
A DICHOTOMY PRINCIPLE FOR UNIVERSAL SERIES

V. FARMAKI AND V. NESTORIDIS

Abstract. Applying results of the infinitary Ramsey theory, namely the dichotomy
principle of Galvin-Prikry, we show that for every sequence of scalars (αj)∞j=1, there
exists a subsequence (αkj

)∞j=1, such that either every subsequence of (αkj
)∞j=1 defines a

universal series, or every subsequence of (αkj
)∞j=1 does not define a universal series. In

particular examples we decide which of the two cases holds.

Introduction

The theory of universal series was initiated by Fekete (1914) (cf. [P]), followed by

Menchoff (1945)[M] (on universal trigonometric series) and Seleznev (1951)[Se]. Later,

in the results by Luh (1970)[L] and Chui-Parnes (1971)[CP], the approximation by the

partial sums of a universal power series holds outside the closure of the domain of defi-

nition. Nestoridis (1996)[N] strengthened these results, obtaining approximation on the

boundary, as well. There are further results on universal Faber series, Jacobi, Dirichlet

and Laurent series, and on harmonic expansions. We refer the reader to the two survey

papers by Grosse-Erdmann (1999)[G-E] and Kahane (2000)[K].

An abstract theory of universality is presented in [NP] and [BGNP], according to

which the existence of universal series is equivalent to a condition of simultaneous double

approximation by a finite linear combination in a family of simple functions forming a

vector space. The abstract theory covers most of the previously known cases and leads

to simplification of known proofs, since the condition of double approximation follows

from various classical approximation theorems (of Mergelyan, Runge, Weierstrass, Walsh

etc.). At the same time the abstract approach produces several new cases of universality,

such as those defined by means of the normal distribution, or in PDE’s.

The theory of Ramsey infinitary combinatorics contains the dichotomy results by Nash-

Williams (1965)[N-W] for open partitions, Galvin-Prikry (1973)[GP] for Borel partitions,

Silver(1970) [Si] for partitions determined by analytic sets, and the Ellentuck result

(1974)[E]. Extensions involving Schreier sets have been given by Farmaki (2004)[F], and
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by Farmaki-Negrepontis (2006)[FN1], (2008)[FN2]. These results, or others of the same

type, have found important applications in various branches of mathematics, notably in

Banach space theory; we refer the reader to the survey paper by Gowers (2003)[G].

In the present note we apply the Ramsey infinitary combinatorics to the theory of

universal series. The meeting point is the fact, shown by an appeal to Baire’s category

theorem, that under very general conditions, the set of universal series is empty, or equal

to a (dense) Gδ set in the suitable space ([G-E], [NP], [BGNP]). It is precisely this

fact that makes it possible to employ the Galvin-Prikry dichotomy theorem (stated in

Theorem 1.7 below) and prove that every scalar sequence possesses a subsequence, all of

whose subsequences are in the universal class U , defined in Section 1 below, or all are in

the complement of the class U in the space of all scalar sequences.

In Section 1 we give definitions of the class U , and of some classes of universal sequences

more complicated than U . In Section 2 we prove our main dichotomy result (Theorem 2.1)

for these special classes of universal sequences. The fact that these classes are exactly

(dense) Gδ subsets of specific Polish spaces, and not only residual, allows for the use of

the dichotomy principle of Galvin-Prikry for suitable partitions. Crucial to the proof is

the highly non-trivial result, attributed to Lusin and Souslin, mentioned in Theorem 1.6

below, according to which the 1-1 continuous image of a Borel set is Borel. In Section

3 we examine some particular concrete examples of universal series, for which we verify

the general dichotomy principle in a direct, elementary way, without recourse to Ramsey

theory (and to Theorem 2.1), deciding in addition which horn of the partition actually

holds.

There is a number of interesting questions on which we have no answer. It would

be desirable to have an effective criterion that allows us to decide which horn of the

dichotomy holds in every specific instance, in particular, when hereditary universality

actually holds.

1. Preliminaries and notation

We denote by N = {0, 1, 2, ...} the set of natural numbers, R the set of real numbers,

and C the set of complex numbers.

If M is an infinite subset of N, we denote by [M ] the set of all infinite subsets of M ,

considering them as strictly increasing sequences, and if s is a non-empty finite subset of

N, we set

[s, M ] = {s ∪ L ∈ [N] : L ∈ [M ] and max s < min L} if s 6= ∅ and [∅, M ] = [M ].
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Universal series. Fix a sequence (Xk, ρk)k≥1 of separable,metrizable topological vector

spaces over the field K = R or C, equipped with translation-invariant metrics ρk and fix

the sequences (xk
n)∞n=0 ⊆ Xk for every k ≥ 1.

Definition 1.1. A sequence (αn)∞n=0 ∈ KN belongs to the class U if for every k ≥ 1 the

set {
∑n

j=0 αjx
k
j : n ∈ N} is dense in Xk.

If U 6= ∅, each (αn)∞n=0 ∈ U is said to generate an unrestricted universal series.

Of special interest is the case where some elements of the class U satisfy certain re-

strictions. The restricted universal series are defined as follows:

We fix a vector subspace A of KN, and assume that A is equipped with a complete

metrizable vector space topology, induced by a translation-invariant metric d, such that

(i) the projections pm : A → K, (αn)∞n=0 → am are continuous for every m ∈ N, and

(ii) the set c00 = {(αn)∞n=0 ∈ KN : {n ∈ N : αn 6= 0} is finite } is a dense subset of A.

Definition 1.2. A sequence α = (αn)∞n=0 ∈ A belongs to the class UA if, for every k ≥ 1

and every x ∈ Xk, there exists a sequence (λn)∞n=1 ∈ N such that

ρk(
∑λn

j=0 αjx
k
j , x) → 0 as n →∞, and

d(
∑λn

j=0 αjej, α) → 0 as n →∞,

where e0 = (1, 0, 0, ...), e1 = (0, 1, 0, ...), e2 = (0, 0, 1, 0, ...),... .

Remark 1.3. In Definition 1.2, we can assume, without loss of generality, that λn+1 < λn

for all n ∈ N.

Definition 1.4. For every k ≥ 1, let T k
n : A → Xk, n ∈ N be a sequence of continuous

functions.

(1) A sequence α = (αn)∞n=0 ∈ A belongs to the set F1 if, for every k ≥ 1 and every

x ∈ Xk, there exists a sequence (λn)∞n=1 ∈ N such that

ρk(T
k
λn

(α), x) → 0 as n →∞.

(2) A sequence α = (αn)∞n=0 ∈ A belongs to the set F2 if, for every k ≥ 1 and every

x ∈ Xk, there exists a sequence (λn)∞n=1 ∈ N such that

ρk(T
k
λn

(α), x) → 0 as n →∞, and

d(
∑λn

j=0 αjej, α) → 0 as n →∞.

(3) A sequence α = (αn)∞n=0 ∈ A belongs to the set F3 if, for every k ≥ 1 and every

x ∈ Xk, there exists a sequence (λn)∞n=1 ∈ N such that

ρk(T
k
λn

(α), x) → 0 as n →∞,

d(
∑λn

j=0 αjej, α) → 0 as n →∞, and
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ρk(
∑λn

j=0 αjx
k
j , x) → 0 as n →∞.

We refer the reader to [G-E], [NP] and [BGNP] for definitions, results, and interesting

examples on the classes U , UA, and also for the proof of the following Proposition 1.5. A

sketch of the proof is included for completeness.

Proposition 1.5. Under the previous assumptions, the classes U ∩ A, UA, F1, F2 and

F3 are Gδ subsets of the space A. In particular for A = KN, the class U is a Gδ subset

of the space KN with the product topology.

