−1 for every 0 ≤ q < p.

Let T pp = S0 : Xp −→ Xp be the identity map.

Let, 1 ≤ p ≤ k + 1, βSp : βXp −→ βXp with βSp(µ)(A) = µ((Sp)
−1(A)) for every

µ ∈ βXp and A ⊆ Xp and let Sp : θXp −→ θXp the restriction of βSp to θXp. Then Sp

is the restriction of Sk+1 to θXp and is a continuous homomorphism onto θXp−1. Also,

Sk+1(θXp) = Sp(Xp) = θXp−1, Sk+1(θV
0
p ) = θV 0

p−1 for every 1 ≤ p ≤ k + 1. Indeed, for

1 ≤ p ≤ k + 1, µ1, µ2 ∈ θXp and A ⊆ Xp

Sp(µ1 ? µ2)(A) = µ1({u1 ∈ Xp : µ2({u2 ∈ (Xp)u1 : Sp(u1 + u2) ∈ A}) = 1}) =

= µ1({u1 ∈ Xp : µ2({u2 ∈ (Xp)u1 : Sp(u1) + Sp(u2) ∈ A}) = 1}) = Sp(µ1) ? Sp(µ2)(A).

Also, βSk+1(θXp) ⊆ θXp−1, since for µ ∈ θXp and w ∈ Xk+1 we have

βSk+1(µ)((Xp−1)w) = µ({u ∈ (Xp)w : Sk+1(u) ∈ (Xp−1)w}) = µ((Xp)w) = 1, and

θXp−1 ⊆ βSk+1(θXp), since for µ ∈ θXp−1, the family

F = {(Sk+1)
−1(A) ⊆ Xk+1 : A ⊆ Xk, µ(A) = 1} ∪ {(Xp)w : w ∈ Xk},

has the finite intersection property. Indeed, for A ⊆ Xk with µ(A) = 1 and w ∈ Xk,

we have µ(A ∩ (Xp−1)w) = 1 and for u ∈ A ∩ (Xp−1)w there exists v ∈ (Xp)w with

Sk+1(v) = u, so v ∈ (Sk+1)
−1(A) ∩ (Xp)w. Hence, there exists µ1 ∈ θXk+1 such that

µ1(B) = 1 for every B ∈ F . Then µ1 ∈ θXp and µ = βSk+1(µ1).

Analogously, can be proved that βSk+1(θV
0
p ) = θV 0

p−1 for every 1 ≤ p ≤ k + 1.

Observe that Sk+1
k+1(µ) = µϑ = Sk+2

k+1(µ) for all µ ∈ θXk+1. So, according to Proposi-

tion 1.6, there exists an idempotent µk+1 ∈ θV 0
k+1 minimal for θXk+1 such that

(1) µk+1 ≤ Sk+1(µk+1) ≤ · · · ≤ Sk+1
k+1(µk+1) = µϑ, and

(2) S
p
k+1(µk+1) ∈ Sp(θV 0

k+1) = θV 0
k+1−p is a minimal idempotent for Sp(θXk+1) =

θXk+1−p for all p ∈ {1, . . . , k + 1}.
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Let the functions βT pq : βXp −→ βXp and let Tpq : θXp −→ θXp−1 the restriction of

βT pq to θXp for all 1 ≤ p ≤ k + 1, 0 ≤ q ≤ p. Then Tpq are continuous homomorphism

onto θXp−1 and βT pq (µ) = µ for every µ ∈ θXp−1. Indeed, for µ1, µ2 ∈ θXp, µ ∈ θXp−1,

A ⊆ Xp and w ∈ Xk+1 we have:

(i) Tpq(µ1 ? µ2)(A) = µ1({u1 ∈ Xp : µ2({u2 ∈ (Xp)u1 : T pq (u1 + u2) ∈ A}) = 1}) =

= µ1({u1 ∈ Xp : µ2({u2 ∈ (Xp)u1 : T pq (u1) + T pq (u2) ∈ A}) = 1}) =

= Tpq(µ1) ? T
p
q(µ2)(A),

(ii) βT pq (µ1)((Xp−1)w) = µ1({u ∈ (Xp)w : T pq (u) ∈ (Xp−1)w}) = µ1((Xp)w) = 1, and

(iii) βT pq (µ)(A) = µ({u ∈ Xp−1 : T pq (u) = u ∈ A}) = µ(A ∩Xp−1) = µ(A).

As we have already proved, there exists an idempotent µk+1 ∈ θV 0
k+1 minimal for

θXk+1 such that Sk+1−p
k+1 (µk+1) ∈ θV 0

p is a minimal idempotent for θXp and S
p−1
k+1(µk+1) ≤

S
p
k+1(µk+1) for all p ∈ {1, . . . , k + 1}. We will prove that

(3) Tpq
(
S
k+1−p
k+1 (µk+1)

)
= S

k+2−p
k+1 (µk+1) for every p ∈ {1, . . . , k + 1}, 0 ≤ q < p.

Indeed, let p ∈ {1, . . . , k + 1}. Since Tpq are continuous homomorphisms onto θXp−1 for

every 0 ≤ q < p, we have that Tpq
(
S
k+1−p
k+1 (µk+1)

)
≤ Tpq

(
S
k+2−p
k+1 (µk+1)

)
for every 0 ≤ q ≤ p.

But S
k+2−p
k+1 (µk+1) ∈ θV 0

p−1 ⊆ θXp−1, hence Tpq
(
S
k+2−p
k+1 (µk+1)

)
= S

k+2−p
k+1 (µk+1). Now,

since S
k+2−p
k+1 (µk+1) is a minimal idempotent for θXp−1, we have that Tpq

(
S
k+1−p
k+1 (µk+1)

)
=

S
k+2−p
k+1 (µk+1) for every 0 ≤ q < p.

In conclution, if F∗p = {Sp} ∪ {Tpq : 0 ≤ q < p} for every p ∈ {1, . . . , k + 1} and

U∗k+1 = {Tk+1
k+1}, U∗p = {F ◦ G : G ∈ U∗p+1, F ∈ F∗p+1} for every p ∈ {1, . . . , k}, then there

exist idempotents µ1, µ2, . . . , µk+1 of θXk+1 such that µp ∈ θV 0
p is a minimal idempotent

for θXp for every p ∈ {1, . . . , k + 1} satisfing:

(1) µp1 + µp2 = µp2 + µp1 = µmax{p1,p2} for every 1 ≤ p1, p2 ≤ k + 1, and

(2) µp = H(µk+1) for every H ∈ U∗p , 1 ≤ p ≤ k + 1.

Let Fp = {Sp} ∪ {T pq : 0 ≤ q < p} for every p ∈ {1, . . . , k + 1} and Uk+1 = {T k+1
k+1 },

Up = {F ◦G : G ∈ Up+1, F ∈ Fp+1} for every p ∈ {1, . . . , k}.
Claim 2 We will construct, by induction on n, the required sequence (wn)n∈N in V 0

k+1.

Since, Xk+1 = A1 ∪ · · · ∪ Ar, there exist 1 ≤ ip ≤ r such that µp(Aip) = 1 for every

1 ≤ p ≤ k + 1. Then µp(Aip ∩ V 0
p ) = 1. Starting with w0 ∈ V 0

k+1 and Bp,1 = Aip ∩ V 0
p for

every 1 ≤ p ≤ k+1, can be constructed inductively an increasing sequence w1 < w2 < · · ·
in V 0

k+1 and k + 1 decreasing sequences Aip ∩ V 0
p ⊇ Bp,1 ⊇ Bp,2 ⊇ · · · for 1 ≤ p ≤ k + 1,

such that for every n ∈ N to hold:

(i) µp(Bp,n) = 1 for every 1 ≤ p ≤ k + 1,
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(ii) wn ∈ Bk+1,n and H(wn) ∈ Bp,n for every 1 ≤ p ≤ k, H ∈ Up,
(iii) Bk+1,n+1 = {u ∈ (Bk+1,n)wn : H1(wn) + H2(u) ∈ Bk+1,n for H1, H2 ∈

⋃k+1
q=1 Uq,

{H1, H2} ∩ Uk+1 6= ∅}, and, for 1 ≤ p ≤ k,

Bp,n+1 = {u ∈ (Bp,n)wn : H1(wn) + u ∈ Bq,n for all k + 1 ≤ q ≤ p + 1, H1 ∈ Uq,
and H2(wn) + u ∈ Bp,n for all H2 ∈

⋃p
q=1 Uq}.

The proof of Claim 2 follows from the properties (1), (2) of the idempotent ultrafilters.

The sequence (wn)n∈N has the required properties. We will prove by induction on λ

that

H1(wn1) + . . .+Hλ(wnλ) ∈ Bk+1,n1 ⊆ Aik+1
∩ V 0

k+1

for every λ ∈ N, n1 < · · · < nλ ∈ N, H1, . . . , Hλ ∈
⋃k+1
q=1 Uq with {H1, . . . , Hλ}∩Uk+1 6= ∅,

and also that, for every 1 ≤ p ≤ k,

H1(wn1) + . . .+Hλ(wnλ) ∈ Bp,n1 ⊆ Aip ∩ V 0
p

for every λ ∈ N, n1 < · · · < nλ ∈ N, H1, . . . , Hλ ∈
⋃p
q=1 Uq with {H1, . . . , Hλ} ∩ Up 6= ∅.

Indeed, for n1 ∈ N, we have T k+1
k+1 (wn1) = wn1 ∈ Bk+1,n1 and H1(wn1) ∈ Bp,n1 for

every 1 ≤ p ≤ k, H1 ∈ Up. Assume that the accertion holds for some λ ≥ 1 and let

n1 < · · · < nλ < nλ+1 ∈ N and H1, . . . , Hλ, Hλ+1 ∈
⋃k+1
q=1 Uq.

Case 1. If there exists 1 ≤ p ≤ k + 1 such that H1, . . . , Hλ, Hλ+1 ∈
⋃p
q=1 Uq and

{H2, . . . , Hλ+1} ∩ Up 6= ∅, then, according to the induction hypothesis, u = H2(wn2) +

. . .+Hλ+1(wnλ+1
) ∈ Bp,n2 ⊆ Bp,n1+1. Hence, H1(wn1)+u = H1(wn1)+. . .+Hλ+1(wnλ+1

) ∈
Bp,n1 .

Case 2. If there exists 1 ≤ p ≤ k + 1 such that H1, . . . , Hλ, Hλ+1 ∈
⋃p
q=1 Uq and

{H2, . . . , Hλ+1} ∩ Up = ∅, H1 ∈ Up, then, let 1 ≤ p1 < p such that H2, . . . , Hλ, Hλ+1 ∈⋃p1
q=1 Uq and {H2, . . . , Hλ+1} ∩ Up1 6= ∅. According to the induction hypothesis, u =

H2(wn2) + . . .+Hλ+1(wnλ+1
) ∈ Bp1,n2 ⊆ Bp1,n1+1. Hence, H1(wn1) + u = H1(wn1) + . . .+

Hλ+1(wnλ+1
) ∈ Bp,n1 .

This finishes the proof. �

2. Sets of substitutions for variable located words over a finite

alphabet

In this section we introduce the notion of sets of substitutions for variable located

words over a finite alphabet, in order to state and prove refined partition theorems for

variable located words (Theorem 2.3 below). These refined partition theorems can be

the starting points for proving Ramsey type partition theorems, corresponding to each
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countable ordinal, for variable located words, as we do in Section 3, and also Nash-

Williams type partition theorems for infinite sequences of variable located words, as we

do in Section 4.

Definition 2.1. Let Σ = {α1, ..., αk}, k ∈ N be a finite non-empty alphabet and υ /∈ Σ

a variable. We define a set of functions {R1, . . . , Rk+1} to be a set of substitutions for

L(Σ ∪ {υ}) if, the functions

Ri : L(Σ ∪ {υ}) −→ L(Σ ∪ {υ}), for every 1 ≤ i ≤ k + 1,

satisfy the following four properties:

(1) Ri(w ? u) = Ri(w) ? Ri(u) for every w, u ∈ L(Σ ∪ {υ}) with w < u,

(2) Rk+1 is the identity function on L(Σ ∪ {υ}),
(3) if n ∈ N and w ∈ L(Σ ∪ {υ}) with w : {n} −→ {υ}, then Ri(w) : {n} −→ {αi} for

every 1 ≤ i ≤ k, and

(4) for every finite coloring L(Σ; υ) = A1 ∪ · · · ∪ Ar of L(Σ; υ) there exist a sequence

(wn)n∈N in L(Σ; υ) with wn < wn+1 for every n ∈ N and 1 ≤ i0 ≤ r such that

Ri1(wn1) ? . . . ? Riλ(wnλ) ∈ Ai0
for every n1 < · · · < nλ ∈ N and i1, . . . , iλ ⊆ {1, 2, . . . , k + 1} with k + 1 ∈ {i1, . . . , iλ}.

If Σ = ∅, then the set of substitutions for L({υ}) is the set E(∅) = {R1}, where R1 is

the identity function on L({υ}).

Remark 2.2. Let Σ = {α1, ..., αk}, k ∈ N be an alphabet and υ /∈ Σ a variable.

(i) According to Theorem 1.2, all the sets

{H1, . . . , Hk+1} ⊆
⋃k+1
q=1 Uq

such that, if n ∈ N and w ∈ L(Σ∪{υ}) with w : {n} −→ {υ}, then Ri(w) : {n} −→ {αi}
for every 1 ≤ i ≤ k, and Hk+1 = T k+1

k+1 .

(ii) The set

{(Sk+1)
k−i+1 : 1 ≤ i ≤ k + 1}

is a set of substitutions for L(Σ ∪ {υ}) (Gowers substitutions).

(iii) The set

{T k+1
p : 1 ≤ i ≤ k + 1},

is a set of substitutions for L(Σ ∪ {υ}) (Bergelson,Blass,Hindman substitutions).

(iv) Let m ∈ N, 1 ≤ m < k and {n1, . . . , nm} ⊆ {1, 2, . . . , k}. Then the set

{T k+1
i : i ∈ {n1, . . . , nm, k + 1}} ∪ {(Sk+1)

k+1−j : 1 ≤ j ≤ n, j /∈ {n1, . . . , nm}}
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is a set of substitutions for L(Σ ∪ {υ}), according to Corollary 1.3.

(v) The sets of the form

{(Sk+1)
ε1 ◦ T k+1

p1
, . . . , (Sk+1)

εk ◦ T k+1
pk

, (Sk+1)
0 ◦ T k+1

k+1 },

where 0 ≤ p1, . . . , pk ≤ k, 0 ≤ ε1, . . . , εk ≤ k − 1 and, if n ∈ N and w ∈ L(Σ ∪ {υ}) with

w : {n} −→ {υ}, then (Sk+1)
εj ◦ T k+1

pj
(w) : {n} −→ {αi} for every 1 ≤ j ≤ k, are sets of

substitutions for L(Σ ∪ {υ}).

Let Σ be a finite alphabet and υ /∈ Σ. We denote by L∞(Σ; υ) (resp. L<∞(Σ; υ)) the

family of all infinite (resp. finite) orderly sequences of variable located words over the

alphabet Σ; thus

L<∞(Σ; υ) = {w = (w1, . . . , wl) : l ∈ N, w1 < · · · < wl ∈ L(Σ; υ)} ∪ {∅}, and

L∞(Σ; υ) = {~w = (wn)n∈N : wn ∈ L(Σ; υ) and wn < wn+1 ∀ n ∈ N}.

By substitution and concatenation of the words of a given orderly sequence of variable

located words we can extract new words and sequences.

Extractions of an orderly sequence of variable located words. Let Σ be a finite

alphabet with cardinality k ∈ N∪{0}, υ /∈ Σ and {R1, . . . , Rk+1} be a set of substitutions

for L(Σ∪{υ}). For a given infinite orderly sequence ~w = (wn)n∈N ∈ L∞(Σ; υ) of variable

located words over Σ are defined the set of extracted variable located words and the sets

of extracted finite and infinite sequences of variable located words of ~w as follows:

EL(~w) = {u = Ri1

(
wn1

)
? . . . ? Riλ

(
wnλ
)
∈ L(Σ; υ) : λ ∈ N, n1 < · · · < nλ ∈ N,

1 ≤ i1, . . . , iλ ≤ k + 1 and k + 1 ∈ {i1, . . . , iλ}};

EL<∞(~w) = {u = (u1, . . . , ul) ∈ L<∞(Σ ∪ {υ}) : l ∈ N, u1, . . . , ul ∈ EL(~w)} ∪ {∅}; and

EL∞(~w) = {~u = (un)n∈N ∈ L∞(Σ; υ) : un ∈ EL(~w) for every n ∈ N}.
We write ~u ≺ ~w if and only if ~u ∈ EL∞(~w) if and only if EL(~u) ⊆ EL(~w). Notice that

~w ≺ ~e for every ~w ∈ L<∞(Σ; υ), where ~e = (en)n∈N with en = υ for every n ∈ N.

Using the notion of extractions for a given set of substitutions for L(Σ∪ {υ}), stroger

partition theorems for located words can be proved, according to the following theorem.

Theorem 2.3. Let Σ be a finite ordered alphabet of cardinality k ∈ N ∪ {0},υ /∈ Σ

be a variable and {R1, . . . , Rk+1} be a set of substitutions for L(Σ ∪ {υ}). For every

finite coloring L(Σ; υ) = A1 ∪ · · · ∪ Ar of L(Σ; υ) and every infinite orderly sequence

~w ∈ L∞(Σ; υ) of variable located words over Σ there exist an extraction ~u ≺ ~w of ~w and

1 ≤ i0 ≤ r satisfing EL(~u) ⊆ Ai0.

