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Abstract. We prove an extended Ramsey type partition principle to every countable
order for every Banach space X with a Schauder base, exploiting the recursive thin
Schreier system (Bξ(X))ξ<ω1 of families of finite block bases of X; and we prove that
Gowers’s and Wagner’s Nash-Williams type partition theorems for Banach spaces are
concequences, in strengthened form, of this non-symmetric Ramsey principle.

Introduction

We prove, in Theorem 1.4 below, employing Schreier type ([S]) families, an extended to

every countable ordinal Ramsey type ([R]) partition principle for Banach spaces. This is a

partition principle for each countable order for tree-less partitions in the class Σ<ω(X) of

all finite normalized block bases of a Banach space X with a Schauder basis. The vehicle

for stating and proving this theorem is the recursive thin Schreier system (Bξ(X))ξ<ω1 of

families of finite normalized block bases of X (Definition 1.2). We remark that in case

ξ < ω is a finite ordinal, the family Bξ(X) consists of all the normalized block bases

with ξ blocks. Moreover, for partitions that are trees, we establish, in Theorem 2.5, a

criterion, exploiting the notion of the ordinal index of a tree given in [Bou], for deciding

which horn of the dichotomy proved in Theorem 1.4 actually holds for each countable

ordinal.

In the context of Banach spaces the search for a symmetric Ramsey principle (as real-

ized by Gowers in [G1], [G2] ) rendered impossible by the appearance of the phenomenon

of distortion (Milman [M], Odell-Schlumprecht [OS]), and the only prospect is for a non-

symmetrical extended Ramsey principle strong enough to imply Gowers partition theorem

([G2, Theorem 2.1]), which has the character of a Nash-Williams type ([NW])theorem in

Banach space theory. In fact, both Gowers’s partition theorem and Wagner’s strength-

ened ”quantified” version in [W, Corollary 10] are derived, in strengthened form, from

our extended Ramsey-type partition principle (Theorem 1.4).
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In the case of the Banach space X = c0, can be proved, following essentially the in-

ductive procedure of Theorem 1.4, an extended (to every countable ordinal ξ) symmetric

Ramsey type partition theorem for c0, where the initial step ξ = 1 in induction is played

by a result of Gowers proved in [G1]. That such a symmetric principle exists is due to

the absence of distortion in X = c0; the work of Milman ([M]) and Odell-Schlumprecht

([OS]) shows that such a symmetric Ramsey principle holds essentially only for Banach

spaces containing c0.

Notation. Let (X, ‖ ‖) be an infinite dimensional Banach space with a normalized

Schauder basis (en)n∈N (for every x ∈ Xthere is a unique sequence of scalars (λn)n∈N

such that x =
∑∞

n=1 λnen). A block of (en)n∈N is a finite linear combination of elements

of (en)n∈N. The support of a non-zero block s =
∑k

i=1 λieni , written supp(s), is the subset

(n1 < · · · < nk) of natural numbers if λi 6= 0 for all 1 ≤ i ≤ k. We write s < t for two

non-zero blocks of (en)n∈N if max supp s < min supp t. A block basis of X is a (finite or

infinite) sequence of non-zero blocks (sn) with s1 < s2 < · · · . It is a Schauder basis for

the closed linear subspace of X genereted by {sn : n ∈ N}.
An infinite dimensional closed subspace Y of X with Schauder basis a block basis

(yn)n∈N of X is called a block subspace of X and we will use the notation Y < X to

express it. Of course, if Y < X and Z < Y then Z < X. For a block subspace Y of X

we set

Σ(Y ) = {s ∈ Y : ‖s‖ = 1 and s =
k∑
i=1

λiei for some k ∈ N and scalars λ1, . . . , λk};

Σ<ω(Y ) = {(s1, . . . , sk) : k ∈ N, and s1 < · · · < sk ∈ Σ(Y )}; and

Σω(Y ) = {(sn)n∈N : (sn)n∈N ⊆ Σ(Y ) and s1 < s2 < · · · }.
Let Φ ⊆ Σ<ω(X), s ∈ Σ(X), Y < X and δ = (δn)n∈N ⊆ R+. We set

Φδ = {(s1, . . . , sk) ∈ Σ<ω(X) : there exists (t1, . . . , tk) ∈ Φ such that ‖si − ti‖ < δi and

supp si = supp ti for all 1 ≤ i ≤ k};
Φ−δ = {(s1, . . . , sk) ∈ Φ : (t1, . . . , tk) ∈ Φ for every (t1, . . . , tk) ∈ Σ<ω(X) such that

‖si − ti‖ < δi and supp si = supp ti for all 1 ≤ i ≤ k};
Φ(s) = {(s1, . . . , sk) ∈ Σ<ω(X) : (s, s1, . . . , sk) ∈ Φ} ; and

Φ− s = {(s1, . . . , sk) ∈ Φ : s < s1 < · · · < sk}.
It is easy to prove that (Φ−δ)δ ⊆ Φ ⊆ (Φδ)−δ, (Φc)δ = (Φ−δ)c, where Φc = Σ<ω(X) \ Φ.

Let Y be the subspace of X generated by a block basis (yn)n∈N of X and s ∈ Σ(X).

We denote by Y − s the block subspace of Y generated by {yn : n ∈ N and s < yn}. We

write s < Y if Y = Y − s.
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Let M be an infinite subset of N. We denote by [M ]<ω>0 the set of all non-empty, finite

subsets of M , [M ]<ω the set of all finite subsets of M and [M ] the set of all the infinite

subsets of M , considering them as strictly increasing sequences. For a family A of finite

subsets of N and n ∈ N we set

A(n) = {s ∈ [N]<ω : {n} < s and {n} ∪ s ∈ A};
A∗ = {s ∈ [N]<ω : s is an initial segment of some t ∈ A}; and

A∗ = {s ∈ [N]<ω : s is a subset of some t ∈ A}.

To save writing let us assume from now on that all the Banach spaces and subspaces are

infinite dimensional and that all the Banach spaces with a (Schauder) basis are endowed

with a normalized Schauder basis.

1. A Ramsey type dichotomy for each countable ordinal

In this section we shall state and prove our fundamental result Theorem 1.4. This is a

Ramsey type partition theorem for each countable ordinal stated for a Banach space X

with a Schauder basis. The vehicle for stating and proving this theorem is the recursive

thin Schreier system (Bξ(X))ξ<ω1 of families of finite block bases of X.

For the definition of the families Bξ(X) for ξ < ω1 we use the thin Schreier families Aξ
of finite sets of natural numbers defined initially in [F2] and completelly in [F3].

Definition 1.1 (The recursive thin Schreier systems (Aξ)ξ<ω1 , [F3, Def. 1.4]). For every

non-zero, countable, limit ordinal λ choose and fix a strictly increasing sequence (λn)n∈N

of successor ordinals with supn λn = λ. The system (Aξ)ξ<ω1 is defined recursively as

follows:

(1) A0 = {∅} and A1 = {{n} : n ∈ N};
(2) Aζ+1 = {s ∈ [N]<ω>0 : s = {n} ∪ s1, where n ∈ N, {n} < s1 and s1 ∈ Aζ};
(3i) Aωβ+1 = {s ∈ [N]<ω>0 : s =

⋃n
i=1 si, where n = min s1, s1 < · · · < sn and

s1, . . . , sn ∈ Aωβ};
(3ii) for a non-zero, countable limit ordinal λ,

Aωλ = {s ∈ [N]<ω>0 : s ∈ Aωλn with n = min s}; and

(3iii) for a limit ordinal ξ such that ωα < ξ < ωα+1 for some 0 < α < ω1, if

ξ = ωα.p +
∑m

i=1 ω
ai .pi, where m ∈ N with m ≥ 0, p, p1, . . . , pm are natural

numbers with p, p1, . . . , pm ≥ 1 (so that either p > 1, or p = 1 and m ≥ 1) and

a, a1, . . . , am are ordinals with a > a1 > · · · am > 0,

Aξ = {s ∈ [N]<ω>0 : s = s0 ∪ (
⋃m
i=1 si) with sm < · · · < s1 < s0, s0 = s0

1 ∪ · · · ∪ s0
p
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with s0
1 < · · · < s0

p ∈ Aωa , and si = si1 ∪ · · · ∪ sipi with si1 < · · · < sipi ∈ Aωai
∀ 1 ≤ i ≤ m}.

Definition 1.2 (Recursive thin Schreier systems (Bξ(X))ξ<ω1 in a Banach space X). Let

X be a Banach space with a basis (en)n∈N and (Aξ)ξ<ω1 a recursive thin Schreier system.

For every 0 < ξ < ω1 we define the family Bξ(X) of finite block bases of X as follows:

B1(X) = {(s) : s ∈ Σ(X)}; and

Bξ(X) = {(s1, . . . , sk) ∈ Σ<ω(X) : (min supp s1, . . . ,min supp sk) ∈ Aξ} for ξ > 1.

The following proposition justifies the term “recursive” of the systems (Bξ)ξ<ω1 .

Proposition 1.3. Let X be a Banach space with a basis and (Bξ(X))ξ<ω1 a recursive thin

Schreier system in X. For every countable ordinal ξ ≥ 1 there exists a sequence (ξn)n∈N

of countable ordinals with ξn < ξ, such that for every s ∈ Σ(X) with min supp s = n

Bξ(X)(s) = Bξn(X) ∩ (Σ<ω(X)− s) .

Moreover, ξn = ζ for every n ∈ N if ξ = ζ+1 and (ξn)n∈N is a strictly increasing sequence

with supn ξn = ξ if ξ is a limit ordinal.

Proof. According to Theorem 1.6 in [F3], for every countable ordinal ξ > 0 there exists a

countable ordinal ξn < ξ such that Aξ(n) = Aξn ∩ [{n+ 1, n+ 2, . . .}]<ω for every n ∈ N.

Moreover, ξn = ζ for every n ∈ N if ξ = ζ + 1 and (ξn) is a strictly increasing sequence

with supn ξn = ξ if ξ is a limit ordinal.

Hence, Bξ(X)(s) = Bξn(X)∩ (Σ<ω(X)− s) for every s ∈ Σ(X) with min supp s = n. �

Gowers in [G2] defined the following game between two players S and P . Let Y be

a block subspace of X and Ψ ⊆ Σ<ω(X) a family of finite block bases of X, then the

game Ψ[Y ] is defined as follows: in the nth move of the game, at first S chooses a block

subspace Zn of Y , and then player P chooses some vector sn ∈ Zn. The aim of P is to

construct a sequence (s1, . . . , sk) ∈ Ψ in some move k. A winning strategy for P , in this

game Ψ[Y ], is a function ϕ (which, for any finite block basis s1, . . . , sn and any block

subspace Z of Y gives a vector s = ϕ(s1, . . . , sn, Z) ∈ Z) such that given any sequence

Z1, Z2, . . . of block subspaces of Y , there exists k ∈ N such that the sequence (s1, . . . , sk)

defined inductively by s1 = ϕ(∅, Z1), si = ϕ(s1, . . . , si−1, Zi) for i ≤ k belongs to Ψ.

Theorem 1.4. Let X be a Banach space with a basis and Φ ⊆ Σ<ω(X) be a family of

finite block bases of X. For every countable ordinal ξ, every block subspace Y of X and

δ = (δn)n∈N ⊆ R+ there exists a block subspace Y0 of Y such that:
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either (i) Bξ(X) ∩ Σ<ω(Y0) ⊆ Φ;

or (ii) the player P has a winning strategy for the game
(
Bξ(X) ∩ (Φc)δ

)
[Y0].

In the proof of this theorem we will make use of a diagonal argument contained in the

following lemma, which is a modification of Corollary 2.3 in [G2].

Notation. For a block subspace Y of X we define ΠY = {(s, Z) : s ∈ Σ(Y ), Z < Y −s}.
If G ⊆ ΠY and δ > 0, then

Gδ = {(s, Z) ∈ Π : there exists s′ ∈ Σ(Y ) such that

supp s′ = supp s, ‖s− s′‖ < δ, (s′, Z) ∈ G} .

Lemma 1.5. Let Y be a block subspace of X, δ > 0 and G ⊆ ΠY with the properties:

(1) for every (s, Z) ∈ ΠY there exists (s, Z1) ∈ G with Z1 < Z; and

(2) if (s, Z1) ∈ G and Z2 < Z1, then (s, Z2) ∈ G.

Then, there exists Z < Y such that (s, Z1) ∈ Gδ for every s ∈ Σ(Z) and Z1 < Z − s.

Proof. Let Y0 = Y and y1 ∈ Σ(Y ). We assume that Yn−1 < · · · < Y1 < Y0 and yn ∈
Yn−1, . . . , y1 ∈ Y0 with (y1, . . . , yn) ∈ Σ<ω(X) have been chosen. If [y1, . . . , yn] is the

subspace of Y generated by the vectors y1, . . . , yn, then there exist mn ∈ N and vectors

sn1 , . . . , s
n
mn in the unit sphere of [y1, . . . , yn] so that for every s in the unit sphere of

[y1, . . . , yn] there exists sni ∈ {sn1 , . . . , snmn} with supp sni = supp s and ‖sni − s‖ < δ.

By the property (1) of G, there exist block subspaces Zn
mn < · · · < Zn

1 < Yn−1 so that

(sni , Z
n
i ) ∈ G for all 1 ≤ i ≤ mn. Set Yn = Zmn and choose yn+1 ∈ Σ(Yn) with yn+1 > yn.

The block subspace Z of Y with basis (yn)n∈N satisfies the conclusion. Indeed, let

s ∈ Σ(Z) and let n be the minimum natural number such that s be in the unit sphere

of [y1, . . . , yn]. Let Z1 < Z − s < Yn. Then there exist 1 ≤ i ≤ mn and sni ∈ Σ(Y ) with

supp sni = supp s, ‖sni − s‖ < δ and (sni , Yn) ∈ G. According to property (2) (sni , Z1) ∈ G.

This gives that (s, Z1) ∈ Gδ. �

Exploiting the recursive nature of the Schreier system (Bξ(X))ξ<ω1 we will prove by

induction the following theorem, which is equivalent to the main Theorem 1.4.

Theorem 1.6. Let X be a Banach space with a basis and Φ ⊆ Σ<ω(X). For every

countable ordinal ξ, every block subspace Y of X and δ = (δn)n∈N ⊆ R+, there exists a

block subspace Y0 of Y such that:

either Bξ(X) ∩ Σ<ω(Y0) ⊆ Φδ;

or the player P has a winning strategy for the game
(
Bξ(X) ∩ (Φc)δ

)
[Y0].
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Proof. Let ξ = 1. Then, either there exists Y0 < Y such that B1(Y0) ⊆ Φ; or for every

Z1 < Y we have B1(Z1) ∩ Φc 6= ∅.
Let ξ > 1. We assume that the theorem is valid for every ζ < ξ. Let s ∈ Σ(Y ) with

min supp s = n and Z0 < Y − s. According to Proposition 1.3, there exists ξn < ξ such

that Bξ(X)(s) = Bξn(X) ∩ (Σ<ω(X) − s). Using the induction hypothesis for Φ(s), Z0,

ξn and δ1 = (δ2, δ3, . . .), we have that there exists Z < Z0 such that

either Bξn(X) ∩ Σ<ω(Z) ⊆ (Φ(s))δ1 ;

or the player P has a winning strategy for the game
(
Bξn(X) ∩ ((Φ(s))c)δ1

)
[Z].

Then there exists Z < Z0 such that

either (i) Bξ(X)(s) ∩ Σ<ω(Z) ⊆ (Φ(s))δ1 ;

or (ii) the player P has a winning strategy for the game
(
Bξ(X)(s)∩ ((Φ(s))c)δ1

)
[Z].

Let G = {(s, Z) : s ∈ Σ(Y ), Z < Y , s < Z and (s, Z) satisfies either (i) or (ii)}. The

family G satisfies the condition (1) of Lemma 1.5 (by the above argument) and also the

condition (2) (obviously), hence there exists Y1 < Y such that (s, Z) ∈ Gδ1 for every

s ∈ Σ(Y1) and Z < Y1 − s. Let

G1 = {(s, Z) ∈ G : (s, Z) satisfies (i)} and

G2 = {(s, Z) ∈ G : (s, Z) satisfies (ii)} .

Of course G = G1 ∪ G2, and Gδ1 = (G1)δ1 ∪ (G2)δ1 .

Set Ψ = {s ∈ Σ(Y1) : (s, Y1− s) ∈ (G1)δ1}. Then, either there exists Y0 < Y1 such that

Σ(Y0) ⊆ Ψ or Σ(Z) ∩Ψc 6= ∅ for every Z < Y1. Thus, there exists Y0 < Y1 < Y so that

either (s, Y1 − s) ∈ (G1)δ1 for every s ∈ Σ(Y0);

or for every Z < Y0 there exists s ∈ Σ(Z) such that (s, Y1 − s) ∈ (G2)δ1 .

Let (s, Y1 − s) ∈ (G1)δ1 for every s ∈ Σ(Y0) and let (s, s1, . . . , sk) ∈ Bξ(X) ∩ Σ<ω(Y0).

Then s ∈ Σ(Y0) and (s1, . . . , sk) ∈ Bξ(X)(s) ∩ Σ<ω(Y0). Since (s, Y1 − s) ∈ (G1)δ1 , there

exists s′ ∈ Σ(Y ) such that supp s′ = supp s, ‖s− s′‖ < δ1 and (s′, Y1 − s′) ∈ G1. Hence,

Bξ(X)(s′)∩Σ<ω(Y1− s′) ⊆ (Φ(s′))δ1 . Since (s′, s1, . . . , sk) ∈ Bξ(X) and Y0 < Y1 we have

(s1, . . . , sk) ∈ Bξ(X)(s′) ∩ Σ<ω(Y1 − s′) ⊆ (Φ(s′))δ1 . Then there exists (t1, . . . tk) ∈ Φ(s′)

with supp si = supp ti and ‖ti−si‖ < δi+1 for every 1 ≤ i ≤ k. So, (s′, t1, . . . , tk) ∈ Φ and

consequently (s, s1, . . . , sk) ∈ Φδ. This proves that Bξ(X)∩Σ<ω(Y0) ⊆ Φδ if (s, Y1− s) ∈
(G1)δ1 for every s ∈ Σ(Y0).

Now, let for every Z < Y0 there exists s ∈ Σ(Z) such that (s, Y1 − s) ∈ (G2)δ1 and let

(Zn)n∈N be a sequence of block subspaces of Y0. Then there exists s1 ∈ Σ(Z1) such that

(s1, Y1− s) ∈ (G2)δ1 . Set ϕ(∅, Z1) = s1. Since (s1, Y1− s) ∈ (G2)δ1 , there exists s ∈ Σ(Y )
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such that supp s1 = supp s, ‖s1−s‖ < δ1 and (s, Y1−s) ∈ G2. Hence, since Y0−s < Y1−s,
the player P has a winning strategy ϕ′ for the game

(
Bξ(X)(s) ∩ ((Φ(s))c)δ1

)
[Y0 − s].

So, the player P continuing the game with the strategy ϕ′ has a winning strategy ϕ (i.e.

ϕ(∅, Z1) = s1, ϕ(s1, Z) = ϕ′(∅, Z), and ϕ(s1, . . . , si−1, Z) = ϕ′(s2, . . . , si−1, Z) for all 2 <

i < k ) for the game
(
Bξ(X)∩ (Φc)δ

)
[Y0]. Indeed, if (s2, . . . , sk) ∈ Bξ(X)(s)∩ ((Φ(s))c)δ1 ,

then, (s, s2, . . . , sk) ∈ Bξ(X) and consequently (s1, s2, . . . , sk) ∈ Bξ(X) and also, since

there exists (t2, . . . , tk) ∈ (Φ(s))c with supp si = supp ti and ‖si − ti‖ < δi for every

2 ≤ i ≤ k, we have, (s, t2, . . . , tk) ∈ Φc and consequently (s1, s2, . . . , sk) ∈ (Φc)δ.

This finishes the proof. �

Proof of Theorem 1.4. Let δ1 = (δn/2)n∈N and Φ1 = Φ−δ1 . Applying Theorem 1.6 to Φ1

(with δ replaced by δ1), we have the existence of a block subspace Y0 of Y such that

either Bξ(X) ∩ Σ<ω(Y0) ⊆ (Φ1)δ1 = (Φ−δ1)δ1 ⊆ Φ;

or the player P has a winning for the game
(
Bξ(X) ∩ (Φc)δ

)
[Y0],

since ((Φ1)c)δ1 = ((Φ−δ1)c)δ1 ⊆ ((Φc)δ1)δ1 ⊆ (Φc)δ.

This finishes the proof. �

2. Strengthened Gowers’s partition theorem

The main result of this section is Theorem 2.5. This theorem, on the one hand consti-

tutes a strengthened form of Theorem 1.4, in case we restrict ourselves, not to arbitrary,

but only to partitions which are trees, characterizing which horn of the dichotomy ac-

tually holds for each countable ordinal, and on the other hand is a strengthened form

of Gowers’s partition theorem ([G2, Theorem 2.1]) standing and functioning as a Nash-

Williams theorem ([NW]) in Banach spaces. In the proof of our theorem we mainly use

Theorem 1.4 and also we exploit the notion of the ordinal index of a tree given in [Bou].

Definition 2.1. Let Φ ⊆ Σ<ω(X).

(i) Φ is a tree if Φ∗ = Φ, where

Φ∗ = {(s1, . . . , sk) ∈ Σ<ω(X) : ∃(t1, . . . , tm) ∈ Φ with k ≤ m and si = ti for all i ≤ k};
(ii) Φ is hereditary if Φ∗ = Φ, where

Φ∗ = {(s1, . . . , sk) ∈ Σ<ω(X) : ∃(t1, . . . , tm) ∈ Φ with {s1, . . . , sk} ⊆ [t1, . . . , tm]};
(iii) Φh (resp. Φt) is the largest subfamily of Φ which is hereditary (resp. a tree) and

Φh = {(s1, . . . , sk) ∈ Φ: Σ<ω([s1, . . . , sk]) ⊆ Φ};
Φt = {(s1, . . . , sk) ∈ Φ : (s1, . . . , sm) ∈ Φ for every m ≤ k};

(iv) Φ̄ = {(s1, . . . , sk) ∈ Σ<ω(X) : (s1, . . . , sk) ∈ Φδ for every δ = (δi)
k
i=1 ⊆ R+}.
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We will define now a metric d on Σ(X) stronger than the norm, which also makes

Σ(X) a Polish (separable, complete) space. This metric d has been defined and used

firstly in [F1].

Definition 2.2. Let X be a Banach space with a basis. We define a metric d on Σ(X)

as follows: If s, t ∈ Σ(X), then we set

d(s, t) = 1 if supp s 6= supp t ; and

d(s, t) = ‖s− t‖ if supp s = supp t .

Having the metric d on Σ(X), we say a tree Φ ⊆ Σ<ω(X) Td-closed if and only if

for every sequence ((sn1 , . . . , s
n
k))n∈N ⊆ Φ such that there exist s1, . . . , sk ∈ Σ(X) with

d(sni , si) −→
n

0 for every i = 1, . . . , k, we have (s1, . . . , sk) ∈ Φ, equivalently if Φ̄ = Φ.

A tree Φ ⊆ Σ<ω(X) is well founded if there is no sequence (sn)n∈N in Σ(X) satisfying

(s1, . . . , sn) ∈ Φ for every n ∈ N. A particular version of the Kunen-Martin theorem (see

[Bou]) gives that a Td-closed tree Φ is well founded if and only if it has countable ordinal

index (o(Φ) < ω1). The index o(Φ) of Φ is the smallest ordinal ξ so that Φξ = ∅, where

Φ0 = Φ,

Φξ+1 =
⋃∞
n=1{(s1, . . . , sn) ∈ Φξ : (s1, . . . , sn, s) ∈ Φξ for some s ∈ Σ(X)} for 0 < ξ < ω1,

Φξ =
⋂
β<ξ Φβ for a limit ordinal 0 < ξ < ω1.

Observe that if Φ is hereditary, then Φξ is hereditary for every 0 < ξ < ω1.

In the proof of our main theorem (Theorem 2.5) we will use the following propositions:

Proposition 2.3. Let X be a Banach space with a basis. For every countable ordinal ξ

and every block subspace Y of X, the hereditary family (Bξ(X) ∩ Σ<ω(Y ))∗ is Td-closed

and has ordinal index o((Bξ(X) ∩ Σ<ω(Y ))∗) equal to ξ.

Proof. Let k ∈ N, s1, . . . , sk ∈ Σ(X) and (sn1 , . . . , s
n
k) ∈ (Bξ(X) ∩ Σ<ω(Y ))∗ for every

n ∈ N such that limn d(sni , si) = 0 for all i ≤ k. Then for every 0 < ε1, . . . , εk < 1 there

exists n0 ∈ N such that supp sni = supp si, and ‖sni − si‖ < εi for every n ≥ n0 and i ≤ k.

Hence, (s1, . . . , sk) ∈ (Bξ(X) ∩ Σ<ω(Y ))∗. So, (Bξ(X) ∩ Σ<ω(Y ))∗ is Td-closed.

Since (B1(X)∩Σ<ω(Y ))∗ = {(s) : s ∈ Σ(Y )}, we have that o((B1(X)∩Σ<ω(Y ))∗) = 1.

Assume that o((Bζ(X)∩Σ<ω(Y ))∗) = ζ for every ζ < ξ. Then o((Bξ(X) ∩ Σ<ω(Y ))∗) = ξ.

Indeed, according to Proposition 1.3 and the inductive hypothesis, for every s ∈ Σ(Y )

with min supp s = n we have

o(((Bξ(X) ∩ Σ<ω(Y ))(s))∗) = o((Bξn(X) ∩ Σ<ω(Y − s))∗) = ξn < ξ,
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where ξn = ζ for every n ∈ N if ξ = ζ + 1 and (ξn)n∈N is a strictly increasing sequence

with supn ξn = ξ if ξ is a limit ordinal. By induction on ζ < ω1 we have

(s, s1, . . . , sk) ∈ ((Bξ(X) ∩ Σ<ω(Y ))∗)
ζ if (s1, . . . , sk) ∈ (((Bξ(X) ∩ Σ<ω(Y ))(s))∗)

ζ .

Let s ∈ Σ(Y ) with min supp s = n. Since (((Bξ(X)∩Σ<ω(Y ))(s))∗)
ζ 6= ∅ for every ζ < ξn

and ((Bξ(X) ∩ Σ<ω(Y ))∗)
ζ is a hereditary family, we have (s) ∈ ((Bξ(X) ∩ Σ<ω(Y ))∗)

ξn

and consequently that o((Bξ(X) ∩ Σ<ω(Y ))∗) ≥ ξ.

If o((Bξ(X)∩Σ<ω(Y ))∗) > ξ, then there exists s ∈ Σ(Y ) with min supp s = n such that

(s) ∈ ((Bξ(X)∩Σ<ω(Y ))∗)
ξ 6= ∅. Then (s) ∈ ((Bξ(X)∩Σ<ω(Y ))∗)

ξn+1 and consequently

(s, t) ∈ ((Bξ(X) ∩ Σ<ω(Y ))∗)
ξn for some t ∈ Σ(Y ). By induction on ζ < ω1 we have

(t) ∈ ((Bξk(X) ∩ Σ<ω(Y ))∗)
ζ for some k ≤ n, if (s, t) ∈ ((Bξ(X) ∩ Σ<ω(Y ))∗)

ζ

So, ((Bξk(X) ∩ Σ<ω(Y ))∗)
ξn 6= ∅ for some k ≤ n. A contradiction to the induction

hypothesis, since ξk ≤ ξn. Hence, o((Bξ(X) ∩ Σ<ω(Y ))∗) = ξ. �

Proposition 2.4. Let Φ ⊆ Σ<ω(X) be a tree and ξ1 < ξ2 two countable ordinals. If

there exists Y1 < X such that Bξ2(X)∩Σ<ω(Y1) ⊆ Φ, then there exists Y2 < Y1 such that

(Bξ1(X) ∩ Σ<ω(Y2))∗ ⊆ Φ.

Proof. Let (yi)i∈N be a normalized block basis of Y1, and M = (ni)i∈N, where

ni = min supp yi. According to Corollary 2.3 in [F3], there exists an infinite subset

L = (nli)i∈N of M such that (Aξ1)∗ ∩ [L]<ω ⊆ (Aξ2)∗ \ Aξ2 . Let Y2 be the subspace

of Y1 with basis (yli)i∈N. For every (s1, . . . , sk) ∈ (Bξ1(X) ∩ Σ<ω(Y1))∗ we have that

(min supp s1, . . . ,min supp sk) ∈ (Aξ1)∗ ∩ [L]<ω ⊆ (Aξ2)∗ \ Aξ2 . According to Theorem

1.14 in [F3], there exists (m1, . . . ,mp) ∈ [L]<ω ∩ Aξ2 with k < p, mj = min supp sj for

j ≤ k and max supp sk < mk+1. If mj = nlij for every k < j ≤ p, we set sj = ylij for

every k < j ≤ p. Then (s1, . . . , sp) ∈ Bξ2(X) ∩ Σ<ω(Y2) and consequently (s1, . . . , sk) ∈
(Bξ2(X) ∩ Σ<ω(Y1))∗ ⊆ Φ. Hence (Bξ1(X) ∩ Σ<ω(Y2))∗ ⊆ (Bξ2(X) ∩ Σ<ω(Y1))∗ ⊆ Φ. �

Theorem 2.5. Let X be a Banach space with a basis, Φ ⊆ Σ<ω(X) be a tree, Y a block

subspace of X, and δ = (δn)n∈N ⊆ R+. The following two cases occur:

[Case 1] There exists a block subspace Y0 of Y such that Σ<ω(Y0) ⊆ Φ .

[Case 2] There exists a countable ordinal

ξΦ
Y = min{1 ≤ ξ < ω1 : Bξ(X) ∩ Σ<ω(Z) ∩ Φc 6= ∅ for every Z < Y } (< ω1) , such that:

2(i) for every ξ < ξΦ
Y there exists a block subspace Y0 of Y with Bξ(X)∩Σ<ω(Y0) ⊆ Φ;

2(ii) for every ξ ≥ ξΦ
Y and every block subspace Z of Y , there exists a block subspace Y0

of Z so that the player P has a winning strategy for the game
(
Bξ(X)∩(Φc)δ

)
[Y0].
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Proof. Firstly, we will prove the theorem for a partition Φ which is a Td-closed tree.

[Case 1] Assume that for every ξ < ω1, there exists a block subspace Yξ of Y such that

Bξ(X) ∩ Σ<ω(Yξ) ⊆ Φ.

According to Proposition 2.4, we can assume that for every ξ < ω1, there exists a

block subspace Yξ of Y such that (Bξ(X) ∩Σ<ω(Yξ))∗ ⊆ Φh ⊆ Φ̄h (Definition 2.1). Since

Φ is a Td-closed tree, the family Φ̄h ∩ Σ<ω(Y ) is also a Td-closed tree in Σ<ω(X). We

claim that the tree Φ̄h ∩ Σ<ω(Y ) is not well founded. Indeed, if Φ̄h ∩ Σ<ω(Y ) was well

founded, then o(Φ̄h ∩ Σ<ω(Y )) = ξ0 < ω1 and consequently for ξ1 > ξ0 we would have,

according to Proposition 2.3, that ξ1 = o((Bξ1(X)∩Σ<ω(Yξ1))∗) ≤ o(Φ̄h∩Σ<ω(Y )) = ξ0 ,

a contradiction. So, Φ̄h ∩ Σ<ω(Y ) is not well founded and consequently there exists a

infinite block basis (sn)n∈N in Y such that (s1, . . . , sn) ∈ Φ̄h ∩ Σ<ω(Y ) for every n ∈ N.

The family Φ̄h is hereditary, so, if Y0 is the block subspace of Y with basis (sn)n∈N, then

Σ<ω(Y0) ⊆ Φ̄h ⊆ Φ̄ = Φ.

[Case 2] Assume that there exists ξ < ω1 such that Bξ(X)∩Σ<ω(Z)∩Φc 6= ∅ for every

block subspace Z of Y . Then ξΦ
Y is a countable ordinal.

(2i) Let ξ < ξΦ
Y . According to the definition of ξΦ

Y , there exists a block subspace Y0 of

Y such that Bξ(X) ∩ Σ<ω(Y0) ⊆ Φ.

(2ii) Let ξ ≥ ξΦ
Y and Z a block subspace of Y . According to Theorem 1.4, there exists

a block subspace Y0 of Z such that either Bξ(X) ∩ Σ<ω(Y0) ⊆ Φ; or the player P was a

winning strategy for the game
(
Bξ(X) ∩ (Φc)δ

)
[Y0]. The first alternative is impossible.

Indeed, if there exists a block subspace Y0 of Y such that Bξ(X) ∩ Σ<ω(Y0) ⊆ Φ, then

there exists a block subspace Y1 of Y0 such that BξΦ
Y (X) ∩ Σ<ω(Y1) ⊆ Φ, according to

Proposition 2.4. This is a contradiction to the definition of ξΦ
Y .

The proof for the case of a Td-closed tree Φ is complete.

Now, let Φ be an arbitrary tree. We use the above arguments for the Td-closed tree

Ψ = Φ−δ1 and δ1 = (δn/2)n∈N instead of δ. Then the proof follows from the facts that

Ψ̄ ⊆ (Φ−δ1)δ1 ⊆ Φ and that (Ψ̄c)δ1 ⊆ ((Φc)δ1)δ1 ⊆ (Φc)δ. �

Corollary 2.6. Let X be a Banach space with a basis, Φ be an arbitrary subset of

Σ<ω(X), Y a block subspace of X and δ = (δn)n∈N ⊆ R+. The following cases occur:

[Case 1] There exists a block subspace Y0 of Y such that Σ<ω(Y0) ⊆ Φ .

[Case 2] There exists a countable ordinal ζΦ
Y such that:

for every ξ < ζΦ
Y there exists a block subspace Y0 of Y with Bξ(X)∩Σ<ω(Y0) ⊆ Φ; and

for every ξ ≥ ζΦ
Y and every block subspace Z of Y , there exists a block subspace Y0 of

Z so that the player P has a winning strategy for the game
(
Bξ(X)∗ ∩ (Φc)δ

)
[Y0].
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Proof. We use Theorem 2.5 for Φt, Y and δ. The proof follows using the following fact : If

(s1, . . . , sk) ∈ Bξ(X)∩((Φt)
c)δ, then there exists ` ∈ N with ` ≤ k such that (s1, . . . , s`) ∈

Bξ(X)∗∩(Φc)δ. Indeed, if (s1, . . . , sk) ∈ ((Φt)
c)δ, then either (s1, . . . , sk) ∈ (Φc)δ or there

exists ` < k such that (s1, . . . , s`) ∈ (Φc)δ. �

Theorem 2.5 is a strengthened form of Gowers’s partition theorem:

Theorem (Gowers, [G2]). Let X be a Banach space with a basis, Φ be an arbitrary subset

of Σ<ω(X) and δ = (δn)n∈N ⊆ R+. Then

either there exists a block subspace Y0 of X such that Σ<ω(Y0) ⊆ Φ;

or there exists a block subspace Y0 of X such that player P has a winning strategy

for the game (Φc)δ[Y0].

References

[Bou] J. Bourgain, On convergent sequences of continuous functions, Bull Soc. Math. de Belgique 32
(1980), 235–249.

[F1] V. Farmaki, On Baire-1/4 functions and spreading models, Mathematika 341, (1994), 251–265.
[F2] V. Farmaki, Classifications of Baire-1 functions and c0-spreading models, Trans. Amer. Math.

Soc. 345 (2), (1994), 819–831.
[F3] V. Farmaki, Systems of Ramsey families, Atti Sem. Mat. Fis. Univ. Montena, L, (2002), 363–

379.
[G1] W. T. Gowers, Lipschitz functions on classical spaces, Europ. J. Combin. 13 (1992), 141–151.
[G2] W. T. Gowers, An infinite Ramsey theorem and some Banach space dichotomies, Annals of

Mathematics 156 (2002), 797–833.
[M] V. D. Milman, Spectrum of bounded continuous functions which are given on the unit sphere of

a Banach space, Funct. Anal. Appl. 3 (1969), 67–79.
[NW] C. St. J. A. Nash-Williams, On well quasiordering transfinite sequences, Proc. Camb. Phil. Soc.

61 (1965), 33–39.
[OS] E. Odell and T. Schlumprecht, The distortion problem, Acta Math. 173 (1994), 259–281.
[R] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (2) (1929), 264–286.
[S] J. Schreier, Ein gegenbeispiel zur theorie der schwachen knovergenz, Studia Math. 2 (1930),

58–62.
[W] R. Wagner, Finite high-order games and an inductive approach towards Gowers’s dichotomy,

Annals of Pure and Applied Logic 111 (2001), 39–60.

Department of Mathematics, University of Athens, Panepistemiopolis, Athens 157 84,
Greece
e-mail address of the author: vfarmaki@math.uoa.gr