Sketch of the proof. Let (yk
n)∞n=0 be a dense sequence in Xk for every k ≥ 1. For n, l, r, k ∈

N with r, k ≥ 1, consider the sets

E(n, l, r, k) = {α = (αn)∞n=0 ∈ A : ρk(
∑n

j=0 αjx
k
j , y

k
l ) < 1/r},

D(n, r) = {α = (αn)∞n=0 ∈ A : d(
∑n

j=0 αjej, α) < 1/r}, and

C(n, l, r, k) = {α = (αn)∞n=0 ∈ A : ρk(T
k
n (α), yk

l ) < 1/r}.
Under the assumptions for the space A, E(n, l, r, k), D(n, r), C(n, l, r, k) are open subsets

of A, and

U ∩ A =
⋂

l,r,k

⋃∞
n=0 E(n, l, r, k),

UA =
⋂

l,r,k

⋃∞
n=0

(
E(n, l, r, k) ∩D(n, r)

)
,

F1 =
⋂

l,r,k

⋃∞
n=0 C(n, l, r, k),

F2 =
⋂

l,r,k

⋃∞
n=0

(
C(n, l, r, k) ∩D(n, r)

)
,

F3 =
⋂

l,r,k

⋃∞
n=0

(
C(n, l, r, k) ∩D(n, r) ∩ E(n, l, r, k)

)
. �

Borel- Analytic sets. Let X, Y be Polish spaces (i.e. topological Hausdorff spaces,

each homeomorphic to a complete, metric, separable space), f : X → Y a continuous

function, and B a Borel subset of X. The image C = f(B) is not always a Borel subset of

Y , in fact all such subsets C of Y constitute the class of analytic subsets of Y . Moreover

the analytic subsets of Y are characterized as the results of Suslin operation on the class

of closed subsets of Y (see [Ke]).

We will use the following highly non-trivial result about Borel sets. A proof can be

found in Theorem 15.1 of the Kechris text [Ke].

Theorem 1.6 (Lusin, Souslin). Let X, Y be Polish spaces and f : X → Y a continuous

function. If B is a Borel subset of X, and f restricted to B is one to one, then f(B) is

a Borel subset of Y .

Infinitary combinatorics. Galvin and Prikry in [GP] proved the following fundamental

combinatorial result for infinite sequences of natural numbers.

4



Theorem 1.7. Let R be a family of infinite subsets of the space [N], endowed with the

relative topology in the space NN with the product topology. Assume that R is a Borel

subset of [N], and let s be a finite subset of N and M an infinite subset of N. Then there

exists L ∈ [M ] such that

either [s, L] ⊆ R,

or [s, L] ⊆ [N] \ R.

Silver in [Si] proved an analogous result in the more general case, whereR is an analytic

subset of the space [N], and Ellentuck in [E] formulated a still more general result.

2. The dichotomy principle

Combining the Galvin and Prikry combinatorial result of Theorem 1.7 with the result

of Lusin and Souslin about Borel sets (Theorem 1.6), we can prove a general dichotomy

for classes of universal series.

Theorem 2.1. Let A be a vector subspace of KN (K = R or C) which is equipped with

a complete metrizable vector space topology, induced by a translation-invariant metric d

and satisfies properties (i) and (ii) (as given in Section 1) and let G be a Borel subset of

the space A . Then for every sequence (αn)∞n=0 in K, every finite subset s of N and every

infinite subset M of N there exists an infinite subset L of M such that

either all the subsequences (αin)∞n=0 of (αn)∞n=0 with (in)∞n=1 ∈ [s, L] belong to G,

or all the subsequences (αin)∞n=0 of (αn)∞n=0 with (in)∞n=0 ∈ [s, L] belong to KN \ G.

In particular, the conclusion holds if we replace the class G by each of the classes

U ∩ A, UA, F1, F2 and F3 (defined in Section 1). For A = KN the conclusion holds for

G = U = U ∩ A as well.

Proof. We set R = {I = (in)∞n=0 ∈ [N] : (αin)∞n=0 ∈ G}, and we claim that the family R
is a Borel subset of the space [N], endowed with the relative product topology of NN.

Indeed, the function f : [N] → KN with f((in)∞n=0) = (αin)∞n=0 is continuous if [N] is

endowed with the relative product topology of NN and KN with the product topology.

Notice that R = f−1(G).

The set G is a Borel subset of KN with the product topology. Indeed, the identity

function g : A → KN with g(α) = α is continuous if KN is endowed with the product

topology, since the space A satisfies property (i), according to which the projections

pm : A → K, (αn)∞n=0 → am are continuous for every m ∈ N. Certainly KN with the

product topology is a Polish space, and also A is a Polish space, since it is a complete
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metrizable space and satisfies property (ii). Hence the set G = g(G) is a Borel subset of

KN, according to the Lusin-Souslin Theorem 1.6.

Since the function f : [N] → KN is continuous, the set R = f−1(G) is a Borel subset of

[N] with the relative product topology of NN.

Now, we can apply the Galvin-Prikry Theorem 1.7 for the family R. It follows that,

there exists L ∈ [M ] such that

either [s, L] ⊆ R,

or [s, L] ⊆ [N] \ R.

Hence, all the subsequences (αin)∞n=0 of (αn)∞n=0 with (in)∞n=0 ∈ [s, L] either belong to the

class G, in case [s, L] ⊆ R or belong to the class KN \ G, in case [s, L] ⊆ [N] \ R.

In particular, using, instead of the subclass G of A, each of the classes U ∩ A, UA,

F1, F2 and F3, since all these classes, according to Proposition 1.5 are Gδ subsets of the

space A, we have the conclusion for each of these classes. In particular, applying the

arguments for G = U and A = KN with the product topology, we have the conclusion for

the class U . �

Corollary 2.2. Let (Xk)k≥1 be a sequence of separable,metrizable topological vector spaces

over the field K = R or C, equipped with translation-invariant metrics ρk, for every

k ≥ 1, let A be a vector subspace of KN, equipped with a complete metrizable vector space

topology, induced by a translation-invariant metric d, and satisfying the properties (i)

and (ii) (as given in Section 1), and let sequences (xk
n)∞n=0 be in Xk for every k ≥ 1.

Then, for every sequence (αn)∞n=0 in K and G equal to one of the classes U ∩A, UA, F1,

F2 and F3, there exists a subsequence (αln)∞n=0 of (αn)∞n=0, such that

either all the subsequences of (αln)∞n=0 belong to G,

or all the subsequences of (αln)∞n=0 belong to KN \ G.

Proof. We apply Theorem 2.1 in case s = ∅. �

Theorem 2.1 can be stated in a more general form, assuming the partition family to

be analytic instead of Borel.

Theorem 2.3. Let A be a vector subspace of KN ( where K = R or C), equipped with

a complete metrizable vector space topology, induced by a translation-invariant metric d

and satisfying the properties (i) and (ii) (as given in Section 1), and let D be an analytic

subset of the space A . Then for every sequence (αn)∞n=0 in K, every finite subset s of N,

and every infinite subset M of N, there exists an infinite subset L of M such that

either all the subsequences (αin)∞n=0 of (αn)∞n=0 with (in)∞n=0 ∈ [s, L] belong to D,
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or all the subsequences (αin)∞n=0 of (αn)∞n=0 with (in)∞n=0 ∈ [s, L] belong to KN \ D.

Proof. We note that the family R = {I = (in)∞n=0 ∈ [N] : (αin)∞n=0 ∈ D} is an analytic

subset of the space [N] endowed with the relative product topology of NN.

Indeed, the set D = g(D) is an analytic subset of KN with the product topology, as

the identity function g : A → KN is continuous and D is an analytic subset of the Polish

space A. Since the function f : [N] → KN with f((in)∞n=0) = (αin)∞n=0 is continuous if [N]

is endowed with the relative product topology of NN and KN with the product topology,

we have that R = f−1(D) is an analytic subset of the space [N]. This last conclusion can

be proved easily by using the characterization of analytic subsets of a Polish space X, as

those that result from the Souslin operation on the class of closed subsets of X.

Now, we apply the result by Silver in [Si], or by Ellentuck in [E] (in place of the

Galvin-Prikry Theorem 1.7, replacing the Borel partition by a partition determined by

an analytic set). So, there exists L ∈ [M ] such that

either [s, L] ⊆ D,

or [s, L] ⊆ [N] \ D.

This finishes the proof. �

Remark 2.4. At present, we have no use for the more general results in Theorem 2.1, on

partitions determined by an analytic set, but it appears that the full force of the Galvin-

Prikry theorem, for Borel partitions is employed, in the proof of our main result 2.1. If

this is indeed the case, then Theorem 2.1 is the only “natural theorem” that uses the full

strength of the Galvin-Prikry partition theorem. (Cf. the relevant remark after Theorem

5.7 in the Gowers survey paper [G]).

Remark 2.5. For a fixed strictly increacing sequence (µ = (µn)∞n=1 of N, we can define

the classes Uµ, Uµ ∩ A, Uµ
A, Fµ

1 , Fµ
2 , Fµ

3 analogously to the classes U , U ∩ A, UA, F1,

F2, F3 defined in Section 1, with the only difference that the sequence (λn)∞n=1 ∈ N in

Definition 1.2 and Definition 1.4 to be a subsequence of µ. All the results which we

proved for the classes U , U ∩A, UA, F1, F2, F3 also hold for the classes Uµ, Uµ ∩A, Uµ
A,

Fµ
1 , Fµ

2 and Fµ
3 .

3. Particular cases and examples

In this Section we examine some particulal cases of universality in relation with Corol-

lary 2.2, in addition concrete examples are used to show that the classes UA and KN \UA,
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as well as U ∩ A and KN \ (U ∩ A), are not always hereditary (where a class F in KN is

hereditary if every subsequence of any sequence in F belongs to F).

Fix a separable Banach space X and a sequence (xn)∞n=0 in X. We consider the

particular case of Definition 1.1, where Xk = X and xk
n = xn for all k = 1, 2, . . .. In this

particular case we prove the following.

Proposition 3.1. Let X be a Banach space, and (xj)
∞
j=0 ⊆ X, with xj 6= 0 for every

j ∈ N. Set A = c0 or A = lp, with 0 < p < ∞, and let (αn)∞n=0 ∈ A. Then there exists

a subsequence (αln)∞n=0 of (αn)∞n=0, all of whose subsequences do not belong to the class

U ∩ A = UA.

Proof. Let (αln)∞n=0 be a subsequence of (αn)∞n=0 with |αln| ≤ 1
(n+1)2.ρ(xj ,0)

for every n ∈ N
and j = 0, ..., n. For every subsequence (αkln

)∞n=0 of (αln)∞n=0 we have that kln ≥ n for

every n ∈ N, and consequently that ‖αkln
xn‖ ≤ 1

(ln+1)2
, which implies that the series∑+∞

n=0 αkln
xn converges in X. Therefore (αkln

)∞n=0 does not belong to U ∩ A = UA. �

Proposition 3.2. Let 1 < R < +∞, set D(0, R) = {z ∈ C : |z| < R},
A = {(αn)∞n=0 :

∑+∞
n=0 αn.z

n converges in D(0, R)}, and endow A with the metric d which

is the image, under the bijective map g : A → H(D(0, R)) with g((αn)∞n=0) =
∑+∞

n=0 αn.z
n,

of the standard metric d̃ on H(D(0, R)), a metric compatible with the topology of the

uniform convergence on compact subsets of D(0, R) . We also assume (cf. [N], [NP]

and [BGNP]) that there exists a sequence (Xk, ρk)k≥1 of separable, metrizable topological

vector spaces over C, sequences (xk
n)∞n=0 ⊆ Xk for every k ≥ 1, such that the class

U ∩ A = UA is the class of universal Taylor series , namely the class of all sequences

(αn)∞n=0 ∈ A, for which for every compact set K ⊆ C, K ∩ D(0, R) = ∅, with C \ K

connected, and for every function h : K → C, continuous on K and holomorphic in the

interior of K, there exists a sequence (λn)∞n=1 ⊆ N with
∑λn

j=0 αjz
j n→ h(z) uniformly on

K. Then, for every sequence (αn)∞n=0 ∈ A, there exists a subsequence (αln)∞n=0 of (αn)∞n=0,

all of whose subsequences do not belong to the class U ∩ A = UA.

Proof. Set K = {R}. We can have X1 = C = {f : K → C}, ρ1 the usual metric on

C and x1
j = zj

∣∣
K

for every j ∈ N. Since (αn)∞n=0 ∈ A and 1 < R, it is easily seen that

αn → 0, hence we can choose (ln)∞n=0 ∈ N with |αln| ≤ 1
(n+1)2.Rj = 1

(n+1)2.ρ(x1
j ,0)

for every

n ∈ N and j = 0, ..., n. The rest of the proof is similar to that of Proposition 3.1. �

Proposition 3.3. Let X be a separable Banach space and (xj)
∞
j=0 ⊆ X, with xj 6= 0 for

every j ∈ N. Then for every sequence (αn)∞n=0 ∈ KN, we have the following cases:
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(a) if (αn)∞n=0 has zero or infinity as accumulation points, then it has a subsequence,

all of whose subsequences do not belong to U ;

(b) if (αn)∞n=0 has a subsequence converging to some c ∈ K with c 6= 0, and (1, 1, ...) ∈
U , then it has a subsequence, all of whose subsequences belong to U ; and,

(c) if (αn)∞n=0 has a subsequence converging to some c ∈ K with c 6= 0, and (1, 1, ...) /∈
U , then it has a subsequence, all of whose subsequences do not belong to U .

Proof. If the sequence (αn)∞n=0 has a subsequence converging to zero, then, as in the

proof of Proposition 3.1, we can construct a subsequence (αln)∞n=0 of (αn)∞n=1 whose all

subsequences do not belong to the class U .

Let (αn)∞n=0 have a subsequence converging to some c ∈ K with c 6= 0. Then we can

find a subsequence (αln)∞n=0 of (αn)∞n=0 with |αln − c| ≤ 1
(n+1)2.ρ(xj ,0)

for every n ∈ N and

j = 0, ..., n. Hence, for every subsequence (αkln
)∞n=0 of (αln)∞n=0 the series

∑+∞
n=0(αkln

−c)xn

converges in X. Therefore, in case (c, c, ...) ∈ U all the subsequences of (αln)∞n=0 belong

to U and in case (c, c, ...) /∈ U all the subsequences of (αln)∞n=0 do not belong to U . But

(c, c, ...) ∈ U if and only if (1, 1, ...) ∈ U .

Finally, it remains to examine the case where (αn)∞n=0 has a subsequence converging to

infinity. Then we can find a subsequence (αln)∞n=0 of (αn)∞n=0 such that for all n ∈ {1, 2, ...}
and for all {F ⊆ N : F ⊆ {0, ..., n−1}} to have ‖(

∑
j∈F αljxj)+αlnxn‖ ≥ 1, by choosing

ln ∈ N with ‖αlnxn‖ ≥ 1 + ‖
∑

j∈F αljxj‖ for every {F ⊆ N : F ⊆ {0, ..., n− 1}}. Hence,

for every subsequence (αkln
)∞n=0 of (αln)∞n=0 the set {

∑N
n=0 αkln

xn : N ∈ N} avoids the

open set {x ∈ X : ‖x‖ < 1}, so it is not dense in X. Thus (αkln
)∞n=0 /∈ U .

This completes the proof. �

The following theorem extends Corollary 2.2 for the class U ∩A in the particular case

where A is a hereditary family, thus providing a criterion on whether all the subsequences

are in U ∩ A or in its complement.

Theorem 3.4. Let X be a separable Banach space, (xj)
∞
j=0 ⊆ X, with xj 6= 0 for every

j ∈ N, and A a hereditary vector subspace of KN (with K = R or C), equipped with

a complete metrizable vector space topology, induced by a translation-invariant metric d

and satisfying properties (i) and (ii) (as given in Section 1). Then for every sequence

(αn)∞n=0 in K we have the following cases:

(a) if (1, 1, ...) ∈ U , and (αn)∞n=0 has a subsequence, included in A, and converging to

some c ∈ K, with c 6= 0, then (αn)∞n=0 has a subsequence, all of whose subsequences

belong to the class U ∩ A; and
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(b) if either (1, 1, ...) /∈ U , or ((1, 1, ...) ∈ U and) (αn)∞n=0 has no subsequence in A

converging to some c ∈ K, with c 6= 0, then (αn)∞n=0 has a subsequence, all of

whose subsequences do not belong to the class U ∩ A.

Moreover, if (αn)∞n=0 has a subsequence converging to zero or to infinity, then (αn)∞n=0

has a subsequence, all of whose subsequences do not belong to the class U ∩ A.

Proof. If (1, 1, ...) /∈ U , then, according to Proposition 3.3, (αn)∞n=0 has a subsequence,

all of whose subsequences do not belong to the class U and therefore do not belong to

U ∩ A.

Assume (1, 1, ...) ∈ U . If (αn)∞n=0 has a subsequence converging to zero or to infinity,

then, according to Proposition 3.3, (αn)∞n=0 has a subsequence whose all subsequences do

not belong to the class U and therefore to U ∩ A.

If (1, 1, ...) ∈ U and (αn)∞n=0 has all its accumulation points in K \ {0}, then, according

to Proposition 3.3, it has a subsequence (αln)∞n=0 whose all subsequences belongs to the

class U . If one subsequence (αkln
)∞n=0 belong to the class A, since A is hereditary, all

its subsequences belong to U ∩ A. The remaining case is when all the subsequences of

(αln)∞n=0 do not belong to A. Then all the subsequences of (αln)∞n=0 do not belong to

U ∩ A.

This completes the proof. �

Remark 3.5. (1) In order to give an example of a sequence belonging to the class U ∩A

with a subsequence not belonging to U , we apply Proposition 3.1 for A = c0 and we notice

that U∩c0 6= ∅ in the case of universal trigonometric series in the sense of Menchoff ([KN],

[BGNP]), as well as in the case of universal Taylor series in the open unit disk in the sense

of Luh ([L]) and Chui-Parnes ([CP]),where the universal approximation is not required

on the boundary ([KKN], [MN], [BGNP]).

For another example, start with a sequence (xn)∞n=0 in a Banach space X such that

the set {
∑N

n=0 x2n) : N ∈ N} is dense in X. Then the sequence (1, 0, 1, 0, ...) belongs to

U and obviously its subsequence (0, 0, 0, 0, ...) does not belong to U .

(2) In order to give an example of a sequence not belonging to the class U with a

subsequence belonging to U , we start with a sequence (xn)∞n=0 dense in a Banach space

X and we consider the sequence (yn)∞n=0 ∈ X where y0 = x0 and y2n−1 = y2n = xn

for every n ≥ 1, which is also dense in X. Fix (zn)∞n=0 ∈ X, where z0 = y0 = x0 and

zn = yn − yn−1 for every n ≥ 1. Then z2n = 0 and z2n−1 = yn − yn−1 for every n ≥ 1.
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The sequence (αn)∞n=0 ⊆ R with α2n+1 = 0 and α2n = 1 for every n ∈ N does not

belong to U . Indeed, for every N ∈ N we have that
∑N

n=0 αnzn = y0. On the other hand,

the subsequence (α2n)∞n=0 of (αn)∞n=0 belongs to U , since
∑2N

n=0 α2nzn =
∑2N

n=0 zn = yN for

every N ∈ N and (yN)∞N=0 ⊆ X is dense in X.
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