13



Proof. There exist an one to one and onto correspondence between the set EL(~w) of the

extracted variable located words of ~w, according to {R1, . . . , Rk+1} and the set L(Σ; υ),

which in case Σ = {α1, ..., αk} for k ∈ N is given by the function

φ : L(Σ; υ)→ EL(~w) with

φ(tn1 . . . tnλ) = Ri1

(
wn1

)
?. . .?Riλ

(
wnλ
)
, where ij = k+1 if tnj = υ and ij = p if tnj = αp,

1 ≤ p ≤ k, for every 1 ≤ j ≤ λ.

In case Σ = ∅, for tn1 . . . tnλ ∈ L(Σ; υ) we set φ(tn1 . . . tnλ) = wn1 ? . . . ? wnλ .

According to Definition 2.1 (4), there exist an infinite sequence ~t = (tn)n∈N in L(Σ; υ)

with tn < tn+1 for every n ∈ N and 1 ≤ i0 ≤ r satisfing EL(~t) ⊆ (φ)−1(Ai0).

Set un = φ(tn) ∈ EL(~w) for every n ∈ N and ~u = (un)n∈N. Then ~u ≺ ~w and

EL(~u) ⊆ φ(EL(~t)). Hence, EL(~u) ⊆ Ai0 . �

Remark 2.4. (i) We can obtain refined partition theorems for variable located words,

appling Theorem 2.3 for the sets of substitutions referred to Remark 2.2(i).

(ii) A partition theorem stonger than Gowers’s partition theorem proved in [G] (The-

orem 5) can be proved appling Theorem 2.3 for the set of substitutions referred to Re-

mark 2.2(iii).

(iii) Bergelson, Blass and Hindman in [BBH] (Corollary 4.3) proved a result analogous

to Theorem 2.3 using the set of substitutions referred to Remark 2.2(iv).

3. Partition theorems for finite sequences of variable located words

over a finite alphabet

Given a set of substitutions for the variable located words over a finite alphabet Σ, we

can prove Ramsey type partition theorems of every countable order ξ (Theorem 3.5) for

the variable located words over Σ, extenting Theorem 2.3, corresponting to case ξ = 1,

to every countable order ξ.

Applying Theorem 3.5 for concrete sets of substitutions we get corresponding partition

theorems for finite sequences of variable located words over a finite alphabet Σ of every

countable order. In particular, we can get an extension of Gowers partition theorem

(Theorem 5 in [G]) to every countable ordinal ξ, and an analogous extension to every

countable order ξ of Theorems 4.1 and 5.1 in [BBH] of Bergelson, Blass, Hindman,

corresponding to finite ordinals ξ < ω. Theorem 3.5 for Σ = ∅ has been proved in

[FN](Theorem 2.6).
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In order to state Theorem 3.5 we will need the definition of the system (Lξ(Σ; υ))ξ<ω1

of Schreier families of finite orderly sequences of variable located words over a finite

alphabet Σ. Instrumental for this definition is the recursive system (Aξ)ξ<ω1 of thin

Schreier families of finite ordered sets of natural numbers given below, where (in case

3(iii)) the Cantor normal form of ordinals (cf. [KM], [L]) is employed.

We denote by [X]<ω the set of all finite subsets and by [X]<ω>0 the set of all non-empty,

finite subsets of a set X. For s1, s2 ∈ [N]<ω>0 we write s1 < s2 if max s1 < min s2.

Definition 3.1 (The Schreier system, [F1, Def. 7], [F2, Def. 1.5] [F3, Def. 1.4]). For

every non-zero, countable, limit ordinal λ choose and fix a strictly increasing sequence

(λn)n∈N of successor ordinals smaller than λ with supn λn = λ. The system (Aξ)ξ<ω1 is

defined recursively as follows:

(1) A0 = {∅} and A1 = {{n} : n ∈ N};
(2) Aζ+1 = {s ∈ [N]<ω>0 : s = {n} ∪ s1, where n ∈ N, {n} < s1 and s1 ∈ Aζ};

(3i) Aωβ+1 = {s ∈ [N]<ω>0 : s =
⋃n
i=1 si, where n = min s1, s1 < · · · < sn and

s1, . . . , sn ∈ Aωβ};
(3ii) for a non-zero, countable limit ordinal λ,

Aωλ = {s ∈ [N]<ω>0 : s ∈ Aωλn with n = min s}; and

(3iii) for a limit ordinal ξ such that ωα < ξ < ωα+1 for some 0 < α < ω1, if

ξ = ωαp+
∑m

i=1 ω
aipi, where m ∈ N with m ≥ 0, p, p1, . . . , pm are natural numbers

with p, p1, . . . , pm ≥ 1 (so that either p > 1, or p = 1 and m ≥ 1) and a, a1, . . . , am

are ordinals with a > a1 > · · · am > 0,

Aξ = {s ∈ [N]<ω>0 : s = s0 ∪ (
⋃m
i=1 si) with sm < · · · < s1 < s0, s0 = s0

1 ∪ · · · ∪ s0
p

with s0
1 < · · · < s0

p ∈ Aωa , and si = si1 ∪ · · · ∪ sipi with si1 < · · · < sipi ∈ Aωai
∀ 1 ≤ i ≤ m}.

Definition 3.2 (The Schreier systems (Lξ(Σ; υ))ξ<ω1). Let Σ be a finite alphabet and

υ /∈ Σ. We define the families Lξ(Σ; υ) for every countable ordinal ξ as follows:

L0(Σ; υ) = {∅} ; and

for every countable ordinal ξ ≥ 1,

Lξ(Σ; υ) = {w = (w1, . . . , wk) ∈ L<∞(Σ; υ) : {min dom(w1), . . . ,min dom(wk)} ∈ Aξ}.

Remark 3.3. (i) Lξ(Σ; υ) ⊆ L<∞(Σ; υ) and ∅ /∈ Lξ(Σ) for every ξ ≥ 1.

(ii) For k ∈ N
Lk(Σ; υ) = {(w1, . . . , wk) : w1 < · · · < wk ∈ L(Σ; υ)}.

(iii) Lω(Σ; υ) = {(w1, . . . , wn) ∈ L<∞(Σ; υ) : n ∈ N, and min dom(w1) = n}.
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The following proposition justifies the recursiveness of the system (Lξ(Σ; υ))ξ<ω1 .

For a family F ⊆ L<∞(Σ ∪ {υ}) and a located word t ∈ L(Σ ∪ {υ}), we set

F(t) = {w ∈ L<∞(Σ ∪ {υ}) : either w = (w1, . . . , wl) 6= ∅ and (t, w1, w2, . . . , wl) ∈ F

or w = ∅ and (s) ∈ F},

F − t = {w ∈ F : either w = (w1, . . . , wl) 6= ∅ and t < w1, or w = ∅}.

Proposition 3.4. For every countable ordinal ξ ≥ 1, there exists a concrete sequence

(ξn) of countable ordinals with ξn < ξ such that for every finite alphabet Σ, t ∈ L(Σ; υ),

with min dom(t) = n,

Lξ(Σ; υ)(t) = Lξn(Σ; υ) ∩ (L<∞(Σ; υ)− t).

Moreover, ξn = ζ for every n ∈ N if ξ = ζ+1, and (ξn) is a strictly increasing sequence

with supn ξn = ξ if ξ is a limit ordinal.

Proof. It follows from Proposition 1.6 in [F3], according to which for every countable

ordinal ξ > 0 there exists a concrete sequence (ξn) of countable ordinals, with ξn < ξ,

such that Aξ(n) = Aξn ∩ [{n+ 1, n+ 2, . . .}]<ω for every n ∈ N, where,

Aξ(n) = {s ∈ [N]<ω : s ∈ [N]<ω>0 , n < min s and {n} ∪ s ∈ Aξ or s = ∅ and {n} ∈ Aξ}.
Moreover, ξn = ζ for every n ∈ N if ξ = ζ + 1, and (ξn) is a strictly increasing sequence

with supn ξn = ξ if ξ is a limit ordinal �

The principal result of this Section is the following:

Theorem 3.5 (Exteded Ramsey type partition theorem for located words ). Let ξ ≥ 1 be

a countable ordinal, Σ be a finite ordered alphabet of cardinality k ∈ N ∪ {0},υ /∈ Σ be a

variable and {R1, . . . , Rk+1} be a set of substitutions for L(Σ ∪ {υ}). For every family

F ⊆ L<∞(Σ; υ) of finite orderly sequences of variable located words over Σ and every

infinite orderly sequence ~w ∈ L∞(Σ; υ) of variable located words over Σ there exists an

extraction ~u ≺ ~w of ~w over Σ such that

either Lξ(Σ; υ) ∩ EL<∞(~u) ⊆ F , or Lξ(Σ; υ) ∩ EL<∞(~u) ⊆ L<∞(Σ; υ) \ F .

For the proof of Theorem 3.5 we will make use of a diagonal argument, contained in

the following Lemma 3.6.

Notation. Let Σ be a finite ordered alphabet of cardinality k ∈ N∪{0} and υ /∈ Σ. For

~w = (wn)n∈N ∈ L∞(Σ; υ), s ∈ L(Σ; υ) and s = (s1, . . . , sl) ∈ L<∞(Σ; υ), we set

~w − s = (wn)n≥l ∈ L∞(Σ; υ), where l = min{n ∈ N : s < wn},
~w − s = ~w − sl.
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for a given set {R1, . . . , Rk+1} of substitutions for L(Σ∪{υ}) we define the set of extracted

variable located words of s as follows:

EL(s) = {u = Ri1

(
sn1

)
? . . . ? Riλ

(
snλ
)
∈ L(Σ; υ) : 1 ≤ n1 < · · · < nλ ≤ l

and 1 ≤ i1, . . . , im ≤ k + 1}.

Lemma 3.6. Let Σ be a finite ordered alphabet of cardinality k ∈ N ∪ {0},υ /∈ Σ be a

variable, {R1, . . . , Rk+1} be a set of substitutions for L(Σ∪{υ}), ~w = (wn)n∈N ∈ L∞(Σ; υ)

an infinite orderly sequence of variable located words over Σ and

Π = {(w,~s) : w ∈ L(Σ; υ), ~s = (sn)n∈N ∈ L∞(Σ; υ) with ~s ≺ ~w and w < sn∀ n ∈ N}.
If a subset R of Π satisfies

(i) for every (w,~s) ∈ Π, there exists (w,~s1) ∈ R with ~s1 ≺ ~s; and

(ii) for every (w,~s) ∈ R and ~s1 ≺ ~s, we have (w,~s1) ∈ R,

then there exists ~u ≺ ~w, such that (w,~s) ∈ R for all w ∈ EL(~u) and ~s ≺ ~u− w.

Proof. Let u0 = w1. According to condition (i), there exists ~s1 = (s1
n)n∈N ∈ L∞(Σ; υ)

with ~s1 ≺ ~w − u0 such that (u0, ~s1) ∈ R. Let u1 = s1
1. Of course, u0 < u1 and

u0, u1 ∈ EL(~w). We assume now that there have been constructed ~s1, . . . , ~sn ∈ L∞(Σ; υ)

and u0, u1, . . . , un ∈ EL(~w), with ~sn ≺ · · · ≺ ~s1 ≺ ~w, u0 < u1 < · · · < un and (s, ~si) ∈ R
for all 1 ≤ i ≤ n, s ∈ EL((u0, . . . , ui−1)).

We will construct ~sn+1 and un+1. Let {t1, . . . , tk} = EL((u0, . . . , un)). According to

condition (i), there exist ~s1
n+1, . . . , ~s

k
n+1 ∈ L∞(Σ; υ) such that ~skn+1 ≺ · · · ≺ ~s1

n+1 ≺ ~sn−un
and (ti, ~s

i
n+1) ∈ R for every 1 ≤ i ≤ k. Set ~sn+1 = ~skn+1. If ~sn+1 = (sn+1

n )n∈N, set

un+1 = sn+1
1 . Of course un < un+1, un+1 ∈ EL(~w) and, according to condition (ii),

(ti, ~sn+1) ∈ R for all 1 ≤ i ≤ k.

Set ~u = (u0, u1, u2, . . .) ∈ L∞(Σ; υ). Then ~u ≺ ~w, since u0 < u1 < . . . ∈ EL(~w).

Let w ∈ EL(~u) and ~s ≺ ~u − w. Set n0 = min{n ∈ N : w ∈ EL((u0, u1, . . . , un))}.
Since w ∈ EL((u0, u1, . . . , un0)), we have (w,~sn0+1) ∈ R. Then, according to (ii), we

have that (w, ~u − un0) ∈ R, since ~u − un0 ≺ ~sn0+1, and also that (w,~s) ∈ R, since

~s ≺ ~u− un0 = ~u− w. �

Proof of Theorem 3.5. For ξ = 1 the theorem holds, according to Theorem 2.3. Let

ξ > 1. Assume that the theorem is valid for every ζ < ξ. Let F ⊆ L<∞(Σ; υ) and

~w ∈ L∞(Σ; υ). If t ∈ L(Σ; υ) with min dom(t) = n and ~s = (sn)n∈N ∈ L∞(Σ; υ) with

~s ≺ ~w, then, according to Proposition 3.4, there exists ξn < ξ such that

Lξ(Σ; υ)(t) = Lξn(Σ; υ) ∩ (L<∞(Σ; υ)− t).
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Using the induction hypothesis, there exists ~s1 ∈ L∞(Σ; υ) with ~s1 ≺ ~s such that

either Lξn(Σ; υ) ∩ EL<∞(~s1) ⊆ F(t), or Lξn(Σ; υ) ∩ EL<ω(~s1) ⊆ L<∞(Σ; υ) \ F(t).

Set ~st = ~s1 − t. Then ~st ≺ ~s1 ≺ ~s ≺ ~w, and

either Lξ(Σ; υ)(t) ∩ EL<∞(~st) ⊆ F(t), or Lξ(Σ; υ)(t) ∩ EL<ω(~st) ⊆ L<∞(Σ; υ) \ F(t).

Let R = {(t, ~s) : t ∈ L(Σ; υ), ~s = (sn)n∈N ∈ L∞(Σ; υ) with ~s ≺ ~w, t < sn∀ n ∈ N, and

either Lξ(Σ; υ)(t) ∩EL<∞(~s) ⊆ F(t), or Lξ(Σ; υ)(t) ∩EL<∞(~s) ⊆ L<∞(Σ; υ) \ F(t)}.
The family R satisfies the conditions (i) (by the above arguments) and (ii) (obviously)

of Lemma 3.6. Hence there exists ~u1 ≺ ~w such that (t, ~s) ∈ R for all t ∈ EL(~u1) and

~s ≺ ~u1 − t.
Let F1 = {t ∈ EL(~u1) : Lξ(Σ; υ)(t) ∩ EL<∞(~u1 − t) ⊆ F(t)}.
We use the induction hypothesis for ξ = 1 (Theorem 2.3). Then there exists a variable

extraction ~u ≺ ~u1 of ~u1 such that

either EL(~u) ⊆ F1, or EL(~u) ⊆ L(Σ; υ) \ F1.

Since ~u ≺ ~u1 we have that EL(~u) ⊆ EL(~u1), and, consequently, that (t, ~u − t) ∈ R for

all t ∈ EL(~u). Thus

either Lξ(Σ; υ)(t) ∩ EL<∞(~u− t) ⊆ F(t) for all t ∈ EL(~u),

or Lξ(Σ; υ)(t) ∩ EL<∞(~u− t) ⊆ L<∞(Σ; υ) \ F(t) for all t ∈ EL(~u).

Hence,

either Lξ(Σ; υ) ∩ EL<∞(~u) ⊆ F , or Lξ(Σ; υ) ∩ EL<∞(~u) ⊆ L<∞(Σ; υ) \ F . �

The particular case of Theorem 3.5, where ξ is a finite ordinal, has the following

statement:

Corollary 3.7 (Ramsey type partition theorem for variable located words). Let k ∈ N, Σ

be a finite ordered alphabet of cardinality k ∈ N∪{0},υ /∈ Σ be a variable, {R1, . . . , Rk+1}
be a set of substitutions for L(Σ ∪ {υ}) and ~w ∈ L∞(Σ; υ) an infinite orderly sequence

of variable located words over Σ. For every finite coloring Lk(Σ; υ) = A1 ∪ · · · ∪ Ar of

Lk(Σ; υ) there exist an extraction ~u ≺ ~w of ~w over Σ and 1 ≤ i0 ≤ r such that

{(t1, . . . , tk) ∈ L<∞(Σ; υ) : t1, . . . , tk ∈ EL(~u)} ⊆ Ai0.

4. Partition theorems for sequences of variable located words

The main result of this Section is Theorem 4.13 which strengthens Theorem 3.5 in

case the partition family is a tree. Specificaly, given a partition family F ⊆ L<∞(Σ; υ)

of finite orderly sequences of variable located words over a finite alphabet Σ, a set of

substitutions for L(Σ ∪ {υ}), an infinite orderly sequence ~w ∈ L∞(Σ; υ) of variable
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located words over Σ and ξ < ω1, Theorem 3.5 provides no information on how to decide

whether the homogeneous family Lξ(Σ; υ) ∩ EL<∞(~u) falls in F or in its complement,

while Theorem 4.13 in case the partition family F is a tree provides a criterion, in terms

of a Cantor-Bendixson type index of F , according to which we can have such a decition.

As a corollary of Theorem 4.13 we have a partition theorem for infinite orderly se-

quences of variable located words (Corollary 4.15) for each set of substitutions.

Notation. A finite orderly sequence w = (w1, . . . , wl) ∈ L<∞(Σ ∪ {υ}) is an initial

segment of u = (u1, . . . , uk) ∈ L<∞(Σ ∪ {υ}) iff l ≤ k and wi = ui for every i = 1, . . . , l

and w is an initial segment of ~u = (un)n∈N ∈ L∞(Σ ∪ {υ}) if wi = ui for all i = 1, . . . , l.

In these cases we write w ∝ u and w ∝ ~u, respectively, and we set u\w = (ul+1, . . . , uk)

and ~u \w = (un)n>l.

Definition 4.1. A family F ⊆ L<∞(Σ; υ) is thin if there are no elements s, t ∈ F with

s 6= t and s ∝ t.

Proposition 4.2. Every family Lξ(Σ; υ), for ξ < ω1 is thin.

Proof. It follows by induction on ξ. �

Proposition 4.3. Let ξ be a nonzero countable ordinal number, Σ a finite alphabet and

υ /∈ Σ . Then

(i) every infinite orderly sequence ~s = (sn)n∈N ∈ L∞(Σ; υ) of variable located words

has canonical representation with respect to Lξ(Σ; υ), which means that there exists a

unique strictly increasing sequence (mn)n∈N in N so that (s1, . . . , sm1) ∈ Lξ(Σ; υ) and

(smn−1+1, . . . , smn) ∈ Lξ(Σ; υ) for every n > 1; and,

(ii) every nonempty finite orderly sequence s = (s1, . . . , sk) ∈ L<∞(Σ; υ) has canonical

representation with respect to Lξ(Σ; υ), which means that either s ∈ (Lξ(Σ; υ))∗\Lξ(Σ; υ)

or there exist unique n ∈ N, and m1, . . . ,mn ∈ N with m1 < . . . < mn ≤ k so that

either (s1, . . . , sm1), . . . , (smn−1+1, . . . , smn) ∈ Lξ(Σ; υ) and mn = k,

or (s1, . . . , sm1), . . . ,(smn−1+1, . . . , smn) ∈ Lξ(Σ; υ), (smn+1, . . . , sk) ∈ (Lξ(Σ; υ))∗\Lξ(Σ; υ).

Proof. It follows from the fact that every nonempty increasing sequence (finite or infinite)

in N has canonical representation with respect to Aξ (cf. [F3], Theorem 1.14) and that

the family Lξ(Σ; υ) is thin (Proposition 4.2). �

Definition 4.4. Let Σ be a finite, non empty alphabet, E(Σ) a set of substitutions for

L(Σ ∪ {υ}) and F ⊆ L<∞(Σ; υ).
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(i) F∗ = {t ∈ L<∞(Σ; υ) : t ∝ s for some s ∈ F} ∪ {∅}.
(ii) F is a tree if F∗ = F .

(iii) F∗ = {t ∈ L<∞(Σ; υ) : t ⊆ EL(s) for some s ∈ F} ∪ {∅}.
(iv) F is hereditary if F∗ = F .

Now, using Proposition 4.3, we will give an alternative description of the second horn

of the dichotomy, proved in Theorem 3.5, in case the partition family is a tree.

Proposition 4.5. Let ξ ≥ 1 be a countable ordinal, Σ a finite alphabet, υ /∈ Σ, E(Σ) a

set of substitutions for L(Σ ∪ {υ}), F ⊆ L<∞(Σ; υ) be a tree and ~u ∈ L∞(Σ; υ). Then

Lξ(Σ; υ) ∩ EL<∞(~u) ⊆ L<∞(Σ; υ) \ F if and only if

F ∩ EL<∞(~u) ⊆ (Lξ(Σ; υ))∗ \ Lξ(Σ; υ).

Proof. Let Lξ(Σ; υ) ∩ EL<∞(~u) ⊆ L<∞(Σ; υ) \ F and s = (s1, . . . , sk) ∈ F ∩ EL<∞(~u).

Then s has canonical representation with respect to Lξ(Σ; υ) (Proposition 4.3), hence

either s ∈ (Lξ(Σ; υ))∗ \ Lξ(Σ; υ), as required, or there exists s1 ∈ Lξ(Σ; υ) such that

s1 ∝ s. The second case is impossible. Indeed, since F is a tree and s ∈ F ∩ EL<∞(~u),

we have s1 ∈ F ∩ EL<∞(~u) ∩ Lξ(Σ; υ); a contradiction to our assumption. Hence,

F ∩ EL<∞(~u) ⊆ (Lξ(Σ; υ))∗ \ Lξ(Σ; υ). �

Definition 4.6. Let Σ be a finite alphabet and υ /∈ Σ. We set D = {(n, α) : n ∈
N, α ∈ Σ ∪ {υ}}. Note that D is a countable set. Let [D]<ω be the set of all finite

subsets of D. Identifying every s ∈ L<∞(Σ; υ) and every ~s ∈ L∞(Σ; υ)) with their

characteristic functions xs ∈ {0, 1}[D]<ω and x~s ∈ {0, 1}[D]<ω respectively, we topologize

the sets L<∞(Σ; υ), L∞(Σ; υ) by the topology of pointwise convergence (equivalently by

the product topology of {0, 1}[D]<ω). So, if σ(s) = {s1, . . . , sk} for every s = (s1, . . . , sk) ∈
L<∞(Σ; υ),σ(~s) = {sn : n ∈ N} for every ~s = (sn)n∈N ∈ L∞(Σ; υ) and σ(∅) = ∅, then

a family F ⊆ L<∞(Σ; υ) is pointwise closed iff the family {xσ(s) : s ∈ F} is closed in

{0, 1}[D]<ω with the topology of pointwise convergence and a family U ⊆ L∞(Σ; υ) is

pointwise closed iff {xσ(~s) : ~s ∈ U} is pointwise closed in {0, 1}[D]<ω .

Proposition 4.7. Let Σ be a finite alphabet and υ /∈ Σ.

(i) If F ⊆ L<∞(Σ; υ) is a tree, then F is pointwise closed if and only if there does not

exist an infinite sequence (sn)n∈N in F such that sn ∝ sn+1 and sn 6= sn+1 for all n ∈ N.

(ii) If F ⊆ L<∞(Σ; υ) is hereditary, then F is pointwise closed if and only if there does

not exist ~s ∈ L∞(Σ; υ) such that EL<∞(~s) ⊆ F .

(iii) The hereditary family (Lξ(Σ; υ)∩EL<∞(~s))∗ is pointwise closed for every countable

ordinal ξ and ~s ∈ L∞(Σ; υ).
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Proof. This follows directly from the definitions (for details cf. [FN], Proposition 3.11).

�

Definition 4.8. Let Σ be a finite alphabet and υ /∈ Σ, E(Σ) be a set of substitutions

for L(Σ ∪ {υ}), F ⊆ L<∞(Σ; υ) be a hereditary and pointwise closed family, and ~s ∈
L∞(Σ; υ). For every ξ < ω1 we define the families (F)ξ~s inductively as follows:

As = {t ∈ EL(~s) : (s1, . . . , sk, t) /∈ F} for every s = (s1, . . . , sk) ∈ F ∩ EL<ω(~s) and

A∅ = {t ∈ EL(~s) : (t) /∈ F}.
We set

(F)1
~s = {s ∈ F ∩ EL<ω(~s) ∪ {∅} : As does not contain an infinite orderly sequence }.

It is easy to verify that (F)1
~s is hereditary, hence pointwise closed (Proposition 4.7). So,

we can define for every ξ > 1 the ξ-derivatives of F recursively as follows:

(F)ζ+1
~s = ((F)ζ~s)

1
~s for all ζ < ω1, and

(F)ξ~s =
⋂
β<ξ(F)β~s for ξ a limit ordinal.

The strong Cantor-Bendixson index sO~s(F) of F on ~s is the smallest countable ordinal

ξ such that (F)ξ~s = ∅.

Remark 4.9. Let F1,R1,⊆ L<∞(Σ; υ) be hereditary and pointwise closed families, E(Σ)

be a set of substitutions for L(Σ ∪ {υ}) and ~s ∈ L∞(Σ; υ).

(i) sO~s(F1) is a countable successor ordinals less than or equal to the “usual” Cantor-

Bendixson index O(F1) of F1 into {0, 1}[D]<ω (cf. [KM]).

(ii) sO~s(F1 ∩ EL<∞(~s)) = sO~s(F1).

(iii) sO~s(F1) ≤ sO~s(R1) if F1 ⊆ R1.

(iv) If s ∈ (F1)
ξ
~s and ~s1 ≺ ~s, then s1 ∈ (F1)

ξ
~s1

for every s1 ∈ EL<∞(~s1) with σ(s1) =

σ(s) ∩ EL(~s1), since EL(~s1) ⊆ EL(~s).

(v) If ~s1 ≺ ~s, then sO~s1(F1) ≥ sO~s(F1), according to (iv).

(vi) If σ(~s1) \ σ(~s) is a finite set, then sO~s1(F1) ≥sO~s(F1).

Proposition 4.10. Let Σ be a finite alphabet, υ /∈ Σ, E(Σ) a set of substitutions for

L(Σ ∪ {υ}), ~s ∈ L∞(Σ; υ) and ξ < ω1 be an ordinal.

If ~s1 ≺ ~s, then sO~s1

(
(Lξ(Σ; υ) ∩ EL<ω(~s))∗

)
= ξ + 1.

Proof. Let ~s1 ≺ ~s. For every s ∈ EL(~s) with min dom(s) = n we have, according to

Proposition 3.4, that

(Lξ(Σ; υ) ∩ EL<∞(~s))(s) = Lξn(Σ; υ)) ∩ EL<∞(~s− s) for some ξn < ξ.
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The family (Lξ(Σ; υ) ∩ EL<ω(~s))∗ is hereditary and pointwise closed (Proposition 4.7).

We will prove by induction that
(

(Lξ(Σ; υ) ∩ EL<∞(~s))∗

)ξ
~s1

= {∅} for every ξ < ω1.

Of course, (L1(Σ; υ) ∩ EL<∞(~s))∗ = {(s) : s ∈ EL(~s)} ∪ {∅}. Thus we have that(
(L1(Σ; υ) ∩ EL<∞(~s))∗

)1

~s1
= {∅}.

Let ξ > 1 and assume that
(

(Lς(Σ; υ) ∩ EL<∞(~s))∗

)ζ
~s1

= {∅} for every ζ < ξ and

~s1 ≺ ~s. Hence, for every s ∈ EL(~s1) with min s = n and ~s1 ≺ ~s we have that(
(Lξ(Σ; υ) ∩ EL<∞(~s))(s)∗

)ξn
~s1

=
(

(Lξn(Σ; υ) ∩ EL<∞(~s− s))∗
)ξn
~s1

= {∅}.

This gives that (s) ∈
(

(Lξ(Σ; υ) ∩ EL<∞(~s))∗

)ξn
~s1

. So, ∅ ∈
(

(Lξ(Σ; υ) ∩ EL<∞(~s))∗

)ξ
~s1

,

since if ξ = ζ+1, then (s) ∈
(

(Lξ(Σ; υ)∩EL<∞(~s))∗

)ζ
~s1

for every s ∈ EL(~s1) and if ξ is a

limit ordinal, then ∅ ∈
(

(Lξ(Σ; υ)∩EL<∞(~s))∗

)ξn
~s1

for every n ∈ N and since sup ξn = ξ.

If {∅} 6=
(

(Lξ(Σ; υ) ∩ EL<∞(~s))∗

)ξ
~s1

for ~s1 ≺ ~s, then there exist ~s2 ≺ ~s1 and s ∈

EL(~s2) such that
(

(Lξ(Σ; υ) ∩ EL<ω(~s))(s)∗

)ξ
~s2

=
(

(Lξn(Σ; υ) ∩ EL<∞(~s − s))∗
)ξ
~s1
6= ∅

(see Lemma 2.8 in [F4]). This is a contradiction to the induction hypothesis. Hence,(
(Lξ(Σ; υ) ∩ EL<∞(~s))∗

)ξ
~s1

= {∅} and sO~s1((L
ξ(Σ; υ) ∩ EL<∞(~s))∗) = ξ + 1 for every

ξ < ω1. �

Corollary 4.11. Let ξ1, ξ2 be countable ordinals with ξ1 < ξ2 and ~w ∈ L∞(Σ; υ). Then

there exist ~u1 ≺ ~w such that (Lξ1(Σ; υ))∗ ∩ EL<∞( ~u1) ⊆ (Lξ2(Σ; υ))∗ \ Lξ2(Σ; υ).

Proof. Of course the family (Lξ1(Σ; υ))∗ ⊆ L<∞(Σ; υ) is a tree. According to Theorem 3.5

and Proposition 4.5 there exists ~u1 ≺ ~w such that:

either Lξ2(Σ; υ) ∩ EL<∞( ~u1) ⊆ (Lξ1(Σ; υ))∗,

or (Lξ1(Σ; υ))∗ ∩ EL<∞( ~u1) ⊆ (Lξ2(Σ; υ))∗ \ Lξ2(Σ; υ).

The first alternative is impossible, according to Proposition 4.10. Indeed, ξ2 + 1 =

sO ~u1((L
ξ2(Σ; υ) ∩ EL<∞( ~u1))∗) ≤ sO~u((L

ξ1(Σ; υ))∗) = ξ1 + 1, a contradiction. �

Definition 4.12. Let F ⊆ L<∞(Σ; υ) be a family of finite orderly sequences of variable

located words over a finite alphabet Σ and E(Σ) a set of substitutions for L(Σ ∪ {υ}).
The family Fh = {s ∈ F : EL(s) ⊆ F} ∪ {∅} is the largest subfamily of F ∪ {∅} which

is hereditary.

The following theorem extends Theorem 3.5 in case the partition family is a tree.
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Theorem 4.13. Let Σ be a finite alphabet, υ /∈ Σ, E(Σ) a set of substitutions for

L(Σ ∪ {υ}), F ⊆ L<∞(Σ; υ) a tree of finite orderly sequences of variable located words

over Σ, and ~w ∈ L∞(Σ; υ) an infinite orderely sequence of variable located words over Σ.

Then we have the following cases:

[Case 1] The family Fh ∩ EL<∞(~w) is not pointwise closed.

Then, there exists ~u ≺ ~w such that EL<∞(~u) ⊆ F .

[Case 2] The family Fh ∩ EL<∞(~w) is pointwise closed.

Then, setting ζF~w = sup{sO~u(Fh) : ~u ≺ ~w}, which is a countable ordinal, the following

subcases obtain:

2(i) If ξ + 1 < ζF~w , then there exists ~u ≺ ~w such that

Lξ(Σ; υ) ∩ EL<∞(~u) ⊆ F ;

2(ii) if ξ + 1 > ξ > ζF~w , then for every ~w1 ≺ ~w there exists ~u ≺ ~w1 such that

Lξ(Σ; υ) ∩ EL<∞(~u) ⊆ L<∞(Σ; υ) \ F ;

(equivalently F ∩ EL<∞(~u) ⊆ (Lξ(Σ; υ))∗ \ Lξ(Σ; υ)) ; and

2(iii) if ξ + 1 = ζF~w or ξ = ζF~w , then there exists ~u ≺ ~w such that

either Lξ(Σ; υ) ∩ EL<∞(~u) ⊆ F or Lξ(Σ; υ) ∩ EL<∞(~u) ⊆ L<∞(Σ; υ) \ F .

Proof. [Case 1] If the hereditary family Fh ∩ EL<∞(~w) is not pointwise closed, then,

there exists ~u ∈ L∞(Σ; υ) such that EL<∞(~u) ⊆ Fh ∩ EL<∞(~w) ⊆ F , according to

Proposition 4.7. Of course, ~u ≺ ~w.

[Case 2] If the hereditary family Fh ∩ EL<∞(~w) is pointwise closed, then ζF~w is a count-

able ordinal, since the “usual” Cantor-Bendixson index O(Fh) of Fh into {0, 1}[D]<ω is

countable (Remark 4.9(i)) and also sO~u(Fh) ≤ O(Fh) for every ~u ≺ ~w.

2(i) Let ξ + 1 < ζF~w . Then there exists ~u1 ≺ ~w such that ξ + 1 < sO~u1(Fh). According

to Theorem 3.5 and Proposition 4.5, there exists ~u ≺ ~u1 such that

either Lξ(Σ; υ) ∩ EL<∞(~u) ⊆ Fh ⊆ F ,

or Fh ∩ EL<∞(~u) ⊆ (Lξ(Σ; υ))∗ \ Lξ(Σ; υ) ⊆ (Lξ(Σ; υ))∗ ⊆ (Lξ(Σ; υ))∗.

The second alternative is impossible. Indeed, if Fh ∩ EL<∞(~u) ⊆ (Lξ(Σ; υ))∗, then,

according to Remark 4.9 and Proposition 4.10,

sO~u1(Fh) ≤ sO~u(Fh) = sO~u(Fh ∩ EL<∞(~u)) ≤ sO~u((L
ξ(Σ; υ))∗) = ξ + 1;

a contradiction. Hence, Lξ(Σ; υ) ∩ EL<∞(~u) ⊆ F .

2(ii) Let ξ + 1 > ξ > ζF~w and ~w1 ≺ ~w. According to Theorem 3.5, there exists ~u1 ≺ ~w1

such that
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either Lζ
F
~w (Σ; υ) ∩ EL<∞(~u1) ⊆ Fh, or Lζ

F
~w (Σ; υ) ∩ EL<∞( ~u1) ⊆ L<∞(Σ; υ) \ Fh.

The first alternative is impossible. Indeed, if Lζ
F
~w (Σ; υ)∩EL<∞(~u1) ⊆ Fh, then, according

to Remark 4.9 and Proposition 4.10, we have that

ζF~w + 1 = sO~u1((L
ζF~w (Σ; υ) ∩ EL<∞(~u1))∗) ≤ sO~u1(Fh) ≤ ζF~w ;

a contradiction. Hence,

(1) Lζ
F
~w (Σ; υ) ∩ EL<∞(~u1) ⊆ L<∞(Σ; υ) \ Fh .

According to Theorem 3.5, there exists ~u ≺ ~u1 such that

either Lξ(Σ; υ) ∩ EL<∞(~u) ⊆ F , or Lξ(Σ; υ) ∩ EL<ω(~u) ⊆ L<∞(Σ; υ) \ F .

We claim that the first alternative does not hold. Indeed, if Lξ(Σ; υ)∩EL<∞(~u) ⊆ F , then

(Lξ(Σ; υ) ∩ EL<∞(~u))∗ ⊆ F∗ = F . Using the canonical representation of every infinite

orderly sequence of variable located words with respect to Lξ(Σ; υ) (Proposition 4.3) it

is easy to check that

(Lξ(Σ; υ))∗ ∩ EL<∞(~u) = (Lξ(Σ; υ) ∩ EL<∞(~u))∗ .

Hence, (Lξ(Σ; υ))∗ ∩ EL<∞(~u) ⊆ F .

Since ξ > ζF~w , according to Corollary 4.11, there exists ~t ≺ ~u such that

(Lζ
F
~w (Σ; υ))∗ ∩ EL<∞(~t) ⊆ (Lξ(Σ; υ))∗ ∩ EL<∞(~u) ⊆ F .

So, (Lζ
F
~w (Σ; υ))∗ ∩ EL<∞(~t) ⊆ Fh. This is a contradiction to the relation (1). Hence,

Lξ(Σ; υ) ∩ EL<∞(~u) ⊆ L<∞(Σ; υ) \ F and F ∩ EL<∞(~u) ⊆ (Lξ(Σ; υ))∗ \ Lξ(Σ; υ).

2(iii) In the cases ζF~w = ξ + 1 or ζF~w = ξ, we use Theorem 3.5. �

The following immediate corollary to Theorem 4.13 is more useful for applications.

Corollary 4.14. Let F ⊆ L<ω(Σ; υ) which is a tree, E(Σ) a set of substitutions for

L(Σ ∪ {υ}), and let ~w ∈ L∞(Σ; υ). Then

(i) either there exists ~u ≺ ~w such that EL<∞(~u) ⊆ F ,

(ii) or for every countable ordinal ξ > ζF~w there exists ~u ≺ ~w1, such that for every

~u1 ≺ ~u the unique initial segment of ~u1 which is an element of Lξ(Σ; υ) belongs

to L<∞(Σ; υ) \ F .

Theorem 4.13 implies the following theorem, which provides us with a partition theo-

rem for infinite orderly sequences of variable located words for each set of substitutions.

Theorem 4.15 (Partition theorem for infinite orderly sequences of located words). Let Σ

be a finite alphabet, υ /∈ Σ, E(Σ) a set of substitutions for L(Σ ∪ {υ}). If U ⊆ L∞(Σ; υ)

is a pointwise closed family of infinite orderly sequences of variable located words and

~w ∈ L∞(Σ; υ), then there exists ~u ≺ ~w such that
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either EL∞(~u) ⊆ U , or EL∞(~u) ⊆ L∞(Σ; υ) \ U .

Proof. Let FU = {s ∈ L<∞(Σ; υ): there exists ~s ∈ U such that s ∝ ~s}. Since the family

FU is a tree, we can use Corollary 4.14. We have the following two cases:

[Case 1] There exists ~u ≺ ~w such that EL<∞(~u) ⊆ FU . Then, EL∞(~u) ⊆ U . Indeed, if

~s = (sn)n∈N ∈ EL∞(~u), then (s1, . . . , sn) ∈ FU for every n ∈ N. Hence, for each n ∈ N
there exists ~sn ∈ U such that (s1, . . . , sn) ∝ ~sn. Since U is pointwise closed, we have that

~s ∈ U and consequently that EL∞(~u) ⊆ U .

[Case 2] There exists ~u ≺ ~w such that for every ~u1 ≺ ~u there exists an initial segment of

~u1 which belongs to L<∞(Σ; υ) \ FU . Hence, EL∞(~s) ⊆ L∞(Σ; υ) \ U . �

Theorem 4.15 for the traditional mode of substitution, proved by a different approach

by Bergelson, Blass and Hindman in [BBH] (Theorem 6.1), while Theorem 4.15 in the

particular case where Σ = ∅ proved by an analogous approach in [FN] (Corollary 4.10).

5. The characterization of Ramsey partitions of the set of infinite

sequences of variable located words

As a consequence of Theorem 4.13 we will state and prove, in Theorem 5.2 below, a

stronger partition theorem than Theorem 4.15 for infinite orderly sequences of variable

located words over a finite alphabet according to a given set of substitutions, involving an

Ellentuck topology TE on the space Lω(Σ; υ) depended of the given set of substitutions.

A simple consequence of Theorem 5.2 (together with Corollary 5.5) is the character-

ization of completely Ramsey partitions of Lω(Σ; υ) for a given set of substitutions in

terms of the Baire property in the relating topology TE.

We define below the topology TE on Lω(Σ; υ) for a given set of substitutions for

L(Σ ∪ {υ}), an analogue of the Ellentuck topology on N defined in [E].

Definition 5.1. Let Σ be a finite alphabet, υ /∈ Σ and E(Σ) a set of substitutions for

L(Σ∪{υ}). We define the topology TE on Lω(Σ; υ) as the topology with basic open sets

of the form:

[s, ~s] = {~t ∈ Lω(Σ; υ) : s ∝ ~t and ~t− s ≺ ~s} ,

where s ∈ L<ω(Σ; υ) and ~s ∈ Lω(Σ; υ).

The topology TE is stronger than the relative topology of Lω(Σ; υ) with respect to

the pointwise convergence topology of {0, 1}[D]<ω , which has basic open sets of the form

[s, ~e] = {~t ∈ Lω(Σ; υ) : s ∝ ~t} where ~e = (en)n∈N with en = υ for every n ∈ N.
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We denote by Û and U♦ the closure and the interior respectively of a family U ⊆
Lω(Σ; υ) in the topology TE. Then it is easy to see that

Û = {~s ∈ Lω(Σ; υ) : [s, ~s] ∩ U 6= ∅ for every s ∝ ~s} ; and

U♦ = {~s ∈ Lω(Σ; υ) : there exists s ∝ ~s such that [s, ~s] ⊆ U} .

If s = (s1, . . . , sk) ∈ L<ω(Σ; υ) and t = (t1, . . . , tl) ∈ L<ω(Σ; υ) with sk < t1, then we

set s� t = (s1, . . . , sk, t1, . . . , tk) ∈ L<ω(Σ; υ).

Theorem 5.2. Let Σ be a finite alphabet, υ /∈ Σ, E(Σ) a set of substitutions for L(Σ ∪
{υ}), U ⊆ Lω(Σ; υ), s ∈ L<ω(Σ; υ) and ~w ∈ Lω(Σ; υ). Then

either there exists ~u ≺ ~w such that [s, ~u] ⊆ Û ,

or there exists a countable ordinal ξ0 = ζU(s, ~w) such that for every ξ > ξ0 there

exists ~u ≺ ~w − s with [s� t, ~u] ⊆ Lω(Σ; υ) \ U for every t ∈ Lξ(Σ; υ) ∩EL<ω(~u).

We will give the proof after the following lemma which is analogous to Lemma 3.6.

Lemma 5.3. Let Σ be a finite alphabet, υ /∈ Σ, E(Σ) a set of substitutions for L(Σ∪{υ}),

R ⊆ {[s, ~s] : s ∈ L<ω(Σ; υ) and ~s ∈ Lω(Σ; υ)} with the properties:

(i) for every (s, ~s) ∈ L<ω(Σ; υ)×Lω(Σ; υ) there exists ~s1 ≺ ~s such that [s, ~s1] ∈ R; and

(ii) for every [s, ~s] ∈ R and ~s1 ≺ ~s we have [s, ~s1] ∈ R.

Then, for every (s, ~w) ∈ L<ω(Σ; υ)×Lω(Σ; υ) there exists ~u ∈ [s, ~w] such that [s�t,~t] ∈ R
for every t ∈ EL<ω(~u− s) and ~t ≺ ~u− s.

Proof. Let s = (s1, . . . , sk) ∈ L<ω(Σ; υ) and ~w ∈ Lω(Σ; υ). We can assume that ~w−s = ~w.

According to the assumption (i), there exists ~s1 ≺ ~w such that [s, ~s1] ∈ R. Assume that

~sn ≺ · · · ≺ ~s1 ∈ Lω(Σ; υ) have been constructed and ~sn = (sni )i∈N for every n ∈ N.

Set {t1, . . . , tr} = V EL<ω((s1
1, . . . , s

n
n)). According to (i), there exist ~s1

n+1 ≺ ~sn − snn
such that [s � t1, ~s

1
n+1] ∈ R, ~s2

n+1 ≺ ~s1
n+1 such that [s � t2, ~s

2
n+1] ∈ R, and finally

~srn+1 ≺ ~sr−1
n+1 ≺ ~sn − snn such that [s� tr, ~s

r
n+1] ∈ R. Set ~sn+1 = ~srn+1 = (sn+1

i )i∈N. Then,

according to (ii), [s� ti, ~sn+1] ∈ R for every 1 ≤ i ≤ r.

Set ~u = (s1, . . . , sk, s
1
1, s

2
2, . . .) ∈ Lω(Σ; υ). Then ~u ∈ [s, ~w]. Let t ∈ EL<ω(~u− s) with

t 6= ∅. If n0 = min{n ∈ N : t ∈ V EL<ω((s1
1, . . . , s

n
n))}, then [s� t, ~sn0+1] ∈ R. According

to assumption (ii), [s� t, ~u− sn0
n0

] ∈ R. Hence, [s� t, ~u] = [s� t, ~u− sn0
n0

] ∈ R. If t = ∅,
then [s, ~s1] ∈ R, hence [s, ~u] ∈ R. �
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Proof of Theorem 5.2. Let U ⊆ Lω(Σ; υ), s ∈ L<ω(Σ; υ) and ~w ∈ Lω(Σ; υ). Set

RU ={[s, ~s] : (s, ~s) ∈ L<ω(Σ; υ)× Lω(Σ; υ) and

either [s, ~s] ∩ U = ∅ or [s, ~s1] ∩ U 6= ∅ for every ~s1 ≺ ~s} .

It is easy to check that RU satisfies the assumptions (i) and (ii) of Lemma 5.3, hence,

there exists ~w1 ∈ [s, ~w] such that [s� t, ~w1] ∈ RU for every t ∈ EL<ω(~w1 − s). Set

F = {t ∈ EL<ω(~w1 − s) : [s� t, ~w2] ∩ U 6= ∅ for every ~w2 ≺ ~w1} .

The family F is a tree. Indeed, let t ∈ F and t1 ∝ t. Then [s � t1, ~w1] ∈ RU ,

since t1 ∈ EL<ω(~w1 − s). So either [s � t1, ~w1] ∩ U = ∅ which is impossible, since

[s� t, ~w1] ∩ U 6= ∅, or [s� t1, ~w2] ∩ U 6= ∅ for every ~w2 ≺ ~w1. Hence, t1 ∈ F .

We use Theorem 4.13 for F and ~w1 − s. We have the following cases:

[Case 1] There exists ~u ≺ ~w1 − s ≺ ~w such that EL<ω(~u) ⊆ F . This gives that

[s� t, ~u1] ∩ U 6= ∅ for every t ∈ EL<ω(~u) and ~u1 ≺ ~u, which implies that [s, ~u] ⊆ Û .

[Case 2] There exists a countable ordinal ξ0 = ζU(s, ~w) such that for every ξ > ξ0 there exists

~u ≺ ~w1−s ≺ ~w−s with Lξ(Σ; υ)∩EL<ω(~u) ⊆ L<ω(Σ; υ)\F . Then [s∗t, ~u] ⊆ Lω(Σ; υ)\U
for every t ∈ Lξ(Σ; υ) ∩ EL<ω(~u). �

Applying Theorem 5.2 to partitions U of Lω(Σ; υ) that are closed or meager in a

topology TE relating to a set of substitutions for L(Σ ∪ {υ}), we consider the following

consequences.

Corollary 5.4. Let Σ be a finite alphabet, υ /∈ Σ, E(Σ) a set of substitutions for L(Σ ∪
{υ}), U be a closed, in the relating topology TE, subset of Lω(Σ; υ), s ∈ L<ω(Σ; υ) and

~w ∈ Lω(Σ; υ). Then

either there exists ~u ≺ ~w such that [s, ~u] ⊆ U ,

or there exists a countable ordinal ξ0 = ζU(s, ~w), such that for every ξ > ξ0 there exists

~u ≺ ~w − s such that [s� t, ~u] ⊆ Lω(Σ; υ) \ U for every t ∈ Lξ(Σ; υ) ∩ EL<ω(~u).

Corollary 5.5. Let Σ be a finite alphabet, υ /∈ Σ, E(Σ) a set of substitutions for L(Σ ∪
{υ}), U be a subset of Lω(Σ; υ) meager in the relating topology TE, s ∈ L<ω(Σ; υ) and

~w ∈ Lω(Σ; υ). Then, there exists a countable ordinal ξ0 such that for every ξ > ξ0 there

exists ~u ≺ ~w − s such that [s� t, ~u] ⊆ Lω(Σ; υ) \ U for every t ∈ Lξ(Σ; υ) ∩ V EL<ω(~u).

Proof. We use Theorem 5.2 for U . We will prove that the first alternative is impossible.

Indeed, let ~u ≺ ~w such that [s, ~u] ⊆ U . If U =
⋃
n∈N Un with (Ûn)♦ = ∅ for every n ∈ N,
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then we set

R ={[t,~t] : t ∈ L<ω(Σ; υ), ~t ∈ Lω(Σ; υ) and

[t,~t] ∩ Uk = ∅ for every k ∈ N with k ≤ |t|} ;

where |t| denotes the cardinality of the set σ(t).

The family R satisfies the conditions (i) and (ii) of Lemma 5.3. Indeed, according to

Theorem 5.2, for every t ∈ L<ω(Σ; υ), ~t ∈ Lω(Σ; υ) and k ∈ N there exists ~t1 ≺ ~t such that

[t,~t1]∩Uk = ∅, as it is impossible [t,~t1] ⊆ Ûk. Thus R satisfies (i) and obviously satisfies

(ii). Hence, there exists ~u1 ∈ [s, ~u] such that [s� t, ~u1] ∈ R for every t ∈ EL<ω(~u1 − s).

Then, [s, ~u1]∩U = ∅. Indeed, let ~u2 ∈ [s, ~u1]∩U . Then, ~u2 ∈ [s, ~u1]∩Uk for some k ∈ N.

Hence, there exists t ∈ EL<ω(~u1− s) with s � t ∝ ~u2, k ≤ |s� t| and [s� t, ~u1]∩Uk 6= ∅.
Then, [s� t, ~u1] /∈ R. A contradiction, since t ∈ EL<ω(~u1− s). Thus, [s, ~u1]∩U = ∅ and

consequently ~u1 /∈ Û . But ~u1 ∈ [s, ~u] ⊆ Û , a contradiction. Hence, the second alternative

of Theorem 5.2 holds for U . �

Definition 5.6. Let Σ be a finite alphabet, υ /∈ Σ, E(Σ) a set of substitutions for

L(Σ∪{υ}). A family U ⊆ Lω(Σ; υ) of infinite orderly sequences of variable located words

is called completely Ramsey for E(Σ) if for every s ∈ L<ω(Σ; υ) and every ~w ∈ Lω(Σ; υ)

there exists ~u ≺ ~w such that

either [s, ~u] ⊆ U or [s, ~u] ⊆ Lω(Σ; υ) \ U .

A further consequence of Theorem 5.2 is the characterization of completely Ramsey

families of infinite orderly sequences of variable located words for a given set of substi-

tutions.

Corollary 5.7. Let Σ be a finite alphabet, υ /∈ Σ, E(Σ) a set of substitutions for L(Σ ∪
{υ}). A family U ⊆ Lω(Σ; υ) is completely Ramsey for E(Σ) if and only if U has the

Baire property in the relating to E(Σ) topology TE.

Proof. Let U ⊆ Lω(Σ; υ) have the Baire property in the topology TE. Then U = B4C =

(B ∪ Cc) ∪ (C ∩ Bc), where B ⊆ Lω(Σ; υ) is TE-closed and C ⊆ Lω(Σ; υ) is TE-meager

(Cc = Lω(Σ; υ)\C). Let s ∈ L<ω(Σ; υ) and ~w ∈ Lω(Σ; υ). According to Corollary 5.4 and

Proposition 4.3, there exists ~u1 ≺ ~w such that [s, ~u1] ⊆ Cc and according to Corollary 5.5

there exists ~u ≺ ~u1 such that

either [s, ~u] ⊆ B ∩ [s, ~u1] ⊆ B ∩ Cc ⊆ U or [s, ~u] ⊆ Bc ∩ [s, ~u1] ⊆ Bc ∩ Cc ⊆ U c.
Hence, U is completely Ramsey for E(Σ).
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On the other hand, if U is completely Ramsey for E(Σ), then U = U♦ ∪ (U \ U♦) and

U \ U♦ is a meager set in TE. Hence U has the Baire property in the topology TE. �
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