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BLOCK COMBINATORICS

V. FARMAKI AND S. NEGREPONTIS

Abstract. In this paper we extend the block combinatorics partition theo-
rems of Hindman and Milliken-Taylor in the setting of the recursive system of
the block Schreier families (Bξ), consisting of families defined for every count-
able ordinal ξ. Results contain (a) a block partition Ramsey theorem for every
countable ordinal ξ (Hindman’s Theorem corresponding to ξ = 1, and the
Milliken-Taylor Theorem to ξ a finite ordinal), (b) a countable ordinal form of
the block Nash-Williams partition theorem, and (c) a countable ordinal block
partition theorem for sets closed in the infinite block analogue of Ellentuck’s
topology.

1. Introduction

In this paper we extend the block combinatorics partition theorems of Hindman
[H] and Milliken-Taylor [M, T2] to countable ordinals in the setting of the recursive
system of the block Schreier families Bξ for ξ < ω1 (Definition 2.1). The main
results are contained in Theorem 2.6, Theorem 4.4, Theorem 4.6 and Theorem 5.2.

Theorem 2.6 is a block Ramsey partition theorem for every countable ordinal ξ;
the basic, starting dichotomy, corresponding to the ordinal level ξ = 1 is Hindman’s
Theorem [H]. We recall this theorem in the equivalent form proved (in a simpler
and more elegant way) by Baumgartner in [B]. We denote by N the set {1, 2, . . . , }
of all natural numbers and by [N]<ω

>0 the set of all the finite nonempty subsets of N.

Theorem 1.1 (Hindman’s theorem, [H], [B]). Let F ⊆ [N]<ω
>0 . Then, there exists

an infinite subset D of [N]<ω
>0 such that all its elements are pairwise disjoint, and if

FU(D) is the set of all finite unions of members of D, then
either FU(D) ⊆ F or FU(D) ⊆ [N]<ω

>0 \ F .

Hindman’s Theorem has been extended independently by Milliken [M, Theorem
2.2], in sumset form, and Taylor [T2, Lemma 2.2], in Baumgartner’s formulation;
for its statement we introduce some notation. For s, t ∈ [N]<ω

>0 we write s < t if
max s < min t. For k ∈ N

Bk = {s = (s1, . . . , sk) : s1 < · · · < sk ∈ [N]<ω
>0 }; and

Bω(N) = {D = (sn)n∈N : sn ∈ [N]<ω
>0 and sn < sn+1 ∀ n ∈ N}.

For D = (tn)n∈N ∈ Bω(N), let FU(D) = {
⋃

n∈H tn : H ∈ [N]<ω
>0 }, and

B<ω(D) = {s = (s1, . . . , sk) : k ∈ N, s1 < · · · < sk ∈ FU(D)} ∪ {∅}.
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Theorem 1.2 (Milliken-Taylor theorem, [M], [T2]). Let k ∈ N, F ⊆ Bk and
D0 ∈ Bω(N). Then there exists D = (sn)n∈N ∈ Bω(N) with sn ∈ FU(D) for every
n ∈ N such that

either Bk ∩ B<ω(D) ⊆ F or Bk ∩ B<ω(D) ⊆ Bk \ F .

It is clear that the Milliken-Taylor theorem is analogous to the classical Ramsey
partition theorem, where “singletons” in N are replaced by “finite sets” in N. Now,
Ramsey’s partition theorem has been extended (in [F2], [F3]) to a partition theorem
holding for every countable ordinal number, in a way that the classical theorem
corresponds to the case of finite ordinals. Instrumental for this extension is the
definition of the recursive system of thin Schreier families (Aξ)ξ<ω1 , given below,
where (in case (3iii)) the Cantor normal form of ordinals (cf. [KM], [L]) is employed:

Definition 1.3 (The recursive thin Schreier system, [F1, Def. 7], [F2, Def. 1.5],
[F3, Def. 1.3]). For every nonzero countable limit ordinal λ choose and fix a strictly
increasing sequence (λn) of successor ordinals smaller than λ with sup λn = λ. The
system (Aξ)ξ<ω1 is defined recursively as follows:

(1) A0 = {∅} and A1 = {{n} : n ∈ N};
(2) for ζ > 0, Aζ+1 = {s ∈ [N]<ω

>0 : s = {n} ∪ s1, where n ∈ N, {n} < s1 and
s1 ∈ Aζ};

(3i) Aωβ+1 = {s ∈ [N]<ω
>0 : s =

⋃n
i=1 si, where n = min s1, s1 < · · · < sn and

s1, . . . , sn ∈ Aωβ};
(3ii) for a nonzero, countable limit ordinal λ,

Aωλ = {s ∈ [N]<ω
>0 : s ∈ Aωλn with n = min s}; and

(3iii) for a limit ordinal ξ such that ωa < ξ < ωa+1 for some 0 < a < ω1, if
ξ = ωap +

∑m
i=1 ωaipi, where m ∈ N with m ≥ 0, p, p1, . . . , pm are natural

numbers with p, p1, . . . , pm ≥ 1 (so that either p > 1, or p = 1 and m ≥ 1)
and a, a1, . . . , am are ordinals with a > a1 > · · · am > 0,
Aξ = {s ∈ [N]<ω

>0 : s = s0 ∪ (
⋃m

i=1 si) with sm < · · · < s1 < s0, s0 =
s0
1 ∪ · · · ∪ s0

p with s0
1 < · · · < s0

p ∈ Aωa , and si = si
1 ∪ · · · ∪ si

pi
with

si
1 < · · · < si

pi
∈ Aωai ∀ 1 ≤ i ≤ m}.

It will be remarked that each family Aξ consists of finite subsets of N, that
Ak = [N]k for every k ∈ N, and that Aξ contains finite sets of arbitrarily large
cardinality for every ordinal ξ ≥ ω. The families Aω = {s ∈ [N]<ω

>0 : s ∈ [N]k,
where k = min s} and Aωn+1 = {s ∈ [N]<ω

>0 : s =
⋃k

i=1 si, where k = min s1,
s1 < · · · < sk ∈ Aωn} are determined by case (3i) of Definition 1.3. In general
however the Schreier families are not defined in a unique way, but depend ultimately
on the choice of the converging sequence (λn) to the limit ordinals λ. This choice
bears directly on case (3ii) and indirectly on all other cases of Definition 1.3. The
first real choice is for the limit ordinal λ = ω and, assuming that the sequence
(λn) converging to ω is the sequence with λn = n, Aωω = {s ∈ [N]<ω

>0 : s ∈ Aωk

with k = min s}. By choosing “natural” converging sequences λn = ω + n to
limit ordinal λ = ω2, . . . , λn = ωn + 1 to limit ordinal λ = ωω, the families
Aωω2 , . . . , Aωωω are defined, respectively. More “natural” converging sequences
are considered in Section 2 of [KS] (up to the ordinal ε0), and in Chapter VII of
[KM]. However, it appears impossible to make canonical, natural choices for all
limit ordinals, and it thus seems that the definition of the recursive system of thin
Schreier families (Aξ)ξ<ω1 depends essentially on the arbitrary choices of (many)
converging sequences.
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It must be emphasised however that our results (in Sections 2-5) do not de-
pend on the particular choice of the converging sequences. The basic feature that
differentiates the Aξ’s from each other is complexity: in fact, irrespective of the
particular choices of the converging sequences employed for the definition of the
family Aξ, the Cantor-Bendixson index of the compact subset (in the Cantor set
{0, 1}N, under the canonical identification of a set with its characteristic function)
corresponding to Aξ is precisely ξ + 1 (as proved in [F3, Proposition 2.9]). Thus
the complexity of the family Aξ, as measured by its Cantor-Bendixson index, is
independent of the particular choices of the converging sequences. This invariance
is in fact needed for the results in Sections 4 and 5 below.

Although the recursive system of Schreier families (Aξ) is a purely combina-
torial entity, intimately related, as it turns out, with Ramsey and Nash-Williams
combinatorics, it nevertheless arose gradually in connection with the theory of Ba-
nach spaces, originally by Schreier [S] (for ξ = ω), next by Alspach-Odell [AO] (for
ξ = ωκ, κ a natural number) and Alspach-Argyros [AA] (for ξ = ωα, α a countable
ordinal), and finally by Farmaki [F1], [F2], [F3] and Tomczak-Jaegermann [TJ] (for
ξ any countable ordinal). (The reader is referred to the introduction of [F3] for
more details.) In fact, variants of the Schreier families have found essential ap-
plications in Banach space theory on such questions as unconditionality, l1 and c0

embeddability, and distortion (see e.g. [F1], [O], [AGR], [F4]).
It is also noteworthy that the hereditary family (Aω)∗ = {t ∈ [N]<ω : t ⊆ s

for some s ∈ Aω} ∪ {∅} generated by Aω figures prominently (under the name
of the family of “not large” sets) in fundamental questions of mathematical logic,
specifically in the (Ramsey type) Paris-Harrington statements, statements true and
provable in set-theory but unprovable in Peano arithmetic (cf. [PH] and [KS]). The
higher order hereditary Schreier families (Aξ)∗ might well be useful in forming and
proving statements true but unprovable in certain systems endowed with induction
stronger than that in Peano arithmetic.

In the present paper, we initially introduce (in Definition 2.1 below) the “block”
analogue (Bξ)ξ<ω1 of the recursive thin Schreier system (Aξ)ξ<ω1 . With its help
we obtain (in Theorem 2.6 below) a suitable ordinal extension of the Hindman,
Milliken-Taylor partition theorems for every countable ordinal.

Next we turn our attention to Nash-Williams type partition theorems. Denoting
by [L] the family of all the infinite subsets of a set L, our starting point is the
classical

Theorem 1.4 (Nash-Williams theorem, [NW]). Let U be a subfamily of [N], closed
in the relative topology of [N], considered as a subspace of the Cantor set {0, 1}N

with the product topology, and M ∈ [N]. Then, there exists L ∈ [M ] such that

either [L] ⊆ U or [L] ⊆ [N] \ U .

An analogue of this classical theorem for blocks (stated as Corollary 4.10 below)
has been established by Milliken [M, Theorem 3.5] and independently by Tay-
lor [T1].

Using Theorem 2.6, together with some additional properties of the block Schreier
families Bξ for ξ < ω1 (proved in Section 3 below), including the computation of
their Cantor-Bendixson index (Proposition 3.11) and the canonical representation
of every, finite or infinite, ordered disjoint collection with respect to every family Bξ
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(Proposition 3.5), we obtain in Theorem 4.4, Theorem 4.6 and Corollary 4.8 strong
countable ordinal forms of the block Nash-Williams partition theorem. Finally, in
Section 5, block Ellentuck type partition theorems are considered.

The combinatorial nature of the block Schreier families Bξ for ξ < ω1 and of the
block combinatorics developed in this paper makes it reasonable to expect that the
results presented in this paper will find substantial applications in Ramsey theory
proper (as it is expounded in [GRS] ) and in various other branches of mathematics.

We will need the following notations.

Some additional notation. For a set X and a natural number n we denote by
[X]n the set of all the n-element subsets of X, by [X]<ω the set of all the finite
subsets of X, by [X]<ω

>0 the set of all the finite nonempty subsets of X, and by [X]
the set of all the infinite subsets of X. If s ∈ [N]<ω and t ⊆ N we write s < t in
place of “for all x ∈ s and y ∈ t, x < y”, while s ∝ t if s is an initial segment of t,
which means that there exists r ⊆ N with s < r and s ∪ r = t.

An ordered disjoint collection D is a (finite or infinite) subset of [N]<ω
>0 with

the property that either s < t or t < s whenever s and t are distinct elements of
D. We define the set B<ω(N) of all finite-ordered disjoint collections, considering
them as strictly increasing finite sequences and analogously the set Bω(N) of all
infinite-ordered disjoint collections as follows:

B<ω(N) = {s = (s1, . . . , sk) : k ∈ N, s1 < · · · < sk ∈ [N]<ω
>0 } ∪ {∅};

Bω(N) = {D = (sn)n∈N : sn ∈ [N]<ω
>0 and sn < sn+1 ∀ n ∈ N}.

Let s = (s1, . . . , sk) ∈ B<ω(N) and D = (tn)n∈N ∈ Bω(N). We set
FU(D) = {

⋃
n∈H tn : H ∈ [N]<ω

>0 } and FU(s) = {
⋃

n∈H sn : ∅ 
= H ⊆
{1, . . . , k}}.

For D1,D2 ∈ Bω(N) we write D1 < D2 if D1 is a sequence in FU(D2). We set
B<ω(D) = {s = (s1, . . . , sk) ∈ B<ω(N) : k ∈ N, s1 < · · · < sk ∈ FU(D)} ∪ {∅};
Bω(D) = {D1 ∈ Bω(N) : D1 < D}.
Let s = (s1, . . . , sk), t = (t1, . . . , tm) ∈ B<ω(N) and D = (tn)n∈N ∈ Bω(N). We

say that s is an initial segment of D (resp. s is an initial segment of t), and we
write s ∝ D (resp. s ∝ t) if si = ti for every i = 1, . . . , k. Let t ∈ [N]<ω

>0 and
l = min{n ∈ N : t < tn}; then we set

D − t = (tl, tl+1, . . .) and D − s = D − sk.
For a family F ⊆ B<ω(N) and t ∈ [N]<ω

>0 we set
F(t) = {s ∈ B<ω(N) : s = (s1, . . . , sk) and (t, s1, . . . , sk) ∈ F or s = ∅ and

(t) ∈ F}.
F − t = {s = (s1, . . . , sk) ∈ F : t < s1 < · · · < sk}.
For a family A of finite subsets of N and n ∈ N we set
A(n) = {s ∈ [N]<ω : {n} < s and {n} ∪ s ∈ A}.

2. The block Ramsey partition theorem for every countable ordinal

The purpose of this section is to prove the block Ramsey partition theorem
for every countable ordinal (Theorem 2.6). It is the extension to every countable
ordinal ξ of Hindman’s theorem (Theorem 1.1) corresponding to ordinal level ξ = 1
and Milliken-Taylor theorem (Theorem 1.2), obtained independently by Milliken
[M, Theorem 2.2] and Taylor [T2, Lemma 2.2], corresponding to finite ordinals
ξ < ω.

The vehicle of proving this extended block Ramsey partition theorem is the
recursive thin block Schreier system (Bξ)ξ<ω1 (Definition 2.1), consisted of families
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of finite-ordered disjoint collections. This is similar to the recursive thin Schreier
system (Aξ)ξ<ω1 (Definition 1.3) of families of finite subsets of N.

Definition 2.1 (Recursive thin block Schreier system (Bξ)ξ<ω1). We define

B0 = {∅},
and for every countable ordinal ξ ≥ 1

Bξ ={s = (s1, . . . , sk) : k ∈ N, s1 < · · · < sk ∈ [N]<ω
>0

and {min s1, . . . , min sk} ∈ Aξ} .

Remark 2.2. (i) Bξ ⊆ B<ω(N) and ∅ /∈ Bξ for ξ ≥ 1.
(ii) For k ∈ N, Bk = {(s1, . . . , sk) : s1 < · · · < sk ∈ [N]<ω

>0 },
Bω = {(s1, . . . , sk) : k ∈ N, s1 < · · · < sk ∈ [N]<ω

>0 and min s1 = k},
Bωn

= {(s1, . . . , sk) ∈ B<ω(N) : if min s1 = m there exist k1 < · · · < km = k ∈
N such that (s1, . . . , sk1), . . . , (skm−1+1, . . . , skm

) ∈ Bωn−1} for every n ∈ N, and
Bωω

= {(s1, . . . , sk) ∈ B<ω(N) : (s1 < · · · < sk) ∈ Bωm

if min s1 = m}, in case
the cofinal sequence chosen and fixed for the limit ordinal λ = ω in the definition
of the system (Aξ)ξ<ω1 is (n)n∈N. One defines analogously the families Bωω(p+1)

for

p ∈ N, Bωωk

for k ∈ N, Bωωω

and so on in case the chosen cofinal sequences for the
the limit ordinals ω(p+1), ωk, ωω are (ωp+n)n∈N, (ωk−1n+1)n∈N, (ωnn+1)n∈N,
respectively.

(iii) Of course the definition of the recursive thin block Schreier system (Bξ)ξ<ω1

depends on the choice of the cofinal sequences (λn) for each nonzero countable
limit ordinal λ in the definition of the corresponding Schreier system (Aξ)ξ<ω1 .
However the fundamental combinatorial properties of the system, and in particular
the complexity of the Schreier families of every ordinal index, as measured by
the Cantor-Bendixson index (in Proposition 3.11 below), is, as remarked in the
Introduction, independent of the particular choices and in fact invariant; in this
sense the choice of the cofinal sequences is immaterial in the results of this paper.

The following proposition justifies the term “recursive” in our definition of the
system (Bξ)ξ<ω1 .

Proposition 2.3. For every countable ordinal ξ ≥ 1 there exists a concrete se-
quence (ξn) of countable ordinals with ξn < ξ such that for every s ∈ [N]<ω

>0 with
min s = n

Bξ(s) = Bξn ∩ (B<ω(N) − s) .

Moreover, ξn = ζ for every n ∈ N if ξ = ζ + 1 and (ξn) is a strictly increasing
sequence with supn ξn = ξ if ξ is a limit ordinal.

Proof. According to Proposition 1.7 in [F3], for every countable ordinal ξ > 0 there
exists a concrete sequence (ξn) of countable ordinals with ξn < ξ such that

Aξ(n) = Aξn
∩ [{n + 1, n + 2, . . .}]<ω for every n ∈ N .

Moreover, ξn = ζ for every n ∈ N if ξ = ζ + 1 and (ξn) is a strictly increasing
sequence with supn ξn = ξ if ξ is a limit ordinal

For ξ = 1, we have B1 = {(s1) : s1 ∈ [N]<ω
>0 }, hence, B1(s) = B0 = {∅}

for every s ∈ [N]<ω
>0 . Let 1 < ξ < ω1 and s ∈ [N]<ω

>0 with min s = n. If
(s1, . . . , sk) ∈ Bξ(s), then (s, s1, . . . , sk) ∈ Bξ and {n, min s1, . . . , min sk} ∈ Aξ.
Hence, {min s1, . . . , min sk} ∈ Aξn

and (s1, . . . , sk) ∈ Bξn ∩ (B<ω(N) − s). On
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the other hand, if (s1, . . . , sk) ∈ Bξn ∩ (B<ω(N) − s), then {min s1, . . . , min sk} ∈
Aξn

∩[{n + 1, n + 2, . . .}]<ω ⊆ Aξ(n). Hence, {n, min s1, . . ., min sk} ∈ Aξ and then
(s, s1, . . . , sk) ∈ Bξ. �

In the classical Ramsey theory, the basic, starting dichotomy, corresponding to
ordinal level ξ = 1, is the statement that if we partition in two parts an infinite
subset of N, then at least one part is infinite. For the block Ramsey theory, that
we are about to develop, the basic starting dichotomy, corresponding to ordinal
level ξ = 1, is (the highly nontrivial) Hindman’s theorem (Theorem 1.1). For our
purposes the following equivalent version of Hindman’s theorem is more convenient.

Theorem 2.4 (Second version of Hindman’s theorem, [H], [B]). Let F ⊆ B<ω(N)
be a family of finite-ordered disjoint collections and D0 ∈ Bω(N) an infinite-ordered
disjoint collection. Then, there exists an infinite-ordered disjoint collection D < D0

such that:
either B1 ∩ B<ω(D) ⊆ F or B1 ∩ B<ω(D) ⊆ B<ω(N) \ F .

For the proof of the block-Ramsey partition theorem we will make use of a
diagonal argument, contained in the following lemma.

Lemma 2.5. Let D0 = (s0
n)n∈N ∈ Bω(N) and

Π = {(s,D) : s ∈ [N]<ω
>0 ,D = (sn)n∈N ∈ Bω(N) with D < D0 and s < sn ∀ n ∈

N}.
If a subset G of Π satisfies:

(i) for every (s,D) ∈ Π there exists (s,D1) ∈ G with D1 < D; and
(ii) for every (s,D1) ∈ G and D2 < D1 we have (s,D2) ∈ G,

then there exists D ∈ Bω(N) with D < D0 such that (s,D′) ∈ G for every s ∈ FU(D)
and D′ < D − s.

Proof. Let s0 = s0
1. According to condition (i), there exists D1 = (s1

n)n∈N ∈ Bω(N)
with D1 < D0 − s0 such that (s0,D1) ∈ G. Let s1 = s1

1 ∈ D1. Of course, s0 < s1.
We assume that there have been constructed D1, . . . ,Dn ∈ Bω(N) with Dn < · · · <
D1 < D0 and nonempty finite sets s0, s1, . . . , sn with s0 < s1 < · · · < sn such that
for each 1 ≤ i ≤ n, (s,Di) ∈ G for all s ∈ FU((s0, . . . , si−1)).

We will construct Dn+1 and sn+1. Let {t1, . . . , tk} = FU((s0, . . . , sn)). Accord-
ing to condition (i), there exist D1

n+1, . . . ,Dk
n+1 ∈ Bω(N) such that Dk

n+1 < · · · <

D1
n+1 < Dn − sn and (ti,Di

n+1) ∈ G for every 1 ≤ i ≤ k. Set Dn+1 = Dk
n+1. If

Dn+1 = (sn+1
i )i∈N set sn+1 = sn+1

1 . Of course sn < sn+1. According to condition
(ii), (ti,Dn+1) ∈ G for all 1 ≤ i ≤ k.

Set D = (s0, s1, s2, . . .) ∈ Bω(N). Then D < D0. Let s ∈ FU(D) and D′ < D−s.
Then s ∈ FU((s0, s1, . . . , sn0)), where n0 = min{n ∈ N : s ∈ FU((s0, s1, . . . , sn))}.
Thus (s,Dn0+1) ∈ G and according to (ii), (s,D′) ∈ G. �

We are now ready to state and prove the block Ramsey partition theorem for
every countable ordinal number.

Theorem 2.6 (Block-Ramsey partition theorem for every countable ordinal). Let
F ⊆ B<ω(N) be a family of finite-ordered disjoint collections, D0 ∈ Bω(N) an
infinite-ordered disjoint collection and ξ a countable ordinal. Then there exists an
infinite-ordered disjoint collection D < D0 such that

either Bξ ∩ B<ω(D) ⊆ F or Bξ ∩ B<ω(D) ⊆ B<ω(N) \ F .
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Proof. For ξ = 1 it follows from Theorem 2.4.
Let ξ > 1. Assume that the theorem is valid for every ζ < ξ. Let s be a nonempty,

finite subset of N with min s = n and D ∈ Bω(N) with D < D0. According to
Proposition 2.3, there exist ξn < ξ such that Bξ(s) = Bξn ∩ (B<ω(N) − s). Using
the induction hypothesis, there exists D1 ∈ Bω(N) with D1 < D such that

either Bξn ∩ B<ω(D1) ⊆ F(s) or Bξn ∩ B<ω(D1) ⊆ B<ω(N) \ F(s).
Set Ds = D1 − s < D. Then

either Bξ(s) ∩ B<ω(Ds) ⊆ F(s) or Bξ(s) ∩ B<ω(Ds) ⊆ B<ω(N) \ F(s).
Let G = {(s,D) : s ∈ [N]<ω

>0 , D = (sn)n∈N ∈ Bω(N) with D < D0, s < sn for all
n ∈ N and either Bξ(s) ∩ B<ω(D) ⊆ F(s) or Bξ(s) ∩ B<ω(D) ⊆ B<ω(N) \ F(s)}.

The family G satisfies conditions (i) (by the above arguments) and (ii) (obviously)
of Lemma 2.5. Hence there exists D1 ∈ Bω(N) with D1 < D0 such that (s,D′

1) ∈ G
for every s ∈ FU(D1) and D′

1 < D1 − s.
Let F1 = {(s) ∈ FU(D1) : Bξ(s) ∩ B<ω(D1 − s) ⊆ F(s)}. We use the induction

hypothesis for ξ = 1 (Theorem 2.4). Then there exists D ∈ Bω(N) with D < D1

such that
either B1 ∩ B<ω(D) ⊆ F1 or B1 ∩ B<ω(D) ⊆ B<ω(N) \ F1.

Since D < D1 we have B<ω(D) ⊆ B<ω(D1) and consequently that (s,D − s) ∈ G
for every s ∈ FU(D). Thus

either Bξ(s) ∩ B<ω(D − s) ⊆ F(s) for every s ∈ FU(D)
or Bξ(s) ∩ B<ω(D − s) ⊆ B<ω(N) \ F(s) for every s ∈ FU(D).

Hence,
either Bξ ∩ B<ω(D) ⊆ F or Bξ ∩ B<ω(D) ⊆ B<ω(N) \ F . �

The case ξ = ω of Theorem 2.6 is the following:

Corollary 2.7. Let D0 ∈ Bω(N) and F ⊆ [FU(D0)]<ω
>0 . Then, there exists an

infinite sequence D = (sn)n∈N ⊆ FU(D0) with sn < sn+1 for all n ∈ N such that

either {{s1, . . . , sk} ⊆ FU(D) : k ∈ N and min
⋃k

i=1 si = k} ⊆ F
or {{s1, . . . , sk} ⊆ FU(D) : k∈N and min

⋃k
i=1 si = k} ⊆ [FU(D0)]<ω

>0 \ F .

For completeness’ sake we now state the corresponding result for sum-sets.

Definition 2.8. (i) The natural correspondence between N and [N]<ω is given by
the function ϕ : [N]<ω → N with ϕ(s) =

∑
�∈s 2�−1 for s ∈ [N]<ω.

(ii) For every n ∈ N we define c(n) = min ϕ−1(n).
(iii) For every countable ordinal 1 ≤ ξ < ω1, we define the ξ-sum set Pξ(L) for

every infinite subset L of N as follows:

Pξ(L) =
{( ∑

�∈s1

	, . . . ,
∑
�∈sk

	

)
: k ∈ N, s1 < · · · < sk ∈ [L]<ω

>0

and (c(min s1), . . . , c(min sk)) ∈ Aξ

}
.

Corollary 2.9. Let F ⊆ [N]<ω and let ξ be a countable ordinal. Then there exists
L ∈ [N] such that

either Pξ(L) ⊆ F or Pξ(L) ⊆ [N]<ω \ F .
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Strengthened forms of Theorem 2.6 are given in Section 4 below for partitions
which are either hereditary families (in Theorem 4.4) or trees (in Theorem 4.2 and
in Theorem 4.6).

3. Some properties of the recursive block Schreier system

The main results proved in this section concern the thinness of the families Bξ

(Proposition 3.3), the canonical representation of every ordered disjoint collection
with respect to Bξ (Proposition 3.5), and the computation of the strong Cantor-
Bendixson index of Bξ (Proposition 3.11). These properties, and their proofs, for
Bξ, are analogous to those for Aξ in [F3]; they are necessary for the proof of the
main results in Section 4.

Definition 3.1. Let F ⊆ B<ω(N) be a family of finite disjoint collections:
(i) F is thin if there are no elements s, t ∈ F with s 
= t and s ∝ t.
(ii) F∗ = {t ∈ B<ω(N) : t ∝ s for some s ∈ F} ∪ {∅}.
(iii) F∗ = {t ∈ B<ω(N) : t ⊆ FU(s) for some s ∈ F} ∪ {∅}.
(iv) F is a tree if F∗ = F .
(v) F is hereditary if F∗ = F .

Thinness and canonical representation are two properties of the Schreier system
(Aξ)ξ<ω1 that were proved useful in [F3]. We will prove that the block Schreier
system (Bξ)ξ<ω1 satisfies these properties, too.

Proposition 3.2. (i) (Thinness of Aξ, [F3, Proposition 2.2]). The families Aξ,
ξ < ω1, are thin (i.e., there are no elements s, t ∈ Aξ with s ∝ t and s 
= t).

(ii) (Canonical representation w.r.t. Aξ, [F3, Proposition 2.4]). Every (finite or
infinite) nonempty subset of N has canonical representation with respect to Aξ (i.e.,
if I ∈ [N], then there exists a unique sequence (sn)n∈N ⊆ Aξ such that I =

⋃∞
n=1 sn

and s1 < s2 < · · · , and if s ∈ [N]<ω
>0 , then either s is a proper initial segment of

some element of Aξ or there exist unique n ∈ N, s1, . . . , sn ∈ Aξ and a, possible
empty, set sn+1 which is a proper initial segment of some element of Aξ such that
s =

⋃n+1
i=1 si).

Proposition 3.3. Every family Bξ, for ξ < ω1 is thin.

Proof. The family B1 = {(s) : s ∈ [N]<ω} is obviously thin. Let ξ > 1. Then
∅ /∈ Bξ. Let s = (s1, . . . , sk) ∈ Bξ, t = (t1, . . . , tλ) ∈ Bξ such that s ∝ t. Then
s = {min s1, . . . , min sk} ∈ Aξ, t = {min t1, . . . , min tλ} ∈ Aξ and s ∝ t. Since Aξ is
thin (Proposition 3.2(ii)), we have that s = t and consequently that s = t. Hence,
the family Bξ is thin. �

In the following we will prove that every ordered disjoint collection (finite or
infinite) has unique canonical representation with respect to each family Bξ.

Definition 3.4. Let ξ be a nonzero countable ordinal number.
(i) An element D = (sn)n∈N of Bω(N) has canonical representation with respect

to Bξ if there exists a unique strictly increasing sequence (mn)n∈N in N so that
(s1, . . . , sm1) ∈ Bξ and (smn−1+1, . . . , smn

) ∈ Bξ for every n > 1.
(ii) A nonempty element s = (s1, . . . , sk) of B<ω(N) has canonical representation

with respect to Bξ if either s ∈ (Bξ)∗ \ Bξ or there exist unique n ∈ N, and
m1, . . . , mn ∈ N with m1 < . . . < mn ≤ k so that (s1, . . . , sm1), . . . , (smn−1+1, . . .,
smn

) ∈ Bξ and (smn+1, . . . , sk) ∈ (Bξ)∗ \ Bξ, in case mn < k.
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Proposition 3.5. Let ξ be a nonzero countable ordinal number. Every nonempty
ordered disjoint collection (finite or infinite) has canonical representation with re-
spect to Bξ.

Proof. (i) Let D = (sn)n∈N ∈ Bω(N) be an infinite-ordered disjoint collection. For
each n ∈ N let kn = min sn ∈ N . Of course, kn < kn+1 for every n ∈ N. The
set I = {kn : n ∈ N} has canonical representation with respect to Aξ (Propo-
sition 3.2(iii)). Hence, there exists a unique sequence (Fn)n∈N in Aξ such that
I =

⋃∞
n=1 Fn and F1 < F2 < · · · . Let max Fn = kmn

for every n ∈ N. The sequence
(mn)n∈N has the property that (s1, . . . , sm1) ∈ Bξ and (smn−1+1, . . . , smn

) ∈ Bξ for
every n > 1. It is the unique sequence with this property, since Bξ is a thin family.

(ii) Let s = (s1, . . . , sk) ∈ B<ω(N) be a nonempty finite-ordered disjoint collec-
tion. Set sk+i = {nk + i} for every i ∈ N, where nk = max sk. The infinite-ordered
disjoint collection D = (sn)n∈N has canonical representation with respect to Bξ, ac-
cording to (i). Using this fact, it is easy to prove that s has canonical representation
with respect to Bξ. It is unique, since Bξ is thin. �

Identifying every collection D of finite subsets of N with its characteristic function
xD ∈ {0, 1}[N]<ω

, we topologize the set of all the collections of finite subsets of N

by the topology of pointwise convergence (equivalently by the product topology
of {0, 1}[N]<ω

). For every s = (s1, . . . , sk) ∈ B<ω(N) let σ(s) = {s1, . . . , sk}, and
respectively for every D = (sn)n∈N ∈ Bω(N) let σ(D) = {sn : n ∈ N} and σ(∅) = ∅.

We will say that a family F ⊆ B<ω(N) is pointwise closed iff the family
{xσ(s) : s ∈ F} is closed in the topology of pointwise convergence and also that
a family U ⊆ Bω(N) is pointwise closed iff {xσ(D) : D ∈ U} is pointwise closed in
{0, 1}[N]<ω

.
We next turn our attention to trees and hereditary subfamilies of B<ω(N).

Proposition 3.6. Let F ⊆ B<ω(N).
(i) If F is a tree, then F is pointwise closed if and only if there does not exist an

infinite sequence (sn)n∈N in F such that sn ∝ sn+1 and sn 
= sn+1 for all n ∈ N.
(ii) If F is hereditary, then F is pointwise closed if and only if there does not

exist D ∈ Bω(N) such that B<ω(D) ⊆ F .

Proof. (i) Let F be a tree. If there exists (sn)n∈N ⊆ F such that sn ∝ sn+1 and
sn 
= sn+1 for all n ∈ N, then the sequence (xσ(sn))n∈N converges, in the topology
of pointwise convergence, to xD, where D =

⋃
n∈N

sn. Since D is an infinite set,
the family F is not pointwise closed.

We assume now that there does not exist a sequence (sn)n∈N ⊆ F with sn ∝ sn+1

and sn 
= sn+1 for all n ∈ N. We will prove that F is pointwise closed. Let
(ti)i∈N ⊆ F such that the sequence (xσ(ti))i∈N converges pointwise to xA for some
A ⊆ [N]<ω. Let t1, t2 ∈ A. Then, there exists ι0 ∈ N such that {t1, t2} ⊆ σ(tι0),
hence either t1 < t2 or t2 < t1. Thus A is an ordered disjoint collection. If A = ∅,
then A ∈ F , since F is a tree. If A = {t1, . . . , tk} for some k ∈ N, then A = σ(s)
for s = (t1, . . . , tk) ∈ B<ω(N). Since FU(({1}, . . . , {max tk})) is a finite set, there
exists ι0 ∈ N such that s ∝ tι0 and, since F is a tree, s ∈ F .

We will prove that A cannot be an infinite set. Let A = {tn : n ∈ N}. Then
A = σ(D), where D = (tn)n∈N ∈ Bω(N). Set sn = (t1, . . . , tn) for every n ∈ N.
Then sn ∝ sn+1 and sn 
= sn+1 for all n ∈ N. We will prove that (sn) ⊆ F , which
is a contradiction to our assumption. Indeed, let ti = (ti1, . . . , tini

) for every i ∈ N.
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For n ∈ N and i ∈ N set tn
i = ∅ if tn < ti1 and otherwise tn

i = (ti1, . . . , tikn
i
), where

kn
i = max{1 ≤ n ≤ ni : tin ≤ tn}.

Since tn
i ∈ F∗ and F is a tree we have that tn

i ∈ F for all n, i ∈ N. The
sequence (xσ(tn

i ))i∈N converges pointwise to (xσ(sn)), where sn = (t1, . . . , tn), since
(xσ(ti))i∈N converges pointwise to xA. Hence, by the above arguments sn ∈ F for
every n ∈ N. Thus, F is pointwise closed.

(ii) Let F be hereditary. If there exists D = (sn)n∈N ∈ Bω(N) such that
B<ω(D) ⊆ F , then sn = (s1, . . . , sn) ∈ F for every n ∈ N. According to case (i), F
is not pointwise closed, since it is a tree. On the other hand, if F is not pointwise
closed, according to (i), there exist D = (sn)n∈N such that (s1, . . . , sn) ∈ F for
every n ∈ N. Then B<ω(D) ⊆ F , since F is hereditary. �

Corollary 3.7. Let F ⊆ B<ω(N) which is hereditary and pointwise closed. Then,
every hereditary family F1 with F1 ⊆ F is also pointwise closed.

Corollary 3.8. Let ξ be a countable ordinal and let D ∈ Bω(N). Then the heredi-
tary family (Bξ ∩ B<ω(D))∗ is pointwise closed.

Proof. The family (B1 ∩ B<ω(D))∗ is obviously pointwise closed. Let ξ > 1, and
assume that (Bζ ∩ B<ω(D))∗ is pointwise closed for every ζ < ξ. Assume that
(Bξ∩B<ω(D))∗ is not pointwise closed. According to Proposition 3.6, there exists an
infinite disjoint collection D0 = (sn)n∈N such that B<ω(D0) ⊆ (Bξ ∩B<ω(D))∗. Let
n ∈ N. Then, sn = (s1, . . . , sn) ∈ (Bξ ∩B<ω(D))∗, so there exists t = (t1, . . . , tλ) ∈
Bξ ∩ B<ω(D) such that sn ⊆ FU(t). If k = min t1, then, according to Proposi-
tion 2.3, (t2, . . . , tλ) ∈ Bξk ∩ B<ω(D − t1). Hence, (s2, . . . , sn) ∈ (Bξk ∩ B<ω(D))∗.
Since k ≤ min s1, there exists k1 ≤ min s1 such that (s2, . . . , sn) ∈ (Bξk1 ∩B<ω(D))∗
for infinitely many n ∈ N. This gives that (s2, . . . , sn) ∈ (Bξk1 ∩B<ω(D))∗ for every
n ∈ N. According to Proposition 3.6, the family (Bξk1 ∩B<ω(D))∗ is not pointwise
closed. This is a contradiction to the induction hypothesis, since ξk1 < ξ. �

For hereditary and pointwise closed families F in B<ω(N) the strong Cantor-
Bendixson index sD(F) of F with respect to an infinite-ordered disjoint collection
D ∈ Bω(N) can be defined. The strong Cantor-Bendixson index corresponding to
Bξ will turn out to be ξ + 1, on any infinite-ordered disjoint collection.

Definition 3.9. Let F ⊆ B<ω(N) be a hereditary and pointwise closed family. For
an infinite-ordered disjoint collection D we define the strong block Cantor-Bendixson
derivatives (F)ξ

D of F on D for every ξ < ω1 as follows:
(F)ξ

D = {s ∈ F ∩ B<ω(D) : the set {t ∈ FU(D) : (s1, . . . , sk, t) /∈ F} for
s = (s1, . . . , sk) or the set {t ∈ FU(D) : (t) /∈ F} for s = ∅ does not contain an
infinite-ordered disjoint collection}.

It is easy to verify that (F)1D is hereditary, hence pointwise closed (Corollary 3.7).
So, we can define for every ξ > 1 the ξ-derivatives of F recursively as follows:

(F)ζ+1
D = ((F)ζ

D)1D for all ζ < ω1; and

(F)ξ
D =

⋂
β<ξ

(F)β
D for ξ a limit ordinal .

The strong block Cantor-Bendixson index sD(F) of F on D is the smallest count-
able ordinal ξ such that (F)ξ

D = ∅.
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Remark 3.10. (i) The strong block Cantor-Bendixson index sD(F) of a hereditary
and pointwise closed family F ⊆ B<ω(N) on an infinite-ordered disjoint collection D
is a countable successor ordinal less than or equal to the “usual” Cantor-Bendixson
index O(F) of F into {0, 1}[N]<ω

(see [K]).
(ii) sD(F ∩ B<ω(D)) = sD(F).
(iii) sD(F1) ≤ sD(F2) if F1,F2 ⊆ B<ω(N) are hereditary and pointwise closed

families with F1 ⊆ F2.
(iv) If s ∈ (F)ξ

D, then s1 ∈ (F)ξ
D1

for every D1 < D, where σ(s) ∩ FU(D1) =
σ(s1), since FU(D1) ⊆ FU(D).

(v) If D1 < D, then sD1(F) ≥ sD(F), according to (iv).
(vi) If σ(D1) \ σ(D) is a finite set, then sD1(F) ≥ sD(F).

Proposition 3.11. Let D be an infinite-ordered disjoint collection and let D1 < D.
Then

sD1

(
(Bξ ∩ B<ω(D))∗

)
= ξ + 1 for every ξ < ω1 .

Proof. For every ξ < ω1 the families (Bξ ∩ B<ω(D))∗ are pointwise closed (Corol-
lary 3.8). Also, for every s ∈ FU(D) with min s = n we have, according to Propo-
sition 2.3, that

(Bξ ∩ B<ω(D))(s) = Bξn ∩ B<ω(D − s) for some ξn < ξ .

We will prove by induction that ((Bξ∩B<ω(D))∗)
ξ
D1

= {∅} for every ξ < ω1. Of
course, (B1 ∩ B<ω(D))∗ = {(s) : s ∈ FU(D)} ∪ {∅}. So ((B1 ∩B<ω(D))∗)1D1

= {∅}.
Let ξ > 1 and assume that

((Bζ ∩ B<ω(D))∗)
ζ
D1

= {∅} for every ζ < ξ and D1 < D .

Hence, for every s ∈ FU(D1) with min s = n and D1 < D we have that

((Bξ ∩ B<ω(D))(s)∗)
ξn

D1
= ((Bξn ∩ B<ω(D − s))∗)

ξn

D1
= {∅} .

This gives that (s) ∈ ((Bξ∩B<ω(D))∗))
ξn

D1
. So, if ξ = ζ+1 is a successor ordinal, we

have that (s) ∈ ((Bξ ∩ B<ω(D))∗)
ζ
D1

for every s ∈ FU(D1) and consequently that
∅ ∈ ((Bξ∩B<ω(D))∗)

ξ
D1

. If ξ is a limit ordinal, we have that ∅ ∈ ((Bξ∩B<ω(D))∗)
ξ
D1

,
since ∅ ∈ ((Bξ ∩ B<ω(D))∗)

ξn

D1
for every n ∈ N and sup ξn = ξ.

If {∅} 
= ((Bξ ∩ B<ω(D))∗)
ξ
D1

for a D1 < D, then there exist D2 < D1 and
s ∈ FU(D2) such that ((Bξ ∩B<ω(D))(s)∗)

ξ
D2


= ∅ (see Lemma 2.8 in [F3]). This is
a contradiction to the induction hypothesis. Hence, ((Bξ ∩ B<ω(D))∗)

ξ
D1

= ∅. �

4. Block Nash-Williams partition theorems

for every countable ordinal

Let us recall that, according to the block Ramsey theorem (Theorem 2.6), for
every countable ordinal ξ and every partition of F of B<ω(N) there exists an infinite
disjoint collection D, all of whose Bξ-finite blocks are either in the partition family
F itself or in the complement B<ω(N) \ F . However, Theorem 2.6 provides no
information on how to decide whether it is in F or in B<ω(N) \F . We now have at
our disposal all the tools that will allow us to obtain for a partition family F that
is hereditary (in Theorem 4.4) or a tree (in Theorem 4.6), a criterion, in terms of
the strong Cantor-Bendixson index of F , according to which, if this index is greater
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than ξ +1, all Bξ-finite blocks fall in F , and if less than ξ +1, in B<ω(N)\F (albeit
in a weaker, nonsymmetrical manner).

It will be observed that the main dichotomy of Theorem 4.4 is nonsymmetric,
reflecting the fact that the strong property of hereditariness is assumed for the
family F itself. This type of nonsymmetric dichotomies is characteristic of Nash-
Williams partition theorems, and in fact, from Theorem 4.4, we will derive in the
sequel (Theorem 4.6, Corollaries 4.8 and 4.9) various forms of block Nash-Williams
theorems.

First we will give a stronger form of the block Ramsey theorem (Theorem 2.6) in
case the partition family is a tree, using the canonical representation of an ordered
disjoint collection with respect to each family Bξ.

Proposition 4.1. Let F ⊆ B<ω(N) be a tree, D ∈ B<ω(N) and ξ < ω1. Then
Bξ ∩ B<ω(D) ⊆ B<ω(N) \ F if and only if F ∩ B<ω(D) ⊆ (Bξ)∗ \ Bξ.

Proof. Let Bξ ∩ B<ω(D) ⊆ B<ω(N) \ F and s = (s1, . . . , sk) ∈ F ∩ B<ω(D). Then
s has canonical representation with respect to Bξ (Proposition 3.5), hence either
s ∈ (Bξ)∗ \ Bξ, as required, or there exists s1 ∈ Bξ such that s1 ∝ s. The second
case is impossible. Indeed, since F is a tree and s ∈ F ∩ B<ω(D), we have that
s1 ∈ F ∩ B<ω(D) ∩ Bξ; a contradiction to our assumption. Hence, F ∩ B<ω(D) ⊆
(Bξ)∗ \ Bξ.

It is obvious that Bξ ∩ B<ω(D) ⊆ B<ω(N) \ F if F ∩ B<ω(D) ⊆ (Bξ)∗ \ Bξ. �
Theorem 4.2. Let F ⊆ B<ω(N) be a tree, D ∈ B<ω(N) and ξ < ω1. Then there
exists an infinite-ordered disjoint collection D < D0 such that

either Bξ ∩ B<ω(D) ⊆ F or F ∩ B<ω(D) ⊆ (Bξ)∗ \ Bξ.

Corollary 4.3. Let ξ1, ξ2 be countable ordinals with ξ1 < ξ2. For every infinite-
ordered disjoint collection D there exists an infinite-ordered disjoint collection D1 <
D such that

(Bξ1)∗ ∩ B<ω(D1) ⊆ (Bξ2)∗ \ Bξ2 .

Proof. Of course (Bξ1)∗ is a tree. According to Theorem 4.2, for every infinite-
ordered disjoint collection D there exists D1 < D such that either Bξ2 ∩B<ω(D1) ⊆
(Bξ1)∗ or (Bξ1)∗ ∩ B<ω(D1) ⊆ (Bξ2)∗ \ Bξ2 . The first alternative is impossible, since
in this case, ξ2 + 1 = sD1((Bξ2 ∩ B<ω(D1))∗) ≤ sD1((Bξ1)∗) = ξ1 + 1, according to
Proposition 3.11; a contradiction. �

Now, using Theorem 2.6, Theorem 4.2, Proposition 3.6 and the concept of
the strong block Cantor-Bendixson index (Proposition 3.11) we state and prove
a strengthened form of Theorem 2.6 for partitions families which are hereditary.
This strengthened form of Theorem 2.6 can be considered as a strengthened block
Nash-Williams type partition theorem for hereditary families if we keep in mind
the block Nash-Williams partition theorem in Gowers’s reformulation (Corollary 4.9
below).

Theorem 4.4. Let F ⊆ B<ω(N) be a hereditary family of finite-ordered disjoint
collections and let D0 ∈ Bω(N) be an infinite-ordered disjoint collection. We have
the following cases:
[Case 1] The family F ∩ B<ω(D) is not pointwise closed.

Then, there exists D1 < D such that B<ω(D1) ⊆ F .
[Case 2] The family F ∩ B<ω(D) is pointwise closed.
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Then, setting
ξFD = sup{sD1(F) : D1 < D}

which is a countable ordinal, the following subcases obtain:
2(i) If ξ + 1 < ξFD , then there exists D2 < D such that

Bξ ∩ B<ω(D2) ⊆ F ;

2(ii) if ξ + 1 > ξFD , then for every D1 < D there exists D2 < D1 such that

Bξ ∩ B<ω(D2) ⊆ B<ω(N) \ F
(equivalently F ∩ B<ω(D2) ⊆ (Bξ)∗ \ Bξ); and

2(iii) if ξ + 1 = ξFD , then there exists D2 < D such that
either Bξ ∩ B<ω(D2) ⊆ F or Bξ ∩ B<ω(D2) ⊆ B<ω(N) \ F .
Both alternatives may materialize.

Proof. [Case 1] If the hereditary family F ∩ B<ω(D) is not pointwise closed, then,
according to Proposition 3.6, there exists D1 < D such that B<ω(D1) ⊆ F .

[Case 2] If the hereditary family F ∩ B<ω(D) is pointwise closed, then ξFD is
a countable ordinal, since the “usual” Cantor-Bendixson index O(F) of F into
{0, 1}[N]<ω

is a countable ordinal (Remark 3.10(i)) and sD1(F) ≤ O(F) for every
D1 < D.

2(i) Let ξ + 1 < ξFD . Then there exists D1 < D such that ξ + 1 < sD1(F).
According to Theorem 4.2, there exists D2 < D1 such that

either Bξ ∩ B<ω(D2) ⊆ F or F ∩ B<ω(D2) ⊆ (Bξ)∗ \ Bξ ⊆ (Bξ)∗.
The second alternative is impossible. Indeed, if F ∩ B<ω(D2) ⊆ (Bξ)∗, then, ac-
cording to Proposition 3.11, sD2(F) = sD2(F ∩ B<ω(D2)) ≤ sD2((Bξ)∗) = ξ + 1; a
contradiction. Hence, Bξ ∩ B<ω(D2) ⊆ F .

2(ii) Let ξ + 1 > ξFD and D1 < D. According to the ξ-block Ramsey partition
theorem (Theorem 2.6), there exists D2 < D1 such that

either Bξ ∩ B<ω(D2) ⊆ F or Bξ ∩ B<ω(D2) ⊆ B<ω(N) \ F .
The first alternative is impossible, Indeed, if (Bξ ∩ B<ω(D2)) ⊆ F , then, according
to Proposition 3.11 and Remark 3.10, we obtain that

ξ + 1 = sD2((Bξ ∩ B<ω(D2))∗) ≤ sD2(F) ≤ ξFD ;

a contradiction. Hence, Bξ ∩ B<ω(D2) ⊆ B<ω(N) \ F , and according to Proposi-
tion 4.1, F ∩ B<ω(D2) ⊆ (Bξ)∗ \ Bξ.

2(iii) Let ξ + 1 = ξFD . According to Theorem 2.6, there exists D2 < D such that
either Bξ ∩ B<ω(D2) ⊆ F or Bξ ∩ B<ω(D2) ⊆ B<ω(N) \ F .

That both alternatives may materialize can be seen by considering two simple
examples:

(1) F = {s = (s1 < · · · < s2k+1) ∈ B<ω(N) : k ∈ N and min s1 = k}. It
is easy to see that F∗ is pointwise closed (according to Proposition 3.6) and that
F(s) = B2n ∩ B<ω(N − s) for every s ∈ [N]<ω with min s = n. Analogously to
Proposition 3.11, it can be proved that sD(F∗) = ω + 1 for every D ∈ Bω(N). It is
now easy to verify that

Bω ∩ B<ω(D) ⊆ F∗ for every D ∈ Bω(N) .

(2) F = {s = (s1 < · · · < sk) ∈ B<ω(N) : k ∈ N and min s1 = 2k}. The family
F∗ is pointwise closed, and sD1(F∗) = ω + 1 for every D1 < D, where D is an
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infinite-ordered disjoint collection containing sets of even natural numbers. Thus,
ξFD = ω + 1. It is now easy to see that Bω ∩ B<ω(D1) ⊆ B<ω(N) \ F∗ for every
D1 < D, since F ∩ B<ω(D1) ⊆ (Bω)∗ \ Bω. �

Using Theorem 4.4 and Corollary 4.3, we will state and prove (in Theorem 4.6
below) a strengthened form of Theorem 2.6 and Theorem 4.2 for partitions fami-
lies which are trees. This strengthened form of Theorem 2.6, as indicated in Re-
mark 4.11 below, is also a stronger form of the block Nash-Williams partition the-
orem (Corollary 4.10), proved by Milliken [M] and independently by Taylor [T1].

We will need the following definition.

Definition 4.5. Let F be a family of finite disjoint collections on N. We set

Fh = {s ∈ F : every t = (t1, . . . , tk) with σ(t) ⊆ FU(s) belongs to F} ∪ {∅}.
Of course, Fh is the largest subfamily of F ∪ {∅} which is hereditary.

Theorem 4.6 (Stronger form of block Nash-Williams partition theorem). Let F ⊆
B<ω(N) be a family of finite-ordered disjoint collections which is a tree and let
D0 ∈ Bω(N) be an infinite-ordered disjoint collection. We have the following cases:
[Case 1] The family Fh ∩ B<ω(D) is not pointwise closed.

Then, there exists D1 < D such that B<ω(D1) ⊆ F .
[Case 2] The family Fh ∩ B<ω(D) is pointwise closed.

Then setting
ζFD = ξFh

D = sup{sD1(Fh) : D1 < D}
which is a countable ordinal, the following subcases obtain:

2(i) If ξ + 1 < ζFD , then there exists D2 < D such that

Bξ ∩ B<ω(D2) ⊆ F ;

2(ii) if ξ + 1 > ξ > ζFD , then for every D1 < D there exists D2 < D1 such that

Bξ ∩ B<ω(D2) ⊆ B<ω(N) \ F
(equivalently F ∩ B<ω(D2) ⊆ (Bξ)∗ \ Bξ); and

2(iii) if ξ + 1 = ζFD or ξ = ζFD , then there exists D2 < D such that
either Bξ ∩ B<ω(D2) ⊆ F or Bξ ∩ B<ω(D2) ⊆ B<ω(N) \ F .

Proof. [Case 1] If the hereditary family Fh ∩ B<ω(D) is not pointwise closed, then
there exists D1 < D such that B<ω(D1) ⊆ Fh ⊆ F , according to Proposition 3.6.

[Case 2] If Fh ∩ B<ω(D) is pointwise closed, then ζFD is a countable ordinal,
according to Theorem 4.4.

2(i) Let ξ + 1 < ζFD . Then ξ + 1 < ξFh

D , and, according to Theorem 4.4 (subcase
2(i)), there exists D2 < D such that

Bξ ∩ B<ω(D2) ⊆ Fh ⊆ F .

2(ii) Let ξ +1 > ξ > ζFD and D1 < D. According to Theorem 4.4 (subcase 2(ii)),
there exists D′

1 < D1 such that

(1) BζF
D ∩ B<ω(D′

1) ⊆ B<ω(N) \ Fh .

According to the ξ-block Ramsey partition theorem (Theorem 2.6), there exists
D2 < D′

1 such that
either Bξ ∩ B<ω(D2) ⊆ F or Bξ ∩ B<ω(D2) ⊆ B<ω(N) \ F .
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We claim that the first alternative does not hold. Indeed, if Bξ ∩ B<ω(D2) ⊆ F ,
then (Bξ ∩ B<ω(D2))∗ ⊆ F∗ = F . Using the canonical representation of every
infinite-ordered disjoint collection with respect to Bξ (Proposition 3.5), it is easy to
check that

(Bξ)∗ ∩ B<ω(D2) = (Bξ ∩ B<ω(D2))∗ .

Hence, (Bξ)∗ ∩ B<ω(D2) ⊆ F .
Since ξ > ζFD , according to Corollary 4.3, there exists D3 < D2 such that (BζF

D )∗∩
B<ω(D3) ⊆ (Bξ)∗ ∩ B<ω(D2) ⊆ F . Thus (BζF

D )∗ ∩ B<ω(D3) ⊆ Fh. This is a
contradiction to (1). Hence, Bξ ∩ B<ω(D2) ⊆ B<ω(N) \ F and equivalently F ∩
B<ω(D2) ⊆ (Bξ)∗ \ Bξ (Proposition 4.1).

2(iii) In the cases ζFD = ξ + 1 or ζFD = ξ, we use Theorem 2.6. �
Condition 2(ii) of Theorems 4.4 and 4.6 has a number of interesting reformula-

tions.

Proposition 4.7. Let F ⊆ B<ω(N), ξ < ω1 and D ∈ B<ω(N). The following are
equivalent:

(i) Bξ ∩ B<ω(D) ⊆ F .
(ii) For every D1 < D the unique initial segment of D1 which is an element of

Bξ belongs to F .
(iii) Given any sequence (Dn)n∈N in Bω(N) with Dn < D for every n ∈ N, and

sn ∈ FU(Dn) for every n ∈ N with s1 < s2 < · · · , then there exists n0 ∈ N

such that (s1, . . . , sn0) ∈ Bξ ∩ F .

Proof. (i) ⇒ (ii). Let D1 < D. Using the canonical representation of D1 with
respect to Bξ (Proposition 3.5), there exists a unique initial segment s of D1 which
is an element of Bξ. Since s ∈ Bξ ∩ B<ω(D), we have that s ∈ F , according to (i).

(ii) ⇒ (i). Let D = (sn)n∈N and s = (t1, . . . , tk) ∈ Bξ ∩ B<ω(D). We set
l = min{n ∈ N : sn > tk} and D1 = {t1, . . . , tk, sl, sl+1, . . .}. Of course D1 < D.
Using the canonical representation of D1 with respect to Bξ (Proposition 3.5), and
(ii), we have that s ∈ F .

(i) ⇒ (iii). Let (Dn)n∈N be a sequence in Bω(N) with Dn < D for every n ∈ N.
Choose sn ∈ FU(Dn) for every n ∈ N with s1 < s2 < · · · . The infinite-ordered
disjoint collection (sn)n∈N has canonical representation with respect to Bξ, hence
there exists a unique n0 ∈ N such that (s1, . . . , sn0) ∈ Bξ ∩ B<ω(D). According to
(i), we have that (s1, . . . , sn0) ∈ F .

(iii) ⇒ (ii). Let D1 < D and let D1 = (tn)n∈N. Using (iii) with Dn = D1 for
every n ∈ N and sn = tn for every n ∈ N, we have the existence of an n0 ∈ N such
that (t1, . . . , tn0) ∈ Bξ ∩ F . �

The following corollary is a simplified statement of Theorem 4.6.

Corollary 4.8. Let F ⊆ B<ω(N), which is a tree, and let D ∈ Bω(N). Then
(i) either there exists D1 < D such that B<ω(D1) ⊆ F ,
(ii) or there exists a countable ordinal ξ0 = ζFD such that for all ξ > ξ0 and

D1 < D, there exists D2 < D such that Bξ ∩ B<ω(D2) ⊆ B<ω(N) \ F .

Proof. We apply Theorem 4.6 (Case 1 and subcase 2(ii)). �
We now consider a very simplified statement of Theorem 4.6 (not including

countable ordinals), more akin to the Gowers’ reformulation (in [G]) of the classical
Nash-Williams theorem [NW].
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Corollary 4.9 (Block Nash-Williams partition theorem in Gowers’s reformulation).
Let F ⊆ B<ω(N), which is a tree, and let D ∈ Bω(N). Then there exists D1 < D
such that

(i) either B<ω(D1) ⊆ F ,
(ii) or for every D2 < D1 there exists an initial segment of D2 which belongs to

B<ω(N) \ F .

Proof. The proof follows from Theorem 4.6 (Case 1 and subcase 2(ii)) and Propo-
sition 4.7. �

Corollary 4.9 implies the following block Nash-Williams theorem, proved by Mil-
liken [M] and independently by Taylor [T1]. Moreover, Corollary 4.9 is equivalent
to the block Nash-Williams theorem, according to Remark 4.11. This is the rea-
son we called Theorem 4.6 a stronger form of the block Nash-Williams partition
theorem.

Corollary 4.10 (Block Nash-Williams theorem, [M], [T1]). Let U ⊆ Bω(N) be a
pointwise closed family and D ∈ Bω(N). Then there exists D1 < D such that

either Bω(D1) ⊆ U or Bω(D1) ⊆ Bω(N) \ U .

Proof. Let FU = {s ∈ B<ω(N): there exists D′ ∈ U such that s ∝ D′}. Since the
family FU is a tree, we use Corollary 4.9. Then we have the following two cases:

[Case 1] There exists D1 < D such that B<ω(D1) ⊆ FU . Then, Bω(D1) ⊆ U .
Indeed, if D2 = (sn)n∈N ∈ Bω(D1), then (s1, . . . , sn) ∈ FU for every n ∈ N. Hence,
for every n ∈ N there exists D′

n ∈ U such that (s1, . . . , sn) ∝ D′
n. Since (xσ(D′

n))n∈N

converges pointwise to xσ(D2) and U is pointwise closed, we have that D2 ∈ U and
consequently that Bω(D1) ⊆ U .

[Case 2] There exists D1 < D such that for every D2 < D1 there exists an initial
segment (s1, . . . , sn) of D2 which belongs to B<ω(N) \ FU . Then, D2 ∈ Bω(N) \ U
for every D2 < D1. Hence, Bω(D1) ⊆ Bω(N) \ U . �

Remark 4.11. (i) The block Nash-Williams partition theorem (Corollary 4.10) is in
fact equivalent to Corollary 4.9. Indeed, let F ⊆ B<ω(N). Set

UF = {D ∈ B<ω(N) : there exists (s1, . . . , sk) ∈ F such that (s1, . . . , sk) ∝ D} .

The complement Bω(N) \ UF is pointwise closed, so, using Corollary 4.10 for the
family Bω(N) \ UF , we obtain Corollary 4.9. On the other hand, Corollary 4.9
implies Corollary 4.10, according to the proof of Corollary 4.10.

(ii) Corollary 4.9 holds for arbitrary partitions of B<ω(N) (not necessarily trees).
Indeed, let F be an arbitrary partition of B<ω(N). Then we set Ft = {s ∈ F :
every t ∝ s belongs to F} ∪ {∅}. The family Ft is a tree and Ft ⊆ F . According
to Corollary 4.9, there exists D1 < D such that:

either B<ω(D1) ⊆ Ft ⊆ F ;
or for every D2 < D1 there exists an initial segment of D2 which belongs to

B<ω(N) \ Ft.
Let D2 < D1, and let s ∝ D2 with s ∈ B<ω(N) \ Ft = (F \ Ft) ∪ (B<ω(N) \ F).

Then, either s ∈ B<ω(N) \ F , as required, or s ∈ F \Ft. In case s ∈ F \Ft, by the
definition of Ft, there exists s1 ∝ s such that s1 ∈ B<ω(N) \ F , as required.
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5. The Block Ellentuck partition theorem

for every countable ordinal

In this section we show that our Theorem 4.6 implies a stronger partition theo-
rem, for partitions of Bω(N), involving the Ellentuck topology TE (Theorem 5.2).
A simple consequence of Theorem 5.2 (together with Corollary 5.5) is the charac-
terization of completely Ramsey partitions of Bω(N) in terms of the Baire property
in the topology TE , a result proved with different methods by Milliken [M] and also
by Taylor [T1].

We define below the topology TE on Bω(N), a block analogue of the Ellentuck
topology [E].

Definition 5.1. Let TE be the topology on Bω(N) with basic open sets of the form

[s,D] = {D1 ∈ Bω(N) : s ∝ D1 and D1 − s < D} ,

where s ∈ B<ω(N) and D ∈ Bω(N).
The topology TE is stronger than the relative topology of B<ω(N) with respect

to the pointwise convergence topology of {0, 1}[N]<ω

, which has basic open sets of
the form [s, N] = {D1 ∈ Bω(N) : s ∝ D1}.

We denote by Û and U♦ the closure and the interior, respectively, of a family
U ⊆ Bω(N) in the topology TE . Then it is easy to see that

Û = {D ∈ Bω(N) : [s,D] ∩ U 
= ∅ for every s ∝ D} ; and

U♦ = {D ∈ Bω(N) : there exists s ∝ D such that [s,D] ⊆ U} .

If s = (s1, . . . , sk) ∈ B<ω(N) and t = (t1, . . . , tl) ∈ B<ω(N) with sk < t1, then
we set s ∗ t = (s1, . . . , sk, t1, . . . , tk) ∈ B<ω(N).

Theorem 5.2. Let U ⊆ Bω(N), s ∈ B<ω(N) and D ∈ Bω(N). Then

either there exists D1 < D such that [s,D1] ⊆ Û ,
or there exists a countable ordinal ξ0 = ζU(s,D) such that for every ξ > ξ0

there exists D1 < D−s with [s∗t,D1] ⊆ Bω(N)\U for all t ∈ Bξ∩B<ω(D1).

We will give the proof of this theorem after the following lemma which is analo-
gous to Lemma 2.5.

Lemma 5.3. Let G ⊆ {[s,D] : s ∈ B<ω(N) and D ∈ Bω(N)} with the following two
properties:

(i) for every (s,D) ∈ B<ω(N) × Bω(N) there exists D1 < D such that [s,D1] ∈
G; and

(ii) for every [s,D1] ∈ G and D2 < D1 we have [s,D2] ∈ G.

Then, for every (s,D) ∈ B<ω(N) × Bω(N) there exists D0 ∈ [s,D] such that
[s ∗ t,D1] ∈ G for every t ∈ B<ω(D0 − s) and D1 < D0 − s.

Proof. Let s = (s1, . . . , sk) ∈ B<ω(N) and D ∈ Bω(N). We can assume that
D− s = D. According to assumption (i), there exists D1 < D such that [s,D1] ∈ G.
Assume that Dn < · · · < D1 ∈ Bω(N) have been constructed and Dn = (sn

i )i∈N for
every n ∈ N.
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Set {t1, . . . , tr} = {t ∈ B<ω(N) : σ(t) ⊆ FU({s1
1, . . . , s

n
n})}. According to (i),

there exist D1
n+1 < Dn − sn

n such that [s ∗ t1,D1
n+1] ∈ G, D2

n+1 < D1
n+1 such that

[s ∗ t2,D2
n+1] ∈ G, and finally Dr

n+1 < Dn − sn
n such that [s ∗ tr,Dr

n+1] ∈ G. Set
Dn+1 = Dr

n+1 = (sn+1
i )i∈N. Then, according to (ii), [s ∗ ti,Dn+1] ∈ G for every

1 ≤ i ≤ r.
Set D0 = (s1, . . . , sk, s1

1, s
2
2, . . .) ∈ Bω(N). Then D0 ∈ [s,D]. Let t ∈ B<ω(D0−s)

with t 
= ∅. If n0 = min{n ∈ N : σ(t) ⊆ FU({s1
1, . . . , s

n
n})}, then [s ∗ t,Dn0+1] ∈ G.

According to assumption (ii), [s ∗ t,D0 − sn0
n0

] ∈ G. Hence, [s ∗ t,D0] = [s ∗ t,
D0 − sn0

n0
] ∈ G. If t = ∅, then [s,D1] ∈ G, hence [s,D0] ∈ G. �

Proof of Theorem 5.2. Let U ∈ Bω(N), s ∈ B<ω(N) and D ∈ Bω(N). Set

GU ={[s,D] : (s,D) ∈ B<ω(N) × Bω(N) and

either [s,D] ∩ U = ∅ or [s,D1] ∩ U 
= ∅ for every D1 < D} .

It is easy to check that GU satisfies assumptions (i) and (ii) of Lemma 5.3, hence,
there exists D0 ∈ [s,D] such that [s ∗ t,D0] ∈ GU for every t ∈ B<ω(D0 − s). Set

F = {t ∈ B<ω(D0 − s) : [s ∗ t,D1] ∩ U 
= ∅ for every D1 < D0} .

The family F is a tree. Indeed, let t ∈ F and t1 ∝ t. Then [s ∗ t1,D0] ∈ GU ,
since t1 ∈ B<ω(D0 − s). So either [s ∗ t1,D0] ∩ U = ∅ which is impossible, since
[s ∗ t,D0] ∩ U 
= ∅, or [s ∗ t1,D1] ∩ U 
= ∅ for every D1 < D0. Hence t1 ∈ F .

We use Theorem 4.6 for F and D0 − s. We have the following cases:
[Case 1] There exists D1 < D0 − s < D such that B<ω(D1) ⊆ F . This gives
that [s ∗ t,D2] ∩ U 
= ∅ for every t ∈ B<ω(D1) and D2 < D1, which implies that
[s,D1] ⊆ Û .
[Case 2] There exists a countable ordinal ξ0 = ζFD = ζU(s,D) such that for every
ξ > ξ0 there exists D1 < D0 − s < D with Bξ ∩ B<ω(D1) ⊆ B<ω(N) \ F . Then
[s ∗ t,D1] ⊆ Bω(N) \ U for every t ∈ Bξ ∩ B<ω(D1). �

Applying Theorem 5.2 to partitions U that are closed (the pointwise closed fam-
ilies are included in this class) or meager in the topology TE , we consider the
following consequences.

Corollary 5.4. Let U be a subset of Bω(N) pointwise closed (or, even U closed in
the topology TE), let s ∈ B<ω(N) and let D be an infinite-ordered disjoint collection.
Then

either there exists D1 < D such that [s,D1] ⊆ U ,
or there exists a countable ordinal ξ0 = ξU(s,D), such that for every ξ > ξ0

there exists D1 < D − s such that [s ∗ t,D1] ⊆ Bω(N) \ U for every t ∈
Bξ ∩ B<ω(D1).

Proof. It follows from Theorem 5.2. �

Corollary 5.5. Let U be a subset of Bω(N) meager in the topology TE , let s ∈
B<ω(N) and let D ∈ Bω(N). Then, there exists a countable ordinal ξ0 such that for
every ξ > ξ0 there exists D1 < D − s such that [s ∗ t,D1] ⊆ Bω(N) \ U for every
t ∈ Bξ ∩ B<ω(D1).

Proof. We use Theorem 5.2 for U . We will prove that the first alternative is impos-
sible. Indeed, let D1 < D such that [s,D1] ⊆ Û . We denote by |t| the cardinality
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of σ(t) for a t ∈ B<ω(N). If U =
⋃

n∈N
Un with (Ûn)♦ = ∅ for every n ∈ N, then we

set
G ={[t,D0] : t ