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RAMSEY THEORY FOR WORDS OVER AN INFINITE ALPHABET

VASSILIKI FARMAKI

Abstract. A complete partition theory is presented for ω-located words (and ω-
words), namely for located words w = wn1

. . . wnl
, over an infinite alphabet Σ =

{α1, α2, . . .}, such that wni
∈ {α1, α2, . . . , αkni

} for every 1 ≤ i ≤ l, where ~k =

(kn)n∈N ∈ N
N is a fixed increasing sequence. This theory strengthens in an essen-

tial way the classical Carlson, Furstenberg-Katznelson, and Bergelson-Blass-Hindman
partition Ramsey theory for words over a finite alphabet. Consequences of this theory
are strong simultaneous extensions of the classical Hindman, Milliken-Taylor partition
theorems, and of a van der Waerden theorem for general semigroups, extending results
of Hindman-Strauss and Beiglböck.

Introduction

The concept of a word over a finite alphabet was introduced in Ramsey theory by

Hales-Jewett [HaJ], providing a purely combinatorial proof of van der Waerden’s theorem

[vdW] on the existence of arbitralily long arithmetic progressions in one of the cells of

any partition of the positive integers. Subsequently, words over a finite alphabet, in the

work of Carlson [C] and Furstenberg-Katznelson [FuK], proved an essential tool for the

unification of the two branches of Ramsey theory, the one involving Ramsey’s classical

theorem [R] and Nash-Williams type partition theorem [NW], and its extensions by

Hindman [H] and Milliken [M]-Taylor [T], the other the van der Waerden and the Hales-

Jewett theorems, just mentioned. These tools were extended and strengthened, with the

systematic introduction of Schreier sets, in [FN1], [FN2].

The concept of a located word over a finite alphabet Σ introduced formally by Bergelson-

Blass-Hindman in [BBH] as a function from a finite subset of the set N of natural numbers,

the support and location of the word, into the alphabet Σ. They established a parti-

tion theorem for located words over a finite alphabet and also a Ramsey type and a

Nash-Williams type partition theorem for located words over a finite alphabet.

In all these results, the alphabet Σ under consideration is always assumed to be finite.

It is clear that these combinatorial results do not generally hold if Σ is assumed to be
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infinite, since e.g. it is generally impossible to find a monochromatic infinite arithmetic

progression for every finite coloring of the set of natural numbers. However, it might still

be possible to relax the strict finiteness condition for the alphabet.

In the present work we introduce a relaxation as follows: we start with an infinite

alphabet Σ = {α1, α2, . . .}, ordered according to the natural numbers, and a sequence
~k = (kn)n∈N of positive integers, the dominating sequence, and we define an ω-located

word over Σ dominated by ~k to be a located word w = wn1
. . . wnl

over Σ such that in

addition wni
∈ {α1, α2, . . . , αkni

} for every 1 ≤ i ≤ l. Similarly a word w = w1 . . . wl

over Σ is an ω-word over Σ dominated by ~k if wi ∈ {α1, α2, . . . , αki
} for every 1 ≤ i ≤ l.

Thus words and located words are ω-words and ω-located words, in case the dominating

sequence (kn)n∈N is a constant sequence.

It turns out that the whole of infinitary Ramsey theory can be obtained for an infinite

alphabet under the condition of functional domination. We thus obtain:

(a) Partition theorems for ω-located words over an infinite countable alphabet (in

Theorems 1.1, 1.4, Corollary 1.3), as well as partition theorems for (unlocated) ω-words

(in Theorem 1.5) providing proper extensions of Bergelson-Blass-Hindman’s partition

theorem (Theorem 4.1 in [BBH]) for located words over a finite alphabet and Carl-

son’s partition theorem for words over a finite alphabet (Lemma 5.9 in [C]) respectively.

As consequences of these theorems, we prove partition theorems for semigroups (Corol-

lary 1.6), including the results of Hindman and Strauss in [HS] (Theorems 14.12, 14.15),

which are simultaneous extensions of the Hindman [H] and the van der Waerden [vdW]

partition theorems.

(b) Extended Ramsey type partition theorems for each countable ordinal ξ for variable

and constant ω-located words (in Theorems 2.5 and 2.8), involving the ξ-Schreier se-

quences of ω-located words, which results imply an ordinal extension of Bergelson-Blass-

Hindman’s Ramsey type partition theorem for words over a finite alphabet (Theorem

5.1 in [BBH]), corresponding to the case of finite ordinals, and strengthen Furstenberg-

Katznelson’s Ramsey type partition theorem (Theorems 2.7 and 3.1 in [FuK]) for words

over a finite alphabet (Theorem 2.13). Furthermore consequences of Theorem 2.5 are mul-

tidimentional partition theorems for semigroups corresponding to each countable order

ξ (Corollaries 2.10, 2.12) providing strong simultaneous extension of the block-Ramsey

partition theorem for every countable ordinal, proved in [FN1], and van der Waerden’s

theorem in [vdW] and extending the partition theorem of Beiglböck in [Be] for commu-

tative semmigroups, corresponding to the case of finite ordinals.
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(c) A partition theorem for infinite orderly sequences of variable ω-located words (The-

orem 3.14), which can be said to be a Nash-Williams type partition theorem for variable

ω-located words, strengthening and extending the partition theorem for infinite sequences

of variable located words over a finite alphabet proved in [BBH](Theorem 6.1) and also

Carlson’s partition theorem (Theorem 2 in [C]) for infinite sequences of variable words

over a finite alphabet. As a consequence of Theorem 3.14 we prove, in Theorems 3.18

and 3.19, partition theorems for infinite sequences in a commutative and in a noncommu-

tative semigroup, respectively which are strong simultaneous extensions of the infinitary

partition theorem of Milliken [M], Taylor [T] and van der Waerden [vdW] applied to semi-

groups. In order to state Theorem 3.18 below, let N = {1, 2, . . .} be the set of positive

integers and for a sequence (xn)n∈N in a semigroup (X, +) let

FS
(

(xn)n∈N

)

= {xn1
+ . . . + xnλ

: λ ∈ N, n1 < · · · < nλ ∈ N}, and
[

FS
(

(xn)n∈N

)]ω
= {(yn)n∈N : yn ∈ FS

(

(xn)n∈N

)

and yn < yn+1 for every n ∈ N}.

For y = xn1
+ . . . + xnλ

, z = xm1
+ . . . + xmν ∈ FS

(

(xn)n∈N

)

we write y < z if nλ < m1.

Theorem 3.18. Let (X, +) be a commutative semigroup, ~k = (kn)n∈N ⊆ N an increasing

sequence and (yl,n)n∈N for every l ∈ N, sequences in X. If U ⊆ XN is a pointwise

closed family of XN, then there exist sequences (En)n∈N and (Hn)n∈N of non-empty finite

subsets of N satisfying max En < min En+1, Hn ⊆ En for every n ∈ N and a sequence

(βn)n∈N ⊆ X, where βn =
∑

j∈En\Hn
ylnj ,j for 1 ≤ lnj ≤ kj, such that for every function

f : N → N with f(n) ≤ kn for every n ∈ N

either
[

FS
(

(βn +
∑

t∈Hn
yf(n),t)n∈N

)]ω
⊆ U , or

[

FS
(

(βn +
∑

t∈Hn
yf(n),t)n∈N

)]ω
⊆ XN \U .

(d) An Ellentuck type characterization of completely Ramsey partitions of the set of

infinite orderly sequences of ω-located words (in Theorem 4.7).

The essentially stroger nature of this Ramsey theory for functionally dominated words

over an infinite alphabet developed in this paper makes it reasonable to expect that will

find substantial applications in Ramsey ergodic theory and in various other branches of

mathematics.

1. Partition theorems for ω-located words

The purpose of this section is to prove a partition theorem for ω-located words over

an infinite countable alphabet Σ = {α1, α2, . . .}, dominated by a sequence ~k = (kn)n∈N

(Theorems 1.1, 1.4, Corollary 1.3) as well as a partition theorem for unlocated ω-words
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over the alphabet Σ dominated by the sequence ~k (Theorem 1.5) providing proper ex-

tensions of Bergelson-Blass-Hindman’s partition theorem (Theorem 4.1 in [BBH]) for

located words over a finite alphabet and of Carlson’s partition theorem (Lemma 5.9 in

[C]) for unlocated words over a finite alphabet respectively. Consequences of this theory

are strong simultaneous extentions of the partition theorems of Hindman [H] and van

der Waerden [vdW] for general semigroups, including the partition theorems of Hindman

and Strauss in [HS] (Theorems 14.12, 14.15).

Let Σ = {α1, α2, . . .} be an infinite countable alphabet, ordered according to the

natural numbers, and let ~k = (kn)n∈N ⊆ N be a sequence of natural numbers. An ω-

located word over Σ dominated by ~k is a function w from a non-empty, finite subset F

of N into the alphabet Σ such that w(n) = wn ∈ {α1, α2, . . . , αkn} for every n ∈ F . So,

the set L(Σ, ~k) of all (constant) ω-located words over Σ dominated by ~k is:

L(Σ, ~k) = {w = wn1
. . . wnl

: l ∈ N, n1 < · · · < nl ∈ N and wni
∈ {α1, α2, . . . , αkni

}

for every 1 ≤ i ≤ l},

where the set dom(w) = {n1, . . . , nl} is the domain of the ω-located word w = wn1
. . . wnl

.

Let υ /∈ Σ be an entity which is called a variable. The set L(Σ, ~k; υ) of all the variable

ω-located word over Σ dominated by ~k is:

L(Σ, ~k; υ) = {w = wn1
. . . wnl

: l ∈ N, n1 < · · · < nl ∈ N, wni
∈ {υ, α1, α2, . . . , αkni

}

for every 1 ≤ i ≤ l and there exists 1 ≤ i ≤ l with wni
= υ}.

We set L(Σ ∪ {υ}, ~k) = L(Σ, ~k) ∪ L(Σ, ~k; υ).

We endow the set L(Σ ∪ {υ}, ~k) with a relation defining for w, u ∈ L(Σ ∪ {υ}, ~k)

w < u ⇔ max dom(w) < min dom(u).

For w = wn1
. . . wnr , u = um1

. . . uml
∈ L(Σ ∪ {υ}, ~k) with w < u we define the concate-

nating word w ⋆ u = wn1
. . . wnrum1

. . . uml
∈ L(Σ ∪ {υ}, ~k).

We will define now for every p ∈ N ∪ {0} the functions

Tp : L(Σ ∪ {υ}, ~k) −→ L(Σ ∪ {υ}, ~k).

Let w = wn1
. . . wnl

∈ L(Σ ∪ {υ}, ~k). We set T0(w) = w and for p ∈ N we set Tp(w) =

un1
. . . unl

, where, for 1 ≤ i ≤ l, we define uni
= wni

if wni
∈ Σ, uni

= αp if wni
= υ and

kni
≥ p and finally uni

= αkni
if wni

= υ and kni
< p.

We remark that for every p ∈ N ∪ {0} and w = wn1
. . . wnl

∈ L(Σ ∪ {υ}, ~k) we have

dom(Tp(w)) = dom(w), Tp(w) = w if w ∈ L(Σ, ~k) and Tp(w) = Tpw(w) if w ∈ L(Σ, ~k; υ)

and p ≥ pw = knw , where nw = max{ni : 1 ≤ i ≤ l, wni
= υ}. Also, Tp(w ⋆ u) =
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Tp(w) ⋆ Tp(u) for w, u ∈ L(Σ ∪ {υ}, ~k) with w < u and Tp(L(Σ ∪ {υ}, ~k)) = L(Σ, ~k) for

every p ∈ N.

With the previous terminology we can state the partition theorem for ω-located words.

Theorem 1.1 (Partition theorem for ω-located words). Let Σ = {α1, α2, . . .} be an infinite

countable alphabet, υ /∈ Σ a variable, ~k = (kn)n∈N ⊆ N and r, s ∈ N. If L(Σ, ~k; υ) =

A1∪· · ·∪Ar and L(Σ, ~k) = C1∪· · ·∪Cs, then there exist a sequence (wn)n∈N ⊆ L(Σ, ~k; υ)

with wn < wn+1 for every n ∈ N and 1 ≤ i0 ≤ r, 1 ≤ j0 ≤ s such that

Tp1
(wn1

) ⋆ . . . ⋆ Tpλ
(wnλ

) ∈ Ai0,

for every λ ∈ N, n1 < · · · < nλ ∈ N, p1, . . . , pλ ∈ N ∪ {0} such that 0 ≤ pi ≤ kni
for

every 1 ≤ i ≤ λ and 0 ∈ {p1, . . . , pλ}; and

Tp1
(wn1

) ⋆ . . . ⋆ Tpλ
(wnλ

) ∈ Cj0,

for every λ ∈ N, n1 < · · · < nλ ∈ N and p1, . . . , pλ ∈ N such that 1 ≤ pi ≤ kni
for every

1 ≤ i ≤ λ.

In the proof of Theorem 1.1 we will apply some results of the theory of left compact

semigroups, which we mention below.

Left compact semigroups. A non-empty, left compact semigroup is a semigroup (X, +),

X 6= ∅ endowed with a topology T such that (X, T) is a compact Hausdorff space and

the maps fy : X −→ X with fy(x) = x + y for x ∈ X are continuous for every y ∈ X.

Let (X, +) be a semigroup. An element x of X is called idempotent of (X, +) if

x+x = x. According to a fundamental result due to Ellis, every non-empty, left compact

semigroup contains an idempotent. On the set of all idempotents of (X, +) is defined a

partial order ≤ by the rule

x1 ≤ x2 ⇐⇒ x1 + x2 = x2 + x1 = x1.

An idempotent x of (X, +) is called minimal for X if every idempotent x1 of X satisfing

the relation x1 ≤ x is equal to x. According to [FuK], for every idempotent x of a

non-empty, left compact semigroup (X, +) there exists an idempotent x1 of X which is

minimal for X and x1 ≤ x. Also, every two-sided ideal of X contains all the minimal for

X idempotents of X (a subset I of X is called two-sided ideal of (X, +) if X + I ⊆ I and

I + X ⊆ I).

Ultrafilters. Let X be a non-empty set. An ultrafilter on the set X is a zero-one finite

additive measure µ defined on all subsets of X. The set of all ultrafilters on the set X is

denoted by βX. So, µ ∈ βX if and only if
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(i) µ(A) ∈ {0, 1} for every A ⊆ X, µ(X) = 1, and

(ii) µ(A ∪ B) = µ(A) + µ(B) for every A, B ⊆ X with A ∩ B = ∅.

For every x ∈ X is defined the ultrafilter µx on X corresponding a set A ⊆ X to

µx(A) = 1 if x ∈ A and µx(A) = 0 if x /∈ A. The ultrafilters µx for x ∈ X are called

principal ultrafilters on X. So, µ is a non-principal ultrafilter on X if and only if µ(A) = 0

for every finite subset A of X. It is easy to see that for µ ∈ βX and A ⊆ X with µ(A) = 1

we have µ(X \ A) = 0, µ(B) = 1 for every B ⊆ X with A ⊆ B and µ(A ∩ B) = 1 for

every B ⊆ X with µ(B) = 1.

The set βX becomes a compact Hausdorff space if it be endowed with the topology T

which has basis the family {A∗ : A ⊆ X}, where A∗ = {µ ∈ βX : µ(A) = 1}. It is easy

to see that (A ∩ B)∗ = A∗ ∩ B∗, (A ∪ B)∗ = A∗ ∪ B∗ and (X \ A)∗ = βX \ A∗ for every

A, B ⊆ X. We always consider the set βX endowed with the topology T.

Let a function T : X −→ Y . Then the function

βT : βX −→ βY with βT (µ)(B) = µ(T−1(B)) for µ ∈ βX and B ⊆ Y

is always continuous.

If (X, +) is a semigroup, then a binary operation + is defined on βX corresponding to

every µ1, µ2 ∈ βX the ultrafilter µ1 + µ2 ∈ βX given by

(µ1 + µ2)(A) = µ1({x ∈ X : µ2({y ∈ X : x + y ∈ A}) = 1}) for every A ⊆ X.

With this operation the set βX becomes a semigroup and for every µ ∈ βX the function

fµ : βX −→ βX with fµ(µ1) = µ1 + µ is continuous.

Hence, if (X, +) is a semigroup, then (βX, +) becomes a left compact semigroup.

Proof of Theorem 1.1. Let X = L(Σ ∪ {υ}, ~k), Y = L(Σ, ~k) and Z = L(Σ, ~k; υ). We

endow the set X with an operation + defining for w = wn1
. . . wnr , u = um1

. . . uml
∈ X

w + u = zq1
. . . zqs ∈ X,

where {q1, . . . , qs} = {n1, . . . , nr} ∪ {m1, . . . , ml} with q1 < . . . < qs and, for 1 ≤ i ≤ s,

zqi
= wqi

if qi /∈ {m1, . . . , ml}, zqi
= uqi

if qi /∈ {n1, . . . , nr} and if qi ∈ {n1, . . . , nr} ∩

{m1, . . . , ml}, then zqi
= αmax{µ,ν} in case wqi

= αµ and uqi
= αν , and zqi

= υ in case

either wqi
= υ or wqi

= υ.

Observe that (X, +) is a semigroup and (Y, +), (Z, +) are subsemigroups of (X, +). Also,

w + u = w ⋆ u if w, u ∈ X and w < u.

Since (X, +) is a semigroup, (βX, +) has the structure of a left compact semigroup as

described above. For every A ⊆ X and w ∈ X we set
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Aw = {u ∈ A : w < u} and

θA =
⋂

{(Aw)∗ : w ∈ X},

where (Aw)∗ = {µ ∈ βX : µ(Aw) = 1}.

Claim 1 Let A be a non-empty subset of X satisfing

(i) w ⋆ u ∈ A for every w, u ∈ A with w < u and

(ii) for every n ∈ N there exists u ∈ A with n < min dom(u).

Then θA ⊆ A∗ is a non-empty left compact subsemigroup of βX and all the elements of

θA are non-principal ultrafilters on X.

Indeed, for every w ∈ X the set (Aw)∗ = βX \ (X \ Aw)∗ is a compact subset of βX ,

so θA is a compact subset of βX. The set A satisfies property (ii), so for every w ∈ X,

we have Aw 6= ∅ and consequently (Aw)∗ 6= ∅, since µu ∈ (Aw)∗ if u ∈ Aw. Moreover,

according to property (ii), the family {(Aw)∗ : w ∈ X} has the finite intersection property,

hence θA 6= ∅. Since A satisfies property (i), (θA, +) is a semigroup. Indeed, for µ1, µ2 ∈

θA and w ∈ X,

µ1 + µ2(Aw) = µ1({u1 ∈ Aw : µ2({u2 ∈ Au1
: u1 + u2 ∈ Aw}) = 1}) =

= µ1({u1 ∈ Aw : µ2(Au1
) = 1}) = µ1(Aw) = 1.

Hence, θA is a non-empty left compact subsemigroup of βX. Since w /∈ Aw, we have

that µw /∈ θA for every w ∈ X, so every µ ∈ θA is a non-principal ultrafilter on X.

According to the claim, θX, θY and θZ are non-empty left compact subsemigroups of

βX consisted of non-principal ultrafilters on X. Notice that θY ⊆ θX and that θZ ⊆ θX.

Moreover, θZ is a two sided ideal of θX. Indeed, for µ1 ∈ θZ, µ2 ∈ θX and w ∈ X,

µ1 + µ2(Zw) = µ1({u1 ∈ Zw : µ2({u2 ∈ Xu1
: u1 + u2 ∈ Zw}) = 1}) =

= µ1({u1 ∈ Zw : µ2(Xu1
) = 1}) = µ1(Zw) = 1 = µ2 + µ1(Zw).

Let p ∈ N and let the continuous function βTp : βX −→ βX with βTp(µ)(A) =

µ((Tp)
−1(A)) for every µ ∈ βX and A ⊆ X. We note that:

(i) βTp(θX) ⊆ θY ⊆ θX, since, for µ ∈ θX and w ∈ X,

βTp(µ)(Yw) = µ({u ∈ Xw : Tp(u) ∈ Yw}) = µ(Xw) = 1,

(ii) βTp(µ) = µ for every µ ∈ θY , since, for µ ∈ θY and A ⊆ X,

βTp(µ)(A) = µ({u ∈ Y : Tp(u) = u ∈ A}) = µ(A ∩ Y ) = µ(A), and

(iii) for µ1, µ2 ∈ θX and A ⊆ X, we have

βTp(µ1 + µ2)(A) = µ1({u1 ∈ X : µ2({u2 ∈ Xu1
: Tp(u1 + u2) ∈ A}) = 1}) =

= µ1({u1 ∈ X : µ2({u2 ∈ Xu1
: Tp(u1) + Tp(u2) ∈ A}) = 1}) =

= βTp(µ1) + βTp(µ2)(A).
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Let µ1 be an idempotent in in the non-empty, left compact semigroup θY minimal for

θY . Since θZ is a two sided ideal of the left compact semigroup θX and µ1 ∈ θY ⊆ θX

is an idempotent of θX, there exists an idempotent µ ∈ θZ ⊆ βX minimal for θX with

µ ≤ µ1. Since for each p ∈ N the restriction of βTp to θX is an homomorphism, we

have that βTp(µ) ≤ βTp(µ1) for every p ∈ N. But βTp(µ1) = µ1 for every p ∈ N, since

µ1 ∈ θY , hence, βTp(µ) ≤ µ1 for every p ∈ N. Now, since µ1 is minimal for θY and

βTp(µ) ∈ θY for every p ∈ N, we have βTp(µ) = µ1 for every p ∈ N.

In conclution, for every idempotent µ1 ∈ θY ⊆ θX ⊆ βX minimal for θY there exists

an idempotent µ ∈ θZ ⊆ θX ⊆ βX minimal for θX such that: µ + µ = µ, µ1 + µ1 = µ1,

µ1 = βTp(µ) for every p ∈ N, and µ + µ1 = µ1 + µ = µ.

We will construct, by induction on n, the required sequence (wn)n∈N ⊆ Z. Since,

Z = A1 ∪ · · · ∪ Ar and Y = C1 ∪ · · · ∪ Cs, there exist 1 ≤ i0 ≤ r, 1 ≤ j0 ≤ s such

that µ(Ai0) = 1 and µ1(Cj0) = 1. Let w ∈ Z. Since µ1 = βTp(µ) = βTp(µ) + µ1 and

µ = µ + µ = βTp(µ) + µ = µ + µ1 for every p ∈ N with p ≤ k, starting with w ∈ Z,

B1 = Ai0 and D1 = Cj0, can be constructed an increasing sequence w < w1 < w2 < · · ·

in Z and two decreasing sequences Z ⊇ B1 ⊇ B2 ⊇ · · · , and Y ⊇ D1 ⊇ D2 ⊇ · · · such

that for every n ∈ N to satisfy:

µ(Bn) = 1 and µ1(Dn) = 1,

wn ∈ Bn and Tp(wn) ∈ Dn for every p ∈ N with p ≤ kn,

Bn+1 = {u ∈ (Bn)wn : wn + u ∈ Bn and Tp(wn) + u ∈ Bn for all p ∈ N with p ≤ kn}, and

Dn+1 = {z ∈ (Dn)wn : wn + z ∈ Bn and Tp(wn) + z ∈ Dn for all p ∈ N with p ≤ kn}.

We claim that the sequence (wn)n∈N has the required properties. We will prove, by

induction on λ, that, for every λ ∈ N,

Tp1
(wn1

) ⋆ . . . ⋆ Tpλ
(wnλ

) ∈ Bn1
⊆ B1 = Ai0,

for every n1 < · · · < nλ ∈ N, p1, . . . , pλ ∈ N ∪ {0} such that 0 ≤ pi ≤ kni
for every

1 ≤ i ≤ λ and 0 ∈ {p1, . . . , pλ}, and also

Tp1
(wn1

) ⋆ . . . ⋆ Tpλ
(wnλ

) ∈ Dn1
⊆ D1 = Cj0,

for every n1 < · · · < nλ ∈ N, p1, . . . , pλ ∈ N such that 1 ≤ pi ≤ kni
for every 1 ≤ i ≤ λ.

Indeed, for n1 ∈ N and p1 ∈ N such that 1 ≤ p1 ≤ kn1
, we have wn1

∈ Bn1
and

Tp1
(wn1

) ∈ Dn1
. Assume that the accertion holds for λ ≥ 1 and let n1 < · · · < nλ <

nλ+1 ∈ N and p1, . . . , pλ, pλ+1 ∈ N ∪ {0} such that 0 ≤ pi ≤ kni
for every 1 ≤ i ≤ λ + 1.

Case 1 Let 0 ∈ {p2, . . . , pλ, pλ+1}. Then u = Tp2
(wn2

)⋆ . . . ⋆Tpλ+1
(wnλ+1

) ∈ Bn2
⊆ Bn1+1,

according to the induction hypothesis. Hence,

Tp1
(wn1

) + u = Tp1
(wn1

) ⋆ . . . ⋆ Tpλ+1
(wnλ+1

) ∈ Bn1
.
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Case 2 Let 0 /∈ {p2, . . . , pλ, pλ+1}. Then z = Tp2
(wn2

)⋆. . .⋆Tpλ+1
(wnλ+1

) ∈ Dn2
⊆ Dn1+1,

according to the induction hypothesis. If p1 = 0, then

wn1
+ z = Tp1

(wn1
) ⋆ . . . ⋆ Tpλ+1

(wnλ+1
) ∈ Bn1

.

If p1 ∈ N, then

Tp1
(wn1

) + z = Tp1
(wn1

) ⋆ . . . ⋆ Tpλ+1
(wnλ+1

) ∈ Dn1
.

This finishes the proof. �

Remark 1.2. The special case of Theorem 1.1 for sequences ~k = (kn)n∈N ⊆ N with

kn = k1 for every n ∈ N coincide with the partition theorem of Bergelson, Blass and

Hindman (Theorem 4.1 in [BBH]) for located words over a finite alphabet, while the case
~k = (kn)n∈N with kn = 1 for every n ∈ N gives Hindman’s partition theorem ([H], [Ba]).

Corollary 1.3. Let Σ = {α1, α2, . . .} be an infinite countable alphabet, υ /∈ Σ a variable

and ~k = (kn)n∈N ⊆ N. Then for every A ⊆ L(Σ, ~k) with µ(A) = 1 for µ ∈ θL(Σ, ~k)

minimal in θL(Σ, ~k) there exists a sequence (wn)n∈N ⊆ L(Σ, ~k; υ) with wn < wn+1 for

every n ∈ N such that

Tp1
(wn1

) ⋆ . . . ⋆ Tpλ
(wnλ

) ∈ A,

for every λ ∈ N, n1 < · · · < nλ ∈ N and p1, . . . , pλ ∈ N with 1 ≤ pi ≤ kni
for 1 ≤ i ≤ λ.

Now we will prove a stroger version of Theorem 1.1, using the notion of extracted

ω-located words of a given orderly sequence of variable ω-located words defined below.

Extracted ω-located words, Extractions. Let Σ = {α1, α2, . . .} be an infinite count-

able alphabet ordered according to the natural numbers, υ /∈ Σ a variable and ~k =

(kn)n∈N ⊆ N an increasing sequence. We set

L∞(Σ, ~k; υ) = {~w = (wn)n∈N : wn ∈ L(Σ, ~k; υ) and wn < wn+1 ∀ n ∈ N}.

Let a sequence ~w = (wn)n∈N ∈ L∞(Σ, ~k; υ).

An extracted variable ω-located word of ~w is a variable ω-located word

u = Tp1
(wn1

) ⋆ . . . ⋆ Tpλ
(wnλ

) ∈ L(Σ, ~k; υ),

where λ ∈ N, n1 < · · · < nλ ∈ N, p1, . . . , pλ ∈ N ∪ {0} with 0 ≤ pi ≤ kni
for every

1 ≤ i ≤ λ and 0 ∈ {p1, . . . , pλ}.

The set of all the extracted variable ω-located words of ~w is denoted by EV (~w).

An extracted ω-located word of ~w is an ω-located word

z = Tp1
(wn1

) ⋆ . . . ⋆ Tpλ
(wnλ

) ∈ L(Σ, ~k),

where λ ∈ N, n1 < · · · < nλ ∈ N, p1, . . . , pλ ∈ N with 1 ≤ pi ≤ kni
for every 1 ≤ i ≤ λ.

The set of all the extracted ω-located words of ~w is denoted by E(~w). Let

9



EV ∞(~w) = {~u = (un)n∈N ∈ L∞(Σ, ~k; υ) : un ∈ EV (~w) for every n ∈ N}.

If ~u ∈ EV ∞(~w), then we say that ~u is an extraction of ~w and we write ~u ≺ ~w. Notice

that ~u ≺ ~w if and only if EV (~u) ⊆ EV (~w) and that ~w ≺ ~e for every ~w ∈ L∞(Σ, ~k; υ)

where ~e = (en)n∈N ∈ L∞(Σ, ~k; υ) with en : {n} → {υ} for every n ∈ N.

Theorem 1.4. Let Σ = {α1, α2, . . .} be an infinite countable alphabet, υ /∈ Σ a variable,
~k = (kn)n∈N ⊆ N an increasing sequence, ~w = (wn)n∈N ∈ L∞(Σ, ~k; υ) and r, s ∈ N. If

L(Σ, ~k; υ) = A1 ∪ · · · ∪ Ar and L(Σ, ~k) = C1 ∪ · · · ∪ Cs, then there exist an extraction

~u = (un)n∈N of ~w and 1 ≤ i0 ≤ r, 1 ≤ j0 ≤ s such that

EV (~u) ⊆ Ai0 and E(~u) ⊆ Cj0.

Proof. Let the function φ : L(Σ ∪ {υ}, ~k) → EV (~w) ∪E(~w) which sends t = tn1
. . . tnλ

∈

L(Σ ∪ {υ}, ~k) to φ(tn1
. . . tnλ

) = Tp1
(wn1

) ⋆ . . . ⋆ Tpλ
(wnλ

), where for 1 ≤ i ≤ λ, pi = 0 if

tni
= υ and pi = µ if tni

= αµ for 1 ≤ µ ≤ kni
. The function φ is one to one and onto

EV (~w) ∪ E(~w). Moreover φ(L(Σ, ~k; υ)) = EV (~w) and φ(L(Σ, ~k)) = E(~w).

According to Theorem 1.1, there exist a sequence ~s = (sn)n∈N ∈ L∞(Σ, ~k; υ) and

1 ≤ i0 ≤ r, 1 ≤ j0 ≤ s such that EV (~s) ⊆ (φ)−1(Ai0) and E(~s) ⊆ (φ)−1(Cj0). Set

un = φ(sn) ∈ EV (~w) for every n ∈ N and ~u = (un)n∈N. Then ~u = (un)n∈N is an

extraction of ~w such that EV (~u) ⊆ φ(EV (~s)) ⊆ Ai0 and E(~u) ⊆ φ(E(~s)) ⊆ Cj0. �

As a consequence of Theorem 1.1, we will prove a partition theorem for (unlocated)

ω-words, extending Carlson’s partition theorem (Lemma 5.9 in [C]) for words over a finite

alphabet.

For an infinite countable alphabet Σ = {α1, α2, . . .}, υ /∈ Σ and ~k = (kn)n∈N ⊆ N, let

W (Σ, ~k) be the set of ω-located words over Σ dominated by ~k with domain an initial

segment of N and W (Σ, ~k; υ) the set of variable ω-located words over Σ dominated by ~k

with domain an initial segment of N.

We set W (Σ∪{υ}, ~k) = W (Σ, ~k)∪W (Σ, ~k; υ) and we endow the set W (Σ∪{υ}, ~k) with

a relation defining for w, u ∈ W (Σ ∪ {υ}, ~k)

w = w1 . . . wl < u = u1 . . . ur ⇔ l < r and u1 = . . . = ul = α1.

For w = w1 . . . wl, u = u1 . . . ur ∈ W (Σ∪ {υ}, ~k) with w < u we define the concatenating

ω-word w ⋆ u = w1 . . . wlul+1 . . . ur ∈ W (Σ ∪ {υ}, ~k).

Let W∞(Σ, ~k; υ) = {~w = (wn)n∈N : wn ∈ W (Σ, ~k; υ) and wn < wn+1 ∀ n ∈ N}.

Theorem 1.5 (Partition theorem for ω-words). Let Σ = {α1, α2, . . .} be an infinite count-

able alphabet, υ /∈ Σ a variable, ~k = (kn)n∈N ⊆ N an increasing sequence and r, s ∈ N.
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If W (Σ, ~k; υ) = A1 ∪ · · · ∪ Ar and W (Σ, ~k) = C1 ∪ · · · ∪ Cs, there exist a sequence

(un)n∈N ∈ W∞(Σ, ~k; υ) and 1 ≤ i0 ≤ r, 1 ≤ j0 ≤ s such that

Tp1
(un1

) ⋆ . . . ⋆ Tpλ
(unλ

) ∈ Ai0

for every λ ∈ N, n1 < · · · < nλ ∈ N, p1, . . . , pλ ∈ N ∪ {0} such that 0 ≤ pi ≤ kni
for

every 1 ≤ i ≤ λ and 0 ∈ {p1, . . . , pλ}; and

Tp1
(un1

) ⋆ . . . ⋆ Tpλ
(unλ

) ∈ Cj0,

for every λ ∈ N, n1 < · · · < nλ ∈ N and p1, . . . , pλ ∈ N such that 1 ≤ pi ≤ kni
for every

1 ≤ i ≤ λ.

Proof. Let the function f : L(Σ ∪ {υ}, ~k) −→ W (Σ ∪ {υ}, ~k) which sends

w = wn1
. . . wnl

∈ L(Σ∪{υ}, ~k) to f(w) = u = u1 . . . unl
∈ W (Σ∪{υ}, ~k) where unj

= wnj

for every 1 ≤ j ≤ l and ui = α1 for every i ∈ {1, . . . , nl} \ {nj : 1 ≤ j ≤ l}. Then

f(L(Σ, ~k; υ)) ⊆ W (Σ, ~k; υ) and f(L(Σ, ~k)) ⊆ W (Σ, ~k). Also, for w1, w2 ∈ L(Σ ∪ {υ}, ~k)

with w1 < w2 we have f(w1) < f(w2), f(w1 ⋆ w2) = f(w1) ⋆ f(w2) and f(Tp(w1)) =

Tp(f(w1)) for every p ∈ N.

According to Theorem 1.1, there exist a sequence (wn)n∈N ∈ L∞(Σ, ~k; υ) and 1 ≤

i0 ≤ r, 1 ≤ j0 ≤ s such that: Tp1
(wn1

) ⋆ . . . ⋆ Tpλ
(wnλ

) ∈ f−1(Ai0), for every λ ∈ N,

n1 < · · · < nλ ∈ N, p1, . . . , pλ ∈ N ∪ {0} such that 0 ≤ pi ≤ kni
for every 1 ≤ i ≤ λ and

0 ∈ {p1, . . . , pλ}; and Tp1
(wn1

) ⋆ . . . ⋆ Tpλ
(wnλ

) ∈ f−1(Cj0), for every λ ∈ N, n1 < · · · <

nλ ∈ N and p1, . . . , pλ ∈ N such that 1 ≤ pi ≤ kni
for every 1 ≤ i ≤ λ.

Set un = f(wn) for every n ∈ N. The sequence (un)n∈N ∈ W∞(Σ, ~k; υ) satisfies the

required properties. �

We will define now a function g from the set L(N, ~k) of all the ω-located words over

N dominated by an increasing sequence ~k into an arbitrary semigroup. Via the function

g can be proved strong partition theorems for (commutative or noncommutative) semi-

groups as consequences of Theorems 1.1, 1.4, 1.5.

Let (X, +) be a semigroup, ~k = (kn)n∈N ⊆ N an increasing sequence, (yl,n)n∈N ⊆ X for

every l ∈ N, and the alphabet Σ = {1, 2, . . .} = N. We define the function

g : L(Σ, ~k) → X with g(wn1
. . . wnl

) =
∑l

i=1 ywni
, ni

.

Observe that g(u1 ⋆ u2) = g(u1) + g(u2) for every u1 < u2 ∈ L(Σ, ~k).

Let w = wn1
. . . wnl

∈ L(Σ, ~k; υ) with wn1
, wnl

∈ Σ. If (X, +) is a commutative

semigroup, then for every p ∈ N with 1 ≤ p ≤ kn1

g(Tp(w)) =
∑

t∈E\H ywt,t +
∑

t∈H yp,t

11



where, E = {ni : 1 ≤ i ≤ l} is the domain of w and H = {n ∈ E : wn = υ}. If (X, +)

is a noncommutative semigroup, then there exist m ∈ N such that E = E1 ∪ . . . ∪ Em+1

with max Ei < min Ei+1 for 1 ≤ i ≤ m and H = H1 ∪ . . . ∪ Hm with ∅ 6= Hi ⊆ Ei for

every 1 ≤ i ≤ m such that for every p ∈ N with 1 ≤ p ≤ kn1

g(Tp(w)) = (
∑m

i=1(
∑

t∈Ei\Hi
ywt,t +

∑

t∈Hi
yp, t)) +

∑

t∈Em+1
ywt,t.

Via the function g, Theorem 1.1 implies the following partition theorem for commutative

semigroups, which is an improvement of Theorem 14.12 of Hindman and Strauss in [HS],

and also an analogous theorem for noncommutative semigroups (Theorem 14.15 in [HS]).

For a sequence (xn)n∈N in a semigroup (X, +), we set

FS
(

(xn)n∈N

)

= {xn1
+ . . . + xnλ

: λ ∈ N, n1 < · · · < nλ ∈ N}.

Corollary 1.6. Let (X, +) be a commutative semigroup, ~k = (kn)n∈N ⊆ N an increasing

sequence and (yl,n)n∈N ⊆ X for every l ∈ N,. If X = A1 ∪ . . . ∪ Ar, r ∈ N is a finite

partition of X, then there exist 1 ≤ i0 ≤ r, sequences (En)n∈N, (Hn)n∈N, of non-empty

finite subsets of N with max En < min En+1, Hn ⊆ En for every n ∈ N and a sequence

(βn)n∈N ⊆ X with βn =
∑

j∈En\Hn
ylnj ,j for 1 ≤ lnj ≤ kj such that for every function

f : N → N with f(n) ≤ kn for every n ∈ N

FS
(

(βn +
∑

t∈Hn
yf(n),t)n∈N

)

⊆ Ai0.

Proof. Since L(Σ, ~k) = g−1(A1) ∪ . . . ∪ g−1(Ar), according to Theorem 1.1, there exist

(wn)n∈N ⊆ L(Σ, ~k; υ) with wn < wn+1 for every n ∈ N and 1 ≤ i0 ≤ r satisfing

Tp1
(wn1

) ⋆ . . . ⋆ Tpλ
(wnλ

) ∈ g−1(Ai0),

for every λ ∈ N, n1 < · · · < nλ ∈ N and p1, . . . , pλ ∈ N with 1 ≤ pj ≤ knj
for 1 ≤ j ≤ λ.

Let wn = wn
qn
1
. . . wn

qn
ln

for every n ∈ N. We can suppose that wn
qn
1
, wn

qn
ln

∈ Σ for every

n ∈ N. Otherwise replace the sequence (wn)n∈N by the sequence (un)n∈N, where un =

T1(w3n−1) ⋆ w3n ⋆ T1(w3n+1). We set En = {qn
i : 1 ≤ i ≤ ln} the domain of wn,

Hn = {qn
i ∈ En : wn

qn
i

= υ} and βn =
∑

j∈En\Hn
ywn

j ,j ∈ X. Then for every λ ∈ N,

n1 < · · · < nλ ∈ N and p1, . . . , pλ ∈ N with 1 ≤ pj ≤ knj
for 1 ≤ j ≤ λ

(βn1
+

∑

t∈Hn1

yp1,t)+ . . .+(βnλ
+

∑

t∈Hnλ
ypλ,t) = g(Tp1

(wn1
)⋆. . .⋆Tpλ

(wnλ
)) ∈ Ai0. �

2. Extended Ramsey type partition theorems for ω-located words

We will state and prove, in Theorem 2.5 below, an extended, to every countable order,

Ramsey type partition theorem for variable ω-located words over an infinite countable

alphabet dominated by an increasing sequence. It is an extension to every countable order

12



ξ of Theorem 1.4 corresponding to the case ξ = 1. Theorem 2.5 extends Bergelson-Blass-

Hindman’s Ramsey type partition theorem (Theorem 5.1 in [BBH]) for located words

over a finite alphabet, corresponding to the case of finite ordinals, and Furstenberg-

Katznelson’s ([FuK]) Ramsey type partition theorem for words over a finite alphabet.

Consequences of Theorem 2.5 are multidimentional partition theorems for semigroups

corresponding to each countable order ξ, providing strong simultaneous extension of the

block-Ramsey partition theorem for every countable ordinal, proved in [FN1], and of van

der Waerden theorem [vdW] for general semigroups. In Corollary 2.10 we present the

case of finite ordinals, which imply the partition theorem proved by Beiglböck (Theorem

1.1 in [Be]) for the particular case of commutative semigroups , and in Corollary 2.12 we

present the case ξ = ω.

The vehicle of proving this extended Ramsey type partition theorem (Theorem 2.5) is

the Schreier system (Lξ(Σ, ~k; υ))ξ<ω1
(Definition 2.2), consisted of families of finite orderly

sequences of variable ω-located words over the alphabet Σ dominated by the sequence ~k.

Instrumental for this definition are the Schreier sets Aξ consisted of finite subsets of N

defined initially in [F1] and completelly in [F3], which are defined below employing (in

case 3(iii)) the Cantor normal form of ordinals (cf. [KM], [L]).

We denote by [X]<ω the set of all finite subsets and by [X]<ω
>0 the set of all non-empty,

finite subsets of a set X. For s1, s2 ∈ [N]<ω
>0 we write s1 < s2 if max s1 < min s2.

Definition 2.1 (The Schreier system, [F1, Def. 7], [F2, Def. 1.5] [F3, Def. 1.4]). For

every non-zero, countable, limit ordinal λ choose and fix a strictly increasing sequence

(λn)n∈N of successor ordinals smaller than λ with supn λn = λ. The system (Aξ)ξ<ω1
is

defined recursively as follows:

(1) A0 = {∅} and A1 = {{n} : n ∈ N};

(2) Aζ+1 = {s ∈ [N]<ω
>0 : s = {n} ∪ s1, where n ∈ N, {n} < s1 and s1 ∈ Aζ};

(3i) Aωβ+1 = {s ∈ [N]<ω
>0 : s =

⋃n
i=1 si, where n = min s1, s1 < · · · < sn and

s1, . . . , sn ∈ Aωβ};

(3ii) for a non-zero, countable limit ordinal λ,

Aωλ = {s ∈ [N]<ω
>0 : s ∈ Aωλn with n = min s}; and

(3iii) for a limit ordinal ξ such that ωα < ξ < ωα+1 for some 0 < α < ω1, if

ξ = ωαp+
∑m

i=1 ωaipi, where m ∈ N with m ≥ 0, p, p1, . . . , pm are natural numbers

with p, p1, . . . , pm ≥ 1 (so that either p > 1, or p = 1 and m ≥ 1) and a, a1, . . . , am

are ordinals with a > a1 > · · ·am > 0,

Aξ = {s ∈ [N]<ω
>0 : s = s0 ∪ (

⋃m

i=1 si) with sm < · · · < s1 < s0, s0 = s0
1 ∪ · · · ∪ s0

p
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with s0
1 < · · · < s0

p ∈ Aωa , and si = si
1 ∪ · · · ∪ si

pi
with si

1 < · · · < si
pi

∈ Aωai

∀ 1 ≤ i ≤ m}.

Let Σ = {α1, α2, . . .} be an infinite countable alphabet, υ /∈ Σ a variable and ~k =

(kn)n∈N ⊆ N. We define the finite orderly sequences of ω-located words over Σ dominated

by ~k as follows:

L<∞(Σ, ~k; υ) = {w = (w1, . . . , wl) : l ∈ N, w1 < · · · < wl ∈ L(Σ, ~k; υ)} ∪ {∅},

L<∞(Σ, ~k) = {w = (w1, . . . , wl) : l ∈ N, w1 < · · · < wl ∈ L(Σ, ~k)} ∪ {∅}.

The Schreier system (Lξ(Σ, ~k; υ))ξ<ω1
is defined recursively as follows:

Definition 2.2 (The Schreier systems (Lξ(Σ, ~k; υ))ξ<ω1
). Let Σ = {α1, α2, . . .} be an

infinite countable alphabet, ordered according to the natural numbers, υ /∈ Σ a variable

and ~k = (kn)n∈N ⊆ N. We set:

L0(Σ, ~k; υ) = {∅} = L0(Σ, ~k), and

for every countable ordinal ξ ≥ 1,

Lξ(Σ, ~k; υ) = {(w1, . . . , wl) ∈ L<∞(Σ, ~k; υ) : {min dom(w1), . . . , min dom(wl)} ∈ Aξ},

Lξ(Σ, ~k) = {(w1, . . . , wl) ∈ L<∞(Σ, ~k) : {min dom(w1), . . . , min dom(wl)} ∈ Aξ}.

Remark 2.3. (i) Lξ(Σ, ~k; υ) ⊆ L<∞(Σ, ~k; υ) and ∅ /∈ Lξ(Σ, ~k; υ) for every ξ ≥ 1.

(ii) Lm(Σ, ~k; υ) = {(w1, . . . , wm) : w1 < · · · < wm ∈ L(Σ, ~k; υ)} for m ∈ N.

(iii) Lω(Σ, ~k; υ) = {(w1, . . . , wn) ∈ L<∞(Σ, ~k; υ) : n ∈ N, and min dom(w1) = n}.

The following proposition justifies the recursiveness of the system (Lξ(Σ, ~k; υ))ξ<ω1
.

For a family F ⊆ L<∞(Σ ∪ {υ}, ~k) and t ∈ L(Σ ∪ {υ}, ~k), we set

F(t) = {w ∈ L<∞(Σ ∪ {υ}, ~k) : either w = (w1, . . . , wl) 6= ∅ and (t, w1, w2, . . . , wl) ∈ F

or w = ∅ and (t) ∈ F},

F − t = {w ∈ F : either w = (w1, . . . , wl) 6= ∅ and t < w1, or w = ∅}.

Proposition 2.4. For every countable ordinal ξ ≥ 1, there exists a concrete sequence

(ξn)n∈N of countable ordinals with ξn < ξ such that for Σ = {α1, α2, . . .} an infinite

countable alphabet, υ /∈ Σ a variable, ~k = (kn)n∈N ⊆ N and t ∈ L(Σ, ~k; υ), with

min dom(t) = n,

Lξ(Σ, ~k; υ)(t) = Lξn(Σ, ~k; υ) ∩ (L<∞(Σ, ~k; υ) − t).

Moreover, ξn = ζ for every n ∈ N if ξ = ζ + 1, and (ξn)n∈N is a strictly increasing

sequence with supn ξn = ξ if ξ is a limit ordinal.
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Proof. It follows from Theorem 1.6 in [F3], according to which for every countable ordinal

ξ > 0 there exists a concrete sequence (ξn)n∈N of countable ordinals with ξn < ξ, such

that Aξ(n) = Aξn ∩ [{n + 1, n + 2, . . .}]<ω for every n ∈ N, where,

Aξ(n) = {s ∈ [N]<ω : s ∈ [N]<ω
>0 , n < min s and {n} ∪ s ∈ Aξ or s = ∅ and {n} ∈ Aξ}.

Moreover, ξn = ζ for every n ∈ N if ξ = ζ+1, and (ξn)n∈N is a strictly increasing sequence

with supn ξn = ξ if ξ is a limit ordinal. �

In order to state and prove the principal result of this section, a Ramsey type partition

theorem for ω-located words extended to every countable order, we need the following

notation:

Notation. Let Σ = {α1, α2, . . .} be an infinite countable alphabet, ordered according to

the natural numbers, υ /∈ Σ a variable and ~k = (kn)n∈N ⊆ N an increasing sequence. For

~w = (wn)n∈N ∈ L∞(Σ, ~k; υ), w = (w1, . . . , wl) ∈ L<∞(Σ, ~k; υ) and t ∈ L(Σ, ~k; υ), we set:

EV <∞(~w) = {u = (u1, . . . , ul) ∈ L<∞(Σ, ~k; υ) : l ∈ N, u1, . . . , ul ∈ EV (~w)} ∪ {∅};

E<∞(~w) = {u = (u1, . . . , ul) ∈ L<∞(Σ, ~k) : l ∈ N, u1, . . . , ul ∈ E(~w)} ∪ {∅};

EV (w) = {Tp1
(wn1

) ⋆ . . . ⋆ Tpλ
(wnλ

) ∈ L(Σ, ~k; υ) : 1 ≤ n1 < · · · < nλ ≤ l and

p1, . . . , pλ ∈ N ∪ {0} with 0 ≤ pi ≤ kni
for 1 ≤ i ≤ λ and 0 ∈ {p1, . . . , pλ}};

E(w) = {Tp1
(wn1

) ⋆ . . . ⋆ Tpλ
(wnλ

) ∈ L(Σ, ~k; υ) : 1 ≤ n1 < · · · < nλ ≤ l and

p1, . . . , pλ ∈ N with 1 ≤ pi ≤ kni
for 1 ≤ i ≤ λ}.

EV <∞(w) = {u = (u1, . . . , ul) ∈ L<∞(Σ, ~k; υ) : l ∈ N, u1, . . . , ul ∈ EV (w)} ∪ {∅}.

Observe that the sets EV (w), E(w) are finite. Also, we set

~w − t = (wn)n≥l ∈ L∞(Σ, ~k; υ), where l = min{n ∈ N : t < wn}, and

~w −w = ~w − wl.

Theorem 2.5 (Ramsey type partition theorem on Schreier families for variable ω-located

words ). Let ξ ≥ 1 be a countable ordinal, Σ = {α1, α2, . . .} be an infinite countable

alphabet, υ /∈ Σ a variable and ~k = (kn)n∈N ⊆ N an increasing sequence. For every

family F ⊆ L<∞(Σ, ~k; υ) of finite orderly sequences of variable ω-located words and every

infinite orderly sequence ~w ∈ L∞(Σ, ~k; υ) of variable ω-located words there exists an

extraction ~u ≺ ~w of ~w over Σ such that

either Lξ(Σ, ~k; υ) ∩ EV <∞(~u) ⊆ F , or Lξ(Σ, ~k; υ) ∩ EV <∞(~u) ⊆ L<∞(Σ, ~k; υ) \ F .

In the proof of Theorem 2.5 we will make use of the following diagonal argument.

Lemma 2.6. Let Σ = {α1, α2, . . .} be an infinite countable alphabet, υ /∈ Σ a variable,
~k = (kn)n∈N ⊆ N an increasing sequence, ~w = (wn)n∈N ∈ L∞(Σ, ~k; υ),

15



Π = {(t, ~s) : t ∈ L(Σ, ~k; υ), ~s = (sn)n∈N ∈ L∞(Σ, ~k; υ) with ~s ≺ ~w and t < sn∀ n ∈ N}.

If a subset R of Π satisfies

(i) for every (t, ~s) ∈ Π, there exists (t, ~s1) ∈ R with ~s1 ≺ ~s; and

(ii) for every (t, ~s) ∈ R and ~s1 ≺ ~s, we have (t, ~s1) ∈ R,

then there exists ~u ≺ ~w, such that (t, ~s) ∈ R for all t ∈ EV (~u) and ~s ≺ ~u − t.

Proof. Let u0 = w1. According to condition (i), there exists ~s1 = (s1
n)n∈N ∈ L∞(Σ, ~k; υ)

with ~s1 ≺ ~w − u0 such that (u0, ~s1) ∈ R. Let u1 = s1
1. Of course, u0 < u1 and u0, u1 ∈

EV (~w). We assume now that there have been constructed ~s1, . . . , ~sn ∈ L∞(Σ, ~k; υ) and

u0, u1, . . . , un ∈ EV (~w), with ~sn ≺ · · · ≺ ~s1 ≺ ~w, u0 < u1 < · · · < un and (t, ~si) ∈ R for

all 1 ≤ i ≤ n and t ∈ EV ((u0, . . . , ui−1)).

We will construct ~sn+1 and un+1. Let {t1, . . . , tl} = EV ((u0, . . . , un)). According to

condition (i), there exist ~s1
n+1, . . . , ~s

l
n+1 ∈ L∞(Σ, ~k; υ) such that ~sl

n+1 ≺ · · · ≺ ~s1
n+1 ≺

~sn − un and (ti, ~s
i
n+1) ∈ R for every 1 ≤ i ≤ l. Set ~sn+1 = ~sl

n+1. If ~sn+1 = (sn+1
n )n∈N,

set un+1 = sn+1
1 . Of course un < un+1, un+1 ∈ EV (~w) and, according to condition (ii),

(ti, ~sn+1) ∈ R for all 1 ≤ i ≤ l.

Set ~u = (u0, u1, u2, . . .) ∈ L∞(Σ, ~k; υ). Then ~u ≺ ~w, since u0 < u1 < . . . ∈ EV (~w).

Let t ∈ EV (~u) and ~s ≺ ~u − t. Set n0 = min{n ∈ N : t ∈ EV ((u0, u1, . . . , un))}. Since

t ∈ EV ((u0, u1, . . . , un0
)), we have (t, ~sn0+1) ∈ R. Then, according to (ii), we have

(t, ~u−un0
) ∈ R, since ~u−un0

≺ ~sn0+1, and also (t, ~s) ∈ R, since ~s ≺ ~u−un0
= ~u− t. �

Proof of Theorem 2.5. Let F ⊆ L<∞(Σ, ~k; υ) and ~w ∈ L∞(Σ, ~k; υ). For ξ = 1 the

theorem is valid, according to Theorem 1.4. Let ξ > 1. Assume that the theorem is valid

for every ζ < ξ. Let t ∈ L(Σ, ~k; υ) with min dom(t) = n and ~s = (sn)n∈N ∈ L∞(Σ, ~k; υ)

with ~s ≺ ~w and t < sn for all n ∈ N. According to Proposition 2.4, there exists ξn < ξ

such that

Lξ(Σ, ~k; υ)(t) = Lξn(Σ, ~k; υ) ∩ (L<∞(Σ, ~k; υ) − t).

Using the induction hypothesis, there exists ~s1 ≺ ~s such that

either Lξn(Σ, ~k; υ)∩EV <∞(~s1) ⊆ F(t), or Lξn(Σ, ~k; υ)∩EV <∞(~s1) ⊆ L<∞(Σ, ~k; υ)\F(t).

Then ~s1 ≺ ~s ≺ ~w, and

either Lξ(Σ, ~k; υ)(t) ∩ EV <∞(~s1) ⊆ F(t),

or Lξ(Σ, ~k; υ)(t) ∩ EV <∞(~s1) ⊆ L<∞(Σ, ~k; υ) \ F(t).

Let R = {(t, ~s) : t ∈ L(Σ, ~k; υ), ~s = (sn)n∈N ∈ L∞(Σ, ~k; υ), ~s ≺ ~w, t < sn∀ n ∈ N, and

either Lξ(Σ, ~k; υ)(t) ∩ EV <∞(~s) ⊆ F(t)
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or Lξ(Σ, ~k; υ)(t) ∩ EV <∞(~s) ⊆ L<∞(Σ, ~k; υ) \ F(t)}.

The family R satisfies the conditions (i) (by the above arguments) and (ii) (obviously)

of Lemma 2.6. Hence, there exists ~u1 ≺ ~w such that (t, ~s) ∈ R for all t ∈ EV (~u1) and

~s ≺ ~u1 − t.

Let F1 = {t ∈ EV (~u1) : Lξ(Σ, ~k; υ)(t) ∩ EV <∞(~u1 − t) ⊆ F(t)}.

We use the induction hypothesis for ξ = 1 (Theorem 1.4). Then there exists a variable

extraction ~u ≺ ~u1 of ~u1 such that

either EV (~u) ⊆ F1, or EV (~u) ⊆ L(Σ, ~k; υ) \ F1.

Since ~u ≺ ~u1 we have that EV (~u) ⊆ EV (~u1), and, consequently, that (t, ~u − t) ∈ R for

all t ∈ EV (~u). Thus

either Lξ(Σ, ~k; υ)(t) ∩ EV <∞(~u − t) ⊆ F(t) for all t ∈ EV (~u),

or Lξ(Σ, ~k; υ)(t) ∩ EV <∞(~u − t) ⊆ L<∞(Σ, ~k; υ) \ F(t) for all t ∈ EV (~u).

Hence,

either Lξ(Σ, ~k; υ)∩EV <∞(~u) ⊆ F , or Lξ(Σ, ~k; υ)∩EV <∞(~u) ⊆ L<∞(Σ, ~k; υ) \ F . �

Remark 2.7. (i) The particular case of Theorem 2.5 for ~k = (kn)n∈N ⊆ N with kn = k1

for every n ∈ N gives an extended to every countable ordinal ξ Ramsey type parti-

tion theorem for variable located words over a finite alphabet, which in turn contains

Bergelson-Blass-Hindman’s Ramsey type partition theorem (Theorem 5.1 in [BBH]) as

the special case ξ a finite ordinal.

(ii) The case kn = 1 for every n ∈ N of Theorem 2.5 implies the block Ramsey partition

theorem for every countable ordinal ξ proved in [FN1] (Theorem 1.6), which in turn

contains Milliken-Taylor’s partition theorem ([M], [T]), as the special case ξ < ω.

Analogously to Theorem 2.5 can be proved the following extended to every countable

order Ramsey type partition theorem for ω-located words.

Theorem 2.8 (Ramsey type partition theorem on Schreier families for ω-located words ).

Let ξ ≥ 1 be a countable ordinal, Σ = {α1, α2, . . .} be an infinite countable alphabet, υ /∈ Σ

a variable and ~k = (kn)n∈N ⊆ N an increasing sequence. For every family G ⊆ L<∞(Σ, ~k)

of finite orderly sequences of ω-located words and every infinite orderly sequence ~w ∈

L∞(Σ, ~k; υ) of variable ω-located words there exists an extraction ~u ≺ ~w of ~w over Σ such

that either Lξ(Σ, ~k) ∩ E<∞(~u) ⊆ G, or Lξ(Σ, ~k) ∩ E<∞(~u) ⊆ L<∞(Σ, ~k) \ G.

Corollary 2.9 (Ramsey type partition theorem for ω-located words). Let m ∈ N, Σ =

{α1, α2, . . .} be an infinite countable alphabet, υ /∈ Σ a variable, ~k = (kn)n∈N ⊆ N an
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increasing sequence, r, s ∈ N and ~w ∈ L∞(Σ, ~k; υ). If Lm(Σ, ~k; υ) = A1 ∪ · · · ∪ Ar and

Lm(Σ, ~k) = C1∪· · ·∪Cs, then there exist an extraction ~u ≺ ~w of ~w over Σ and 1 ≤ i0 ≤ r,

1 ≤ j0 ≤ s such that

{(z1, . . . , zm) ∈ L<∞(Σ, ~k; υ)) : z1, . . . , zm ∈ EV (~u)} ⊆ Ai0, and

{(z1, . . . , zm) ∈ L<∞(Σ, ~k) : z1, . . . , zm ∈ E(~u)} ⊆ Cj0.

From Corollary 2.9 we can derive, for every m ∈ N, a strong m-dimensional parti-

tion theorem for semigroups, via the function g : L(N, ~k) → X with g(wn1
. . . wnl

) =
∑l

i=1 ywni
, ni

(see the remarks before Corollary 1.6). In case of commutative semigroups

an analogous result has been proved by Beiglböck (Theorem 1.1 in [Be]). For a set X we

denote by [X]m the set of all the subsets of X with exactly m elements.

Corollary 2.10. Let (X, +) be a semigroup, ~k = (kn)n∈N ⊆ N an increasing sequence,

(yl,n)n∈N for every l ∈ N, sequences in X and m ∈ N. If [X]m = A1 ∪ . . . ∪ Ar, r ∈ N,

then there exists ~w = (wn)n∈N ∈ L∞(N, ~k; υ) with wn
qn
1
, wn

qn
ln

∈ N if wn = wn
qn
1
. . . wn

qn
ln

for

every n ∈ N and there exists 1 ≤ i0 ≤ r such that

{(g(z1), . . . , g(zm)) ∈ [X]m : (z1, . . . , zm) ∈ L<∞(N, ~k), z1, . . . , zm ∈ E(~w)} ⊆ Ai0.

Corollary 2.11 (ω-Ramsey type partition theorem for ω-located words). Let Σ = {α1, α2, . . .}

be an infinite countable alphabet, υ /∈ Σ a variable, ~k = (kn)n∈N ⊆ N an increas-

ing sequence, r, s ∈ N and ~w ∈ L∞(Σ, ~k; υ). If L<∞(Σ, ~k; υ) = A1 ∪ · · · ∪ Ar and

L<∞(Σ, ~k) = C1 ∪ · · · ∪ Cs, then there exist an extraction ~u ≺ ~w of ~w over Σ and

1 ≤ i0 ≤ r, 1 ≤ j0 ≤ s such that

{(z1, . . . , zn) ∈ L<∞(Σ, ~k; υ)) : n ∈ N, min dom(z1) = n and z1, . . . , zn ∈ EV (~u)} ⊆ Ai0,

{(z1, . . . , zn) ∈ L<∞(Σ, ~k)) : n ∈ N, min dom(z1) = n and z1, . . . , zn ∈ E(~u)} ⊆ Cj0.

As a consequence of Corollary 2.11 we have the following.

Corollary 2.12. Let (X, +) be a semigroup, ~k = (kn)n∈N ⊆ N an increasing sequence

and (yl,n)n∈N for every l ∈ N, sequences in X. If [X]<ω
>0 = A1 ∪ . . . ∪ Ar, r ∈ N, then

there exists ~w = (wn)n∈N ∈ L∞(N, ~k; υ) with wn
qn
1
, wn

qn
ln
∈ N if wn = wn

qn
1
. . . wn

qn
ln

for every

n ∈ N and there exists 1 ≤ i0 ≤ r such that

{(g(z1), . . . , g(zn)) ∈ [X]<ω
>0 : n ∈ N, (z1, . . . , zn) ∈ L<∞(Σ, ~k) with

min dom(z1) = n, z1, . . . , zn ∈ E(~w)} ⊆ Ai0.
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We will give now a Ramsey type partition theorem for unlocated ω-words, as a corollary

of Theorem 2.5, extending Furstenberg and Katznelson’s partition theorem ( [FuK]), for

words over a finite alphabet.

Let m ∈ N, Σ = {α1, α2, . . .} an infinite countable alphabet, ~k = (kn)n∈N ⊆ N an

increasing sequence, υ /∈ Σ a variable and ~w = (wn)n∈N ∈ W∞(Σ, ~k; υ).

W m(Σ, ~k; υ) = {u = (u1, . . . , um) : u1 < · · · < um ∈ W (Σ, ~k; υ)}, and

W m(Σ, ~k) = {u = (u1, . . . , um) : u1 < · · · < um ∈ W (Σ, ~k)}.

An element u = (u1, . . . , um) of W m(Σ, ~k; υ) is a reduced m-sequence of variable ω-words

of ~w if there exist 0 = λ1 < λ2 < · · · < λm+1 ∈ N ∪ {0} such that for every 1 ≤ i ≤ m

ui = Tpλi+1
(wλi+1) ⋆ . . . ⋆ Tpλi+1

(wλi+1
),

where, for λi + 1 ≤ j ≤ λi+1, pj ∈ N ∪ {0}, 0 ≤ pj ≤ kj and 0 ∈ {pλi+1, . . . , pλi+1
}.

The set of all the reduced m-sequences of variable ω-words of ~w is denoted by RV m(~w).

An element u = (u1, . . . , um) of W m(Σ, ~k) is a reduced m-sequence of ω-words of ~w if

there exist 0 = λ1 < λ2 < · · · < λm+1 ∈ N ∪ {0} such that for every 1 ≤ i ≤ m

ui = Tpλi+1
(wλi+1) ⋆ . . . ⋆ Tpλi+1

(wλi+1
),

where, pj ∈ N, 1 ≤ pj ≤ kj for every λi + 1 ≤ j ≤ λi+1.

The set of all the reduced m-sequences of variable ω-words of ~w is denoted by Rm(~w).

Theorem 2.13 (Ramsey type partition theorem for ω-words). Let m ∈ N, Σ = {α1, α2, . . .}

be an infinite countable alphabet, υ /∈ Σ a variable, ~k = (kn)n∈N ⊆ N an increasing

sequence, and r, s ∈ N. If W m(Σ, ~k; υ) = A1 ∪ · · · ∪ Ar and W m(Σ, ~k) = C1 ∪ · · · ∪ Cs,

then there exist and ~w = (wn)n∈N ∈ W∞(Σ, ~k; υ) and 1 ≤ i0 ≤ r, 1 ≤ j0 ≤ s such that

RV m(~w) ⊆ Ai0 and Rm(~w) ⊆ Cj0.

Proof. Let the function f : L(Σ ∪ {υ}, ~k) −→ W (Σ ∪ {υ}, ~k) with f(wn1
. . . wnl

) =

u1 . . . unl
∈ W (Σ ∪ {υ}, ~k) where unj

= wnj
for every 1 ≤ j ≤ l and ui = α1 for

every i ∈ {1, . . . , nl} \ {nj : 1 ≤ j ≤ l}. We define f̃ : Lm(Σ, ~k; υ) ∪ Lm(Σ, ~k) −→

W m(Σ, ~k; υ) ∪ W m(Σ, ~k) with f̃((w1, . . . , wm)) = (f(w1), . . . , f(wm)).

According to Corollary 2.9 there exist an infinite sequence ~s = (sn)n∈N ∈ L∞(Σ, ~k; υ)

and 1 ≤ i0 ≤ r, 1 ≤ j0 ≤ s such that

{(z1, . . . , zm) ∈ L<∞(Σ, ~k; υ)) : z1, . . . , zm ∈ EV (~s)} ⊆ f̃−1(Ai0), and

{(z1, . . . , zm) ∈ L<∞(Σ, ~k) : z1, . . . , zm ∈ E(~s)} ⊆ f̃−1(Cj0).

Set wn = f(sn) for every n ∈ N and ~w = (wn)n∈N ∈ W∞(Σ, ~k; υ). Then RV m(~w) ⊆ Ai0

and Rm(~w) ⊆ Cj0. �
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3. Partition theorems for sequences of variable ω-located words

The main result of this Section is Theorem 3.12, which strengthens the extended

Ramsey type partition theorem for variable ω-located words (Theorem 2.5) in case the

partition family is a tree. Specificaly, given a partition family F ⊆ L<∞(Σ, ~k; υ) of fi-

nite orderly sequences of variable ω-located words over an alphabet Σ = {α1, α2, . . .}

dominated by a sequence ~k = (kn)n∈N ⊆ N and ξ < ω1, Theorem 2.5 provides no infor-

mation on how to decide whether the homogeneous family falls in F or in its complement

L<∞(Σ, ~k; υ) \ F , while Theorem 3.12 in case the partition family F is a tree provides

a criterion, in terms of a Cantor-Bendixson type index of F , according to which we can

have such a decition.

Using Theorem 3.12 we obtain a partition theorem for infinite orderly sequences of

variable ω-located words (Theorem 3.14), which, can be said to be a Nash-Williams type

partition theorem for variable ω-located words. Particular cases of Theorem 3.14 are

Bergelson-Blass-Hindman’s in [BBH] (Theorem 6.1) for variable located words over a

finite alphabet and Carlson’s theorem (Theorem 2 in [C]) for variable words over a finite

alphabet.

As a consequence of Theorem 3.14 we prove, in Theorems 3.18 and 3.19, partition

theorems for infinite sequences in a commutative and in a noncommutative semigroup,

respectively, which are strong simultaneous extentions of the infinitary partition theorem

of Milliken [M], Taylor [T] and van der Waerden [vdW] for general semigroups.

Notation. Let Σ = {α1, α2, . . .} be an infinite countable alphabet, υ /∈ Σ a variable and
~k = (kn)n∈N ⊆ N. A finite orderly sequence w = (w1, . . . , wl) ∈ L<∞(Σ, ~k; υ) is an initial

segment of u = (u1, . . . , uk) ∈ L<∞(Σ, ~k; υ) iff l ≤ k and wi = ui for every i = 1, . . . , l

and w is an initial segment of ~u = (un)n∈N ∈ L∞(Σ, ~k; υ) if wi = ui for all i = 1, . . . , l.

In these cases we write w ∝ u and w ∝ ~u, respectively, and we set u\w = (ul+1, . . . , uk)

and ~u \ w = (un)n>l.

Definition 3.1. Let Σ = {α1, α2, . . .} be an infinite countable alphabet, υ /∈ Σ a variable,
~k = (kn)n∈N ⊆ N and F ⊆ L<∞(Σ, ~k; υ).

(i) F is thin if there are no elements w,u ∈ F with w ∝ u and w 6= u.

(ii) F∗ = {w ∈ L<∞(Σ, ~k; υ) : w ∝ u for some u ∈ F} ∪ {∅}.

(iii) F is a tree if F∗ = F .

(iv) F∗ = {w ∈ L<∞(Σ, ~k; υ) : w ∈ EV <∞(u) for some u ∈ F} ∪ {∅}.

(v) F is hereditary if F∗ = F .
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Proposition 3.2. Every family Lξ(Σ, ~k; υ), for ξ < ω1 is thin.

Proof. It follows from the fact that the families Aξ are thin (cf. [F3])(which means that

if s, t ∈ Aξ and s ∝ t, then s = t). �

Proposition 3.3. Let ξ be a nonzero countable ordinal number, Σ = {α1, α2, . . .} be an

infinite countable alphabet, υ /∈ Σ a variable and ~k = (kn)n∈N ⊆ N. Then

(i) every infinite orderly sequence ~s = (sn)n∈N ∈ L∞(Σ, ~k; υ) has canonical representa-

tion with respect to Lξ(Σ, ~k; υ), which means that there exists a unique strictly increas-

ing sequence (mn)n∈N in N so that (s1, . . . , sm1
) ∈ Lξ(Σ, ~k; υ) and (smn−1+1, . . . , smn) ∈

Lξ(Σ, ~k; υ) for every n > 1; and,

(ii) every nonempty finite orderly sequence s = (s1, . . . , sk) ∈ L<∞(Σ, ~k; υ) has canon-

ical representation with respect to Lξ(Σ, ~k; υ), so either s ∈ (Lξ(Σ, ~k; υ))∗ \Lξ(Σ, ~k; υ) or

there exist unique n ∈ N, and m1, . . . , mn ∈ N with m1 < . . . < mn ≤ k such that ei-

ther (s1, . . . , sm1
), . . . , (smn−1+1, . . . , smn) ∈ Lξ(Σ, ~k; υ) and mn = k, or (s1, . . . , sm1

), . . . ,

(smn−1+1, . . . , smn) ∈ Lξ(Σ, ~k; υ), (smn+1, . . . , sk) ∈ (Lξ(Σ, ~k; υ))∗ \ Lξ(Σ, ~k; υ).

Proof. It follows from the fact that every nonempty increasing sequence (finite or infinite)

in N has canonical representation with respect to Aξ (cf. [F3]) and that the family

Lξ(Σ, ~k; υ) is thin (Proposition 3.2). �

Now, using Proposition 3.3, we give an alternative description of the second horn of

the dichotomy described in Theorem 2.5 in case the partition family is a tree.

Proposition 3.4. Let ξ ≥ 1 be a countable ordinal, Σ = {α1, α2, . . .} be an infinite

countable alphabet, υ /∈ Σ a variable, ~k = (kn)n∈N ⊆ N an increasing sequence, ~u ∈

L∞(Σ, ~k; υ) and F ⊆ L<∞(Σ, ~k; υ) be a tree. Then

Lξ(Σ, ~k; υ) ∩ EV <∞(~u) ⊆ L<∞(Σ, ~k; υ) \ F if and only if

F ∩ EV <∞(~u) ⊆ (Lξ(Σ, ~k; υ))∗ \ Lξ(Σ, ~k; υ).

Proof. Let Lξ(Σ, ~k; υ) ∩ EV <∞(~u) ⊆ L<∞(Σ, ~k; υ) \ F and s = (s1, . . . , sk) ∈ F ∩

EV <∞(~u). Then s has canonical representation with respect to Lξ(Σ, ~k; υ) (Propo-

sition 3.3), hence either s ∈ (Lξ(Σ, ~k; υ))∗ \ Lξ(Σ, ~k; υ), as required, or there exists

s1 ∈ Lξ(Σ, ~k; υ) such that s1 ∝ s. The second case is impossible. Indeed, since F is

a tree and s ∈ F ∩ EV <∞(~u), we have s1 ∈ F ∩ EV <∞(~u) ∩ Lξ(Σ, ~k; υ); a contradiction

to our assumption. Hence, F ∩ EV <∞(~u) ⊆ (Lξ(Σ, ~k; υ))∗ \ Lξ(Σ, ~k; υ). �
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Definition 3.5. Let Σ = {α1, α2, . . .} be an infinite countable alphabet, ordered accord-

ing to the natural numbers, υ /∈ Σ a variable and ~k = (kn)n∈N ⊆ N. We set

D = {(n, α) : n ∈ N, α ∈ {υ, α1, α2, . . . , αkn}}.

Note that D is a countable set. Let [D]<ω be the set of all finite subsets of D. Identifing

every s ∈ L(Σ, ~k; υ) with the corresponting element of [D]<ω and consequently every

s ∈ L<∞(Σ, ~k; υ) and every ~s ∈ L∞(Σ, ~k; υ)) with their characteristic functions xσ(s) ∈

{0, 1}[D]<ω

and xσ(~s) ∈ {0, 1}[D]<ω

respectively, where σ(s) = {s1, . . . , sk} for every s =

(s1, . . . , sk) ∈ L<∞(Σ, ~k; υ), σ(~s) = {sn : n ∈ N} for every ~s = (sn)n∈N ∈ L∞(Σ, ~k; υ) and

σ(∅) = ∅, we say that a family F ⊆ L<∞(Σ, ~k; υ) is pointwise closed iff the family {xσ(s) :

s ∈ F} is closed in the product topology (equivalently by the pointwise convergence

topology) of {0, 1}[D]<ω

and in analogy a family U ⊆ L∞(Σ, ~k; υ) is pointwise closed iff

{xσ(~s) : ~s ∈ U} is closed in {0, 1}[D]<ω

with the product topology.

Proposition 3.6. Let Σ = {α1, α2, . . .} be an infinite countable alphabet, υ /∈ Σ a

variable and ~k = (kn)n∈N ⊆ N.

(i) If F ⊆ L<∞(Σ, ~k; υ) is a tree, then F is pointwise closed if and only if there does

not exist an infinite sequence (sn)n∈N in F such that sn ∝ sn+1 and sn 6= sn+1 for all

n ∈ N.

(ii) If F ⊆ L<∞(Σ, ~k; υ) is hereditary, then F is pointwise closed if and only if there

does not exist ~s ∈ L∞(Σ, ~k; υ) such that EV <∞(~s) ⊆ F .

(iii) The hereditary family (Lξ(Σ, ~k; υ)∩EV <∞(~u))∗ is pointwise closed for every count-

able ordinal ξ and ~u ∈ L∞(Σ, ~k; υ).

Proof. This follows directly from the definitions (for details cf. [F3], [FN1]). �

Let ~s ∈ L∞(Σ, ~k; υ). For a hereditary and pointwise closed family F ⊆ L<∞(Σ, ~k; υ)

we will define the strong Cantor-Bendixson index sO~s(F) of F with respect to ~s.

Definition 3.7. Let Σ = {α1, α2, . . .} be an infinite countable alphabet, υ /∈ Σ a variable,
~k = (kn)n∈N ⊆ N an increasing sequence, ~s ∈ L∞(Σ, ~k; υ) and let F ⊆ L<∞(Σ, ~k; υ) be

a hereditary and pointwise closed family. For every ξ < ω1 we define the families (F)ξ
~s

inductively as follows:

For every w = (w1, . . . , wl) ∈ F ∩ EV <∞(~s) we set

Aw = {t ∈ EV (~s) : (w1, . . . , wl, t) /∈ F} and A∅ = {t ∈ EV (~s) : (t) /∈ F}.

We define

(F)1
~s = {w ∈ F ∩ EV <∞(~s) ∪ {∅} : Aw does not contain an infinite orderly sequence }.
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It is easy to verify that (F)1
~s is hereditary, hence pointwise closed (Proposition 3.6). So,

we can define for every ξ > 1 the ξ-derivatives of F recursively as follows:

(F)ζ+1
~s = ((F)ζ

~s)
1
~s for all ζ < ω1, and

(F)ξ
~s =

⋂

β<ξ(F)β
~s for ξ a limit ordinal.

The strong Cantor-Bendixson index sO~s(F) of F on ~s is the smallest countable ordinal

ξ such that (F)ξ
~s = ∅.

Remark 3.8. Let ~s ∈ L∞(Σ, ~k; υ) and let F1,R1,⊆ L<∞(Σ, ~k; υ) be hereditary and

pointwise closed families.

(i) sO~s(F1) is a countable successor ordinal less than or equal to the “usual” Cantor-

Bendixson index O(F1) of F1 into {0, 1}[D]<ω

(cf. [KM]).

(ii) sO~s(F1 ∩ EV <∞(~s)) = sO~s(F1).

(iii) sO~s(F1) ≤ sO~s(R1) if F1 ⊆ R1.

(iv) If ~s1 ≺ ~s and w ∈ (F1)
ξ
~s, then for every w1 ∈ EV <∞(~s1) such that σ(w1) =

σ(w) ∩ EV (~s1) we have that w1 ∈ (F1)
ξ
~s1

, since EV (~s1) ⊆ EV (~s).

(v) If ~s1 ≺ ~s, then sO~s1
(F1) ≥ sO~s(F1), according to (iv).

(vi) If σ(~s1) \ σ(~s) is a finite set, then sO~s1
(F1) ≥sO~s(F1).

The corresponding strong Cantor-Bendixson index to Lξ(Σ, ~k; υ) is equal to ξ+1, with

respect any sequence ~s ∈ L∞(Σ, ~k; υ).

Proposition 3.9. Let ξ < ω1 be an ordinal, Σ = {α1, α2, . . .} be an infinite countable

alphabet, υ /∈ Σ a variable, ~k = (kn)n∈N ⊆ N an increasing sequence and ~s ∈ L∞(Σ, ~k; υ).

sO~s1

(

(Lξ(Σ, ~k; υ) ∩ EV <∞(~s))∗

)

= ξ + 1 for every ~s1 ≺ ~s.

Proof. The family (Lξ(Σ, ~k; υ)∩EV <∞(~s))∗ is hereditary and pointwise closed (Proposi-

tion 3.6). We will prove by induction on ξ that
(

(Lξ(Σ, ~k; υ) ∩ EV <∞(~s))∗

)ξ

~s1

= {∅} for

every ~s1 ≺ ~s and ξ < ω1. Since (L1(Σ, ~k; υ) ∩ EV <∞(~s))∗ = {(t) : t ∈ EV (~s)} ∪ {∅}, we

have
(

(L1(Σ, ~k; υ) ∩ EV <∞(~s))∗

)1

~s1

= {∅} for every ~s1 ≺ ~s.

Let ξ > 1 and assume that
(

(Lζ(Σ, ~k; υ) ∩ EV <∞(~s))∗

)ζ

~s1

= {∅} for every ~s1 ≺ ~s and

ζ < ξ. For every t ∈ EV (~s) with min dom(t) = n, according to Proposition 2.4, we have

(Lξ(Σ, ~k; υ) ∩ EV <∞(~s))(t) = Lξn(Σ, ~k; υ) ∩ EV <∞(~s − t) for some ξn < ξ.

Hence, for every ~s1 ≺ ~s and t ∈ EV (~s1) with min t = n we have that
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(

(Lξ(Σ, ~k; υ) ∩ EV <∞(~s))(t)∗

)ξn

~s1

=
(

(Lξn(Σ, ~k; υ) ∩ EV <∞(~s − t))∗

)ξn

~s1

= {∅}.

This gives that (t) ∈
(

(Lξ(Σ, ~k; υ)∩EV <∞(~s))∗

)ξn

~s1

. So, ∅ ∈
(

(Lξ(Σ, ~k; υ)∩EV <∞(~s))∗

)ξ

~s1

,

since if ξ = ζ + 1, then (t) ∈
(

(Lξ(Σ, ~k; υ)∩EV <∞(~s))∗

)ζ

~s1

for every t ∈ EV (~s1) and if ξ

is a limit ordinal, then ∅ ∈
(

(Lξ(Σ, ~k; υ)∩EV <∞(~s))∗

)ξn

~s1

for every n ∈ N and sup ξn = ξ.

If {∅} 6=
(

(Lξ(Σ, ~k; υ) ∩ EV <∞(~s))∗

)ξ

~s1

for ~s1 ≺ ~s, then there exist ~s2 ≺ ~s1 and s ∈

EV (~s2) such that
(

(Lξ(Σ, ~k; υ)∩EV <ω(~s))(s)∗

)ξ

~s2

6= ∅ (see Theorem 1.18 in [F2]). This is

a contradiction to the induction hypothesis. Hence,
(

(Lξ(Σ, ~k; υ)∩EV <∞(~s))∗

)ξ

~s1

= {∅}

and sO~s1
((Lξ(Σ, ~k; υ) ∩ EV <∞(~s))∗) = ξ + 1 for every ξ < ω1. �

Corollary 3.10. Let ξ1, ξ2 be countable ordinals with ξ1 < ξ2 and ~w ∈ L∞(Σ, ~k; υ). Then

there exist ~u ≺ ~w such that

(Lξ1(Σ, ~k; υ))∗ ∩ EV <∞(~u) ⊆ (Lξ2(Σ, ~k; υ))∗ \ Lξ2(Σ, ~k; υ).

Proof. The family (Lξ1(Σ, ~k; υ))∗ ⊆ L<∞(Σ, ~k; υ) is a tree. According to Theorem 2.5

and Proposition 3.4 there exists ~u ≺ ~w such that:

either Lξ2(Σ, ~k; υ) ∩ EV <∞(~u) ⊆ (Lξ1(Σ, ~k; υ))∗,

or (Lξ1(Σ, ~k; υ))∗ ∩ EV <∞(~u) ⊆ (Lξ2(Σ, ~k; υ))∗ \ Lξ2(Σ, ~k; υ).

The first alternative of the dichotomy is impossible, since, according to Proposition 3.9

ξ2 + 1 = sO~u((L
ξ2(Σ, ~k; υ) ∩ EV <∞(~u))∗) ≤ sO~u((L

ξ1(Σ, ~k; υ))∗) = ξ1 + 1. �

The following Theorem 3.12, the main result in this Section, refines Theorem 2.5 in

case the partition family is a tree.

Definition 3.11. Let F ⊆ L<∞(Σ, ~k; υ) be a family of finite orderly sequences of variable

ω-located words over an infinite countable alphabet Σ, ordered according to the natural

numbers, dominated by an inccreasing sequence ~k = (kn)n∈N ⊆ N. We set

Fh = {w ∈ F : EV <∞(w) ⊆ F} ∪ {∅}.

Of course, Fh is the largest subfamily of F ∪ {∅} which is hereditary.

Theorem 3.12. Let Σ = {α1, α2, . . .} be an infinite countable alphabet, υ /∈ Σ a variable,
~k = (kn)n∈N ⊆ N an increasing sequence, F ⊆ L<∞(Σ, ~k; υ) a family of finite orderly

sequences of variable ω-located words which is a tree and ~w ∈ L∞(Σ, ~k; υ) an infinite

orderly sequence of variable ω-located words. Then we have the following cases:

[Case 1] The family Fh ∩ EV <∞(~w) is not pointwise closed.
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Then, there exists ~u ≺ ~w such that EV <∞(~u) ⊆ F .

[Case 2] The family Fh ∩ EV <∞(~w) is pointwise closed.

Then, setting

ζF
~w = sup{sO~u(Fh) : ~u ≺ ~w} ,

which is a countable ordinal, the following subcases obtain:

2(i) If ξ + 1 < ζF
~w , then there exists ~u ≺ ~w such that

Lξ(Σ, ~k; υ) ∩ EV <∞(~u) ⊆ F ;

2(ii) if ξ + 1 > ξ > ζF
~w , then for every ~w1 ≺ ~w there exists ~u ≺ ~w1 such that

Lξ(Σ, ~k; υ) ∩ EV <∞(~u) ⊆ L<∞(Σ, ~k; υ) \ F ;

(equivalently F ∩ EV <∞(~u) ⊆ (Lξ(Σ, ~k; υ))∗ \ Lξ(Σ, ~k; υ)) ; and

2(iii) if ξ + 1 = ζF
~w or ξ = ζF

~w , then there exists ~u ≺ ~w such that

either Lξ(Σ, ~k; υ)∩EV <∞(~u) ⊆ F or Lξ(Σ, ~k; υ)∩EV <∞(~u) ⊆ L<∞(Σ, ~k; υ)\F .

Proof. [Case 1] If the hereditary family Fh ∩ EV <∞(~w) is not pointwise closed, then,

according to Proposition 3.6, there exists ~u ∈ L∞(Σ, ~k; υ) such that EV <∞(~u) ⊆ Fh ∩

EV <∞(~w) ⊆ F . Of course, ~u ≺ ~w.

[Case 2] If the hereditary family Fh ∩EV <∞(~w) is pointwise closed, then ζF
~w is a count-

able ordinal, since the “usual” Cantor-Bendixson index O(Fh) of Fh into {0, 1}[D]<ω

is

countable (Remark 3.8(i)) and also sO~u(Fh) ≤ O(Fh) for every ~u ≺ ~w.

2(i) Let ξ + 1 < ζF
~w . Then there exists ~u1 ≺ ~w such that ξ + 1 < sO~u1

(Fh). According

to Theorem 2.5 and Proposition 3.4, there exists ~u ≺ ~u1 such that

either Lξ(Σ, ~k; υ) ∩ EV <∞(~u) ⊆ Fh ⊆ F ,

or Fh ∩ EV <∞(~u) ⊆ (Lξ(Σ, ~k; υ))∗ \ Lξ(Σ, ~k; υ) ⊆ (Lξ(Σ, ~k; υ))∗ ⊆ (Lξ(Σ, ~k; υ))∗.

The second alternative is impossible. Indeed, if Fh ∩ EV <∞(~u) ⊆ (Lξ(Σ, ~k; υ))∗, then,

according to Remark 3.8 and Proposition 3.9,

sO~u1
(Fh) ≤ sO~u(Fh) = sO~u(Fh ∩ EV <∞(~u)) ≤ sO~u((L

ξ(Σ, ~k; υ))∗) = ξ + 1;

a contradiction. Hence, Lξ(Σ, ~k; υ) ∩ EV <∞(~u) ⊆ F .

2(ii) Let ξ + 1 > ξ > ζF
~w and ~w1 ≺ ~w. According to Theorem 2.5, there exists ~u1 ≺ ~w1

such that

either LζF
~w (Σ, ~k; υ)∩EV <∞(~u1) ⊆ Fh, or LζF

~w (Σ, ~k; υ)∩EV <∞( ~u1) ⊆ L<∞(Σ, ~k; υ)\Fh.

The first alternative is impossible. Indeed, if LζF
~w (Σ, ~k; υ) ∩ EV <∞(~u1) ⊆ Fh, then,

according to Remark 3.8 and Proposition 3.9, we have that
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ζF
~w + 1 = sO~u1

((LζF
~w (Σ, ~k; υ) ∩ EV <∞(~u1))∗) ≤ sO~u1

(Fh) ≤ ζF
~w ;

a contradiction. Hence,

(1) LζF
~w (Σ, ~k; υ) ∩ EV <∞(~u1) ⊆ L<∞(Σ, ~k; υ) \ Fh .

According to Theorem 2.5, there exists ~u ≺ ~u1 such that

either Lξ(Σ, ~k; υ) ∩EV <∞(~u) ⊆ F , or Lξ(Σ, ~k; υ)∩EV <∞(~u) ⊆ L<∞(Σ, ~k; υ) \ F .

We claim that the first alternative does not hold. Indeed, if Lξ(Σ, ~k; υ)∩EV <∞(~u) ⊆ F ,

then (Lξ(Σ, ~k; υ) ∩ EV <∞(~u))∗ ⊆ F∗ = F . Using the canonical representation of every

infinite orderly sequence of variable located words with respect to Lξ(Σ, ~k; υ) (Proposi-

tion 3.3) it is easy to check that

(Lξ(Σ, ~k; υ))∗ ∩ EV <∞(~u) = (Lξ(Σ, ~k; υ) ∩ EV <∞(~u))∗ .

Hence, (Lξ(Σ, ~k; υ))∗ ∩ EV <∞(~u) ⊆ F .

Since ξ > ζF
~w , according to Corollary 3.10, there exists ~t ≺ ~u such that

(LζF
~w (Σ, ~k; υ))∗ ∩ EV <∞(~t) ⊆ (Lξ(Σ, ~k; υ))∗ ∩ EV <∞(~u) ⊆ F .

So, (LζF
~w (Σ, ~k; υ))∗ ∩ EV <∞(~t) ⊆ Fh. This is a contradiction to the relation (1). Hence,

Lξ(Σ, ~k; υ)∩EV <∞(~u) ⊆ L<∞(Σ, ~k; υ)\F and F∩EV <∞(~u) ⊆ (Lξ(Σ, ~k; υ))∗\Lξ(Σ, ~k; υ).

2(iii) In the cases ζF
~w = ξ + 1 or ζF

~w = ξ, we use Theorem 2.5. �

The following immediate corollary to Theorem 3.12 is more useful for applications.

Corollary 3.13. Let Σ = {α1, α2, . . .}, υ /∈ Σ, ~k = (kn)n∈N ⊆ N an increasing sequence,

F ⊆ L<∞(Σ, ~k; υ) which is a tree and let ~w ∈ L∞(Σ, ~k; υ). Then

(i) either there exists ~u ≺ ~w such that EV <∞(~u) ⊆ F ,

(ii) or for every countable ordinal ξ > ζF
~w there exists ~u ≺ ~w, such that for every

~u1 ≺ ~u the unique initial segment of ~u1 which is an element of Lξ(Σ, ~k; υ) belongs

to L<∞(Σ, ~k; υ) \ F .

Theorem 3.12 implies the following Nash-Williams type partition theorem for variable

ω-located words.

Theorem 3.14 (Partition theorem for infinite orderly sequences of variable ω-located words).

Let Σ = {α1, α2, . . .} be an infinite countable alphabet, υ /∈ Σ a variable, ~k = (kn)n∈N ⊆ N

an increasing sequence. If U ⊆ L∞(Σ, ~k; υ) is a pointwise closed family of infinite orderly

sequences of variable ω-located words and ~w ∈ L∞(Σ, ~k; υ) an infinite orderly sequence of

variable ω-located words, then there exists ~u ≺ ~w such that

either EV ∞(~u) ⊆ U , or EV ∞(~u) ⊆ L∞(Σ, ~k; υ) \ U .
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Proof. Let FU = {w ∈ L<∞(Σ, ~k; υ): there exists ~s ∈ U such that w ∝ ~s}. Since the

family FU is a tree, we can use Corollary 3.13. So, we have the following two cases:

[Case 1] There exists ~u ≺ ~w such that EV <∞(~u) ⊆ FU . Then, EV ∞(~u) ⊆ U . Indeed, if

~z = (zn)n∈N ∈ EV ∞(~u), then (z1, . . . , zn) ∈ FU for every n ∈ N. Hence, for each n ∈ N

there exists ~sn ∈ U such that (z1, . . . , zn) ∝ ~sn. Since U is pointwise closed, we have that

~z ∈ U and consequently that EV ∞(~u) ⊆ U .

[Case 2] There exists ~u ≺ ~w such that for every ~u1 ≺ ~u there exists an initial segment of

~u1 which belongs to L<∞(Σ, ~k; υ) \ FU . Hence, EV ∞(~u) ⊆ L∞(Σ, ~k; υ) \ U . �

Remark 3.15. (i) The particular case of Theorem 3.14, where the sequence ~k = (kn)n∈N ⊆

N satisfies the condition kn = k1 for every n ∈ N, implies Bergelson-Blass-Hindman’s

Theorem 6.1 in [BBH], while the case kn = 1 for n ∈ N of Theorem 3.12 coincides with

Theorem 4.6 in [FN1].

We will give now a partition theorem for infinite orderly sequences of unlocated ω-

words, as a consequence of Theorem 3.14. We set

W∞(Σ, ~k; υ) = {~w = (wn)n∈N : wn ∈ W (Σ, ~k; υ) and wn < wn+1 ∀ n ∈ N}.

For ~u ∈ W∞(Σ, ~k; υ) we define

RV ∞(~u) = {~w = (wn)n∈N ∈ W∞(Σ, ~k; υ) : wn ∈ RV (~u) ∀ n ∈ N}.

We say that a family U ⊆ W∞(Σ, ~k; υ) is pointwise closed iff {xσ(~s) : ~s ∈ U} is

closed in {0, 1}[D]<ω

with the product topology, where D = {(n, α) : n ∈ N, α ∈

{υ, α1, α2, . . . , αkn}}, and if ~s = (sn)n∈N ∈ W∞(Σ, ~k; υ), then xσ(~s) ∈ {0, 1}[D]<ω

is the

characteristic function of the subset σ(~s) = {sn : n ∈ N} of [D]<ω.

Theorem 3.16 (Partition theorem for infinite orderly sequences of variable ω-words). Let

Σ = {α1, α2, . . .} be an infinite countable alphabet, υ /∈ Σ a variable and ~k = (kn)n∈N ⊆ N

an increasing sequence. If U ⊆ W∞(Σ, ~k; υ) is a pointwise closed family of infinite se-

quences of variable ω-words and ~w ∈ W∞(Σ, ~k; υ) an infinite orderly sequence of variable

ω-words, then there exists a reduction ~u = (un)n∈N of ~w such that

either RV ∞(~u) ⊆ U , or RV ∞(~u) ⊆ W∞(Σ, ~k; υ) \ U .

Proof. Let φ : W∞(Σ, ~k; υ) → RV ∞(~w) ⊆ W∞(Σ, ~k; υ) be the function with φ((tn)n∈N) =

(un)n∈N, where, for tn = tn1 . . . tnλn+1
for every n ∈ N and λ1 = 0, we define for n ∈ N

un = Tpλn+1
(wλn+1) ⋆ . . . ⋆ Tpλn+1

(wλn+1
),

where for λn + 1 ≤ j ≤ λn+1, pj = 0 if tnj = υ and pj = µ if tnj = αµ for 1 ≤ µ ≤ kj.
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Let the function f : L(Σ ∪ {υ}, ~k) −→ W (Σ ∪ {υ}, ~k) which sends s = sn1
. . . snl

∈

L(Σ ∪ {υ}, ~k) to f(s) = t1 . . . tnl
∈ W (Σ ∪ {υ}, ~k) where tnj

= snj
for every 1 ≤ j ≤ l

and ti = α1 for every i ∈ {1, . . . , nl} \ {nj : 1 ≤ j ≤ l}. Also, let

f̃ : L∞(Σ, ~k; υ) −→ W∞(Σ, ~k; υ) with f̂((sn)n∈N) = (f(sn))n∈N.

The family f̂−1
(

φ−1(U)
)

⊆ L∞(Σ, ~k; υ) is pointwise closed, since the functions φ, f̂ are

continuous. So, according to Corollary 3.14, there exists ~s = (sn)n∈N ∈ L∞(Σ, ~k; υ) such

that either EV ∞(~s) ⊆ f̂−1
(

φ−1(U)
)

, or EV ∞(~u) ⊆ L∞(Σ, ~k; υ) \ f̂−1
(

φ−1(U)
)

.

Set tn = f(sn) for every n ∈ N and ~t = (tn)n∈N ∈ W∞(Σ, ~k; υ). Then

either RV ∞(~t) ⊆ (φ)−1(U), or RV ∞(~t) ⊆ W∞(Σ, ~r; υ) \ (φ)−1(U).

Let tn = tn1 . . . tnqn
for every n ∈ N. Set λ1 = 0 and un = Tpλn+1

(wλn+1)⋆. . .⋆Tpλn+1
(wλn+1

)

for every n ∈ N, where, for λn + 1 ≤ j ≤ λn+1, pj = 0 if tnj = υ and pj = µ if tnj = αµ for

some 1 ≤ µ ≤ kj. Then ~u = (un)n∈N is a reduction of ~w such that

either RV ∞(~u) ⊆ U , or RV ∞(~u) ⊆ W∞(Σ, ~k; υ) \ U . �

Remark 3.17. (i) Carlson’s partition theorem (Theorem 2 in [C]) is the particular case

of Theorem 3.16 where the sequence ~k = (kn)n∈N ⊆ N satisfies the condition kn = k1 for

every n ∈ N.

As a consequence of Theorem 3.14 we will state and prove partition theorems for the

infinite sequences in a commutative and in a noncommutative semigroup, respectively,

which are simultaneous extensions of the infinitary partition theorem of Milliken [M],

Taylor [T] and of van der Waerden theorem [vdW] for semigroups. For a sequence

(xn)n∈N in a semigroup (X, +), we set
[

FS
(

(xn)n∈N

)]ω
= {(yn)n∈N : yn ∈ FS

(

(xn)n∈N

)

and yn < yn+1 for every n ∈ N}.

For y = xn1
+ . . . + xnλ

, z = xm1
+ . . . + xmν ∈ FS

(

(xn)n∈N

)

we write y < z if nλ < m1.

For a set X let XN = {(xn)n∈N : xn ∈ X}. We endow the set XN with the product

topology (equivalently by the pointwise convergence topology).

Theorem 3.18. Let (X, +) be a commutative semigroup, ~k = (kn)n∈N ⊆ N an increasing

sequence and (yl,n)n∈N for every l ∈ N, sequences in X. If U ⊆ XN is a pointwise closed

family of XN, then there exist sequences (En)n∈N ⊆ [N]<ω
>0 , with En < En+1 for every

n ∈ N and (Hn)n∈N ⊆ [N]<ω
>0 , with Hn ⊆ En for every n ∈ N and a sequence (βn)n∈N ⊆ X

with βn =
∑

j∈En\Hn
ylnj ,j for 1 ≤ lnj ≤ kj such that for every function f : N → N with
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f(n) ≤ kn for every n ∈ N

either
[

FS
(

(βn +
∑

t∈Hn
yf(n),t)n∈N

)]ω
⊆ U , or

[

FS
(

(βn +
∑

t∈Hn
yf(n),t)n∈N

)]ω
⊆ XN \U .

Proof. Let the alphabet Σ = {1, 2, . . .} = N, υ = 0 and x0 ∈ X. We set y0, n = x0 for

every n ∈ N and let the function g : L(Σ, ~k; υ) → X with

g(wn1
. . . wnl

) =
∑l

i=1 ywni
, ni

for wn1
. . . wnl

∈ L(Σ, ~k; υ).

Let ĝ : L∞(Σ, ~k; υ) −→ XN with ĝ((wn)n∈N) = (g(wn))n∈N.

The family ĝ−1(U) ⊆ L∞(Σ, ~k; υ) is pointwise closed, since the functions ĝ is continuous.

So, according to Corollary 3.14, there exists ~w = (wn)n∈N ∈ L∞(Σ, ~k; υ) such that

either EV ∞(~w) ⊆ ĝ−1(U), or EV ∞(~w) ⊆ L∞(Σ, ~k; υ) \ ĝ−1(U).

Let wn = wn
qn
1
. . . wn

qn
ln

for every n ∈ N. We can suppose that wn
qn
1
, wn

qn
ln

∈ Σ for every

n ∈ N. Otherwise replace the sequence (wn)n∈N by the sequence (un)n∈N, where un =

T1(w3n−1) ⋆ w3n ⋆ T1(w3n+1). We set En = {qn
i : 1 ≤ i ≤ ln} the domain of wn,

Hn = {qn
i ∈ En : wn

qn
i

= υ} and βn =
∑

j∈En\Hn
ywn

j ,j ∈ X. �

Analogously, can be proved a partition theorem for the infinite sequences in a noncom-

mutative semigroup.

Theorem 3.19. Let (X, +) be a noncommutative semigroup, ~k = (kn)n∈N ⊆ N an in-

creasing sequence and (yl,n)n∈N for every l ∈ N, sequences in X. If U ⊆ XN is a pointwise

closed family of XN, then there exist sequences (En)n∈N ⊆ [N]<ω
>0 , with En < En+1 for

every n ∈ N, (mn)n∈N, En
1 < · · · < En

mn+1 such that En = En
1 ∪ . . . ∪ En

mn+1 for every

n ∈ N, Hn
1 , . . . , Hn

mn
with Hn

i ⊆ En
i for every 1 ≤ i ≤ mn, n ∈ N and βn

1 , . . . , βn
mn+1 ⊆ X

with βn
i =

∑

j∈En
i \H

n
i

ylnj ,j with 1 ≤ lnj ≤ kj if 1 ≤ i ≤ mn and βn
mn+1 =

∑

j∈Emn+1
ylnj ,j

with 1 ≤ lnj ≤ kj for every n ∈ N, such that for every function f : N → N with f(n) ≤ kn

for every n ∈ N

either
[

FS
(

(

(
∑mn

i=1(β
n
i +

∑

t∈Hn
i

yf(n), t)) + βn
mn+1

)

n∈N

)]ω

⊆ U ,

or
[

FS
(

(

(
∑mn

i=1(β
n
i +

∑

t∈Hn
i

yf(n), t)) + βn
mn+1

)

n∈N

)]ω

⊆ XN \ U .

4. The characterization of Ramsey partitions of infinite sequences of

variable ω-located words

As a consequence of Theorem 3.12 we prove, in Theorem 4.2 below, a partition theorem

for infinite sequences of variable ω-located words stronger than Theorem 3.14 involving a

topology TE on the space L∞(Σ, ~k; υ) stronger than the relative topology of L∞(Σ, ~k; υ)
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with respect to the product topology of {0, 1}[D]<ω

. A consequence of Theorem 4.2 (to-

gether with Corollary 4.5) is the characterization of Ramsey partitions of L∞(Σ, ~k; υ) in

terms of the Baire property in the topology TE (in Theorem 4.7). Using Theorem 4.7 can

be proved an analogous characterization of the Ramsey partitions of the set W∞(Σ, ~k; υ)

of all the sequences of variable ω-words.

We will define below the topology TE on the space L∞(Σ, ~k; υ), an analogue of the

Ellentuck topology on N defined in [E].

Definition 4.1. Let Σ = {α1, α2, . . .} be an infinite countable alphabet, υ /∈ Σ a variable

and ~k = (kn)n∈N ⊆ N an increasing sequence. We define the topology TE on L∞(Σ, ~k; υ)

as the topology with basic open sets of the form:

[t, ~s] = {~w ∈ L∞(Σ, ~k; υ) : t ∝ ~w and ~w − t ≺ ~s} ,

where t ∈ L<∞(Σ, ~k; υ) and ~s ∈ L∞(Σ, ~k; υ).

The topology TE is stronger than the relative topology of L∞(Σ, ~k; υ) with respect to

the product topology of {0, 1}[D]<ω

, which has basic open sets of the form

[t, ~e] = {~w ∈ L∞(Σ, ~k; υ) : t ∝ ~w}

where ~e = (en)n∈N with en : {n} → {υ} for every n ∈ N.

We denote by Û and U♦ the closure and the interior respectively of a family U ⊆

L∞(Σ, ~k; υ) in the topology TE. Then it is easy to see that

Û = {~w ∈ L∞(Σ, ~k; υ) : [t, ~w] ∩ U 6= ∅ for every t ∝ ~w} ; and

U♦ = {~w ∈ L∞(Σ, ~k; υ) : there exists t ∝ ~w such that [t, ~w] ⊆ U} .

If t = (t1, . . . , tk) ∈ L<∞(Σ, ~k; υ) and s = (s1, . . . , sl) ∈ L<∞(Σ, ~k; υ) with tk < s1,

then we set t⊙ s = (t1, . . . , tk, s1, . . . , sl) ∈ L<∞(Σ, ~k; υ).

Theorem 4.2. Let Σ = {α1, α2, . . .} be an infinite countable alphabet, υ /∈ Σ a variable,
~k = (kn)n∈N ⊆ N an increasing sequence, U ⊆ L∞(Σ, ~k; υ), t ∈ L<∞(Σ, ~k; υ) and ~w ∈

L∞(Σ, ~k; υ). Then

either there exists ~u ≺ ~w such that [t, ~u] ⊆ Û ,

or there exists a countable ordinal ξ0 = ζU
(s, ~w) such that for every ξ > ξ0 there exists

~u ≺ ~w − t with [t ⊙ s, ~u] ⊆ Lω(Σ, ~k; υ) \ U for every s ∈ Lξ(Σ, ~k; υ) ∩ EV <∞(~u).

We will give the proof after the following lemma which is analogous to Lemma 2.6.

Lemma 4.3. Let R ⊆ {[t, ~s] : t ∈ L<∞(Σ, ~k; υ) and ~s ∈ L∞(Σ, ~k; υ)} with the properties:
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(i) for every (t, ~s) ∈ L<∞(Σ, ~k; υ)×L∞(Σ, ~k; υ) there exists ~s1 ≺ ~s such that [t, ~s1] ∈ R;

and

(ii) for every [t, ~s] ∈ R and ~s1 ≺ ~s we have [t, ~s1] ∈ R.

Then, for every (t, ~w) ∈ L<∞(Σ, ~k; υ) × L∞(Σ, ~k; υ) there exists ~s ∈ [t, ~w] such that

[t⊙ s, ~u] ∈ R for every s ∈ EV <∞(~s − t) and ~u ≺ ~s − t.

Proof. Let t = (t1, . . . , tk) ∈ L<∞(Σ, ~k; υ) and ~w ∈ L∞(Σ, ~k; υ). We can assume that

~w − t = ~w. According to the assumption (i), there exists ~s1 ≺ ~w such that [t, ~s1] ∈ R.

Assume that ~sn ≺ · · · ≺ ~s1 ∈ L∞(Σ, ~k; υ) have been constructed and ~sn = (sn
i )i∈N for

every n ∈ N.

Set {s1, . . . , sλ} = EV <∞((s1
1, . . . , s

n
n)). According to (i), there exist ~s1

n+1 ≺ ~sn − sn
n

such that [t ⊙ s1, ~s
1
n+1] ∈ R, ~s2

n+1 ≺ ~s1
n+1 such that [t ⊙ s2, ~s

2
n+1] ∈ R, and finally

~sλ
n+1 ≺ ~sλ−1

n+1 ≺ ~sn − sn
n such that [t ⊙ sλ, ~s

λ
n+1] ∈ R. Set ~sn+1 = ~sλ

n+1 = (sn+1
i )i∈N. Then,

according to (ii), [t ⊙ si, ~sn+1] ∈ R for every 1 ≤ i ≤ λ.

Set ~s = (t1, . . . , tk, s
1
1, s

2
2, . . .) ∈ L∞(Σ, ~k; υ). Then ~s ∈ [t, ~w]. Let s ∈ EV <∞(~s − t)

with s 6= ∅. If n0 = min{n ∈ N : s ∈ EV <∞((s1
1, . . . , s

n
n))}, then [t ⊙ s, ~sn0+1] ∈ R. Let

~u ≺ ~s − t. Then [t ⊙ s, ~u] = [t ⊙ s, ~u − sn0

n0
] ∈ R, according to assumption (ii). If s = ∅,

then [t, ~s1] ∈ R, hence [t, ~u] ∈ R. �

Proof of Theorem 4.2. Let U ⊆ L∞(Σ, ~k; υ), t ∈ L<∞(Σ, ~k; υ) and ~w ∈ L∞(Σ, ~k; υ). Set

RU ={[w, ~s] : (w, ~s) ∈ L<∞(Σ, ~k; υ) × L∞(Σ, ~k; υ) and

either [w, ~s] ∩ U = ∅ or [w, ~s1] ∩ U 6= ∅ for every ~s1 ≺ ~s} .

It is easy to check that RU satisfies the assumptions (i) and (ii) of Lemma 4.3, hence,

there exists ~w1 ∈ [t, ~w] such that [t ⊙ s, ~w1] ∈ RU for every s ∈ EV <∞(~w1 − t). Set

F = {s ∈ EV <∞(~w1 − t) : [t ⊙ s, ~w2] ∩ U 6= ∅ for every ~w2 ≺ ~w1} .

The family F is a tree. Indeed, let s ∈ F and s1 ∝ s. Then [t ⊙ s1, ~w1] ∈ RU ,

since s1 ∈ EV <∞(~w1 − t). So, either [t ⊙ s1, ~w1] ∩ U = ∅, which is impossible, since

[t⊙ s, ~w1] ∩ U 6= ∅, or [t ⊙ s1, ~w2] ∩ U 6= ∅ for every ~w2 ≺ ~w1. Hence, s1 ∈ F .

We use Theorem 3.12 for F and ~w1 − t. We have the following cases:

[Case 1] There exists ~u ≺ ~w1 − t ≺ ~w such that EV <∞(~u) ⊆ F . This gives that

[t⊙ s, ~u1] ∩ U 6= ∅ for every s ∈ EV <∞(~u) and ~u1 ≺ ~u, which implies that [t, ~u] ⊆ Û .

[Case 2] There exists a countable ordinal ξ0 = ζU
(s, ~w) such that for every ξ > ξ0 there

exists ~u ≺ ~w1 − t ≺ ~w − t with Lξ(Σ, ~k; υ) ∩ EV <∞(~u) ⊆ L<∞(Σ, ~k; υ) \ F . Then

[t ∗ s, ~u] ⊆ L∞(Σ, ~k; υ) \ U for every s ∈ Lξ(Σ, ~k; υ) ∩ EV <∞(~u). �
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Applying Theorem 4.2 to partitions U that are closed (the pointwise closed families

are included in this class) or meager in the topology TE, we consider the following

consequences.

Corollary 4.4. Let U be a closed subset of L∞(Σ, ~k; υ) for the topology TE, t ∈ L<∞(Σ, ~k; υ)

and ~w ∈ L∞(Σ, ~k; υ). Then

either there exists ~u ≺ ~w such that [t, ~u] ⊆ U ,

or there exists a countable ordinal ξ0 = ζU
(s, ~w), such that for every ξ > ξ0 there exists

~u ≺ ~w − t such that [t⊙ s, ~u] ⊆ L∞(Σ, ~k; υ) \ U for every s ∈ Lξ(Σ, ~k; υ) ∩ EV <∞(~u).

Corollary 4.5. Let U be a subset of L∞(Σ, ~k; υ) meager in the topology TE, t ∈ L<∞(Σ, ~k; υ)

and ~w ∈ L∞(Σ, ~k; υ). Then, there exists a countable ordinal ξ0 such that for every

ξ > ξ0 there exists ~u ≺ ~w − t such that [t ⊙ s, ~u] ⊆ L∞(Σ, ~k; υ) \ U for every s ∈

Lξ(Σ, ~k; υ) ∩ EV <∞(~u).

Proof. We apply Theorem 4.2 for U . We will prove that the first alternative of the

dichotomy is impossible. Indeed, let ~u ≺ ~w such that [t, ~u] ⊆ Û . If U =
⋃

n∈N
Un with

(Ûn)♦ = ∅ for every n ∈ N, then we set

R ={[w, ~s] : w ∈ L<∞(Σ, ~k; υ), ~s ∈ L∞(Σ, ~k; υ) and

[w, ~s] ∩ Uk = ∅ for every k ∈ N with k ≤ |w|} ;

where |w| denotes the cardinality of the set σ(w).

The family R satisfies the conditions (i) and (ii) of Lemma 4.3. Indeed, according

to Theorem 4.2, for every w ∈ L<∞(Σ, ~k; υ), ~s ∈ L∞(Σ, ~k; υ) and k ∈ N there exists

~s1 ≺ ~s such that [w, ~s1] ∩ Uk = ∅, as it is impossible [w, ~s1] ⊆ Ûk. Thus R satisfies (i)

and obviously satisfies (ii). Hence, there exists ~u1 ∈ [t, ~u] such that [t ⊙ s, ~u1] ∈ R for

every s ∈ EV <∞(~u1 − t). Then, [t, ~u1] ∩ U = ∅. Indeed, let ~u2 ∈ [t, ~u1] ∩ U . Then,

~u2 ∈ [t, ~u1]∩Uk for some k ∈ N. Hence, there exists s ∈ EV <∞(~u1 − t) with t ⊙ s ∝ ~u2,

k ≤ |t ⊙ s| and [t ⊙ s, ~u1] ∩ Uk 6= ∅. Then, [t ⊙ s, ~u1] /∈ R. A contradiction, since

s ∈ EV <∞(~u1 − t). Thus, [t, ~u1] ∩ U = ∅ and consequently ~u1 /∈ Û . But ~u1 ∈ [t, ~u] ⊆ Û ,

a contradiction. Hence, the second alternative of Theorem 4.2 holds for U . �

Definition 4.6. A family U ⊆ L∞(Σ, ~k; υ) of infinite orderly sequences of variable ω-

located words is called completely Ramsey if for every t ∈ L<∞(Σ, ~k; υ) and every ~w ∈

L∞(Σ, ~k; υ) there exists ~u ≺ ~w such that

either [t, ~u] ⊆ U or [t, ~u] ⊆ L∞(Σ, ~k; υ) \ U .
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A consequence of Theorem 4.2 is the characterization of completely Ramsey families

of infinite orderly sequences of variable ω-located words.

Theorem 4.7. Let Σ = {α1, α2, . . .} be an infinite countable alphabet, υ /∈ Σ a variable

and ~k = (kn)n∈N ⊆ N an increasing sequence. A family U ⊆ L∞(Σ, ~k; υ) is completely

Ramsey if and only if U has the Baire property in the topology TE.

Proof. Let U ⊆ L∞(Σ, ~k; υ) have the Baire property in the topology TE. Then U =

B△C = (B ∩ Cc) ∪ (C ∩ Bc), where B ⊆ L∞(Σ, ~k; υ) is TE-closed and C ⊆ L∞(Σ, ~k; υ) is

TE-meager (Cc = L∞(Σ, ~k; υ)\C). Let t ∈ L<∞(Σ, ~k; υ) and ~w ∈ L∞(Σ, ~k; υ). According

to Corollary 4.4 and Proposition 3.3, there exists ~u1 ≺ ~w such that [t, ~u1] ⊆ Cc and

according to Corollary 4.5 there exists ~u ≺ ~u1 such that

either [t, ~u] ⊆ B ∩ [t, ~u1] ⊆ B ∩ Cc ⊆ U or [t, ~u] ⊆ Bc ∩ [t, ~u1] ⊆ Bc ∩ Cc ⊆ U c.

Hence, U is completely Ramsey.

On the other hand, if U is completely Ramsey, then U = U♦ ∪ (U \ U♦) and U \ U♦ is

a meager set in TE. Hence U has the Baire property in the topology TE. �
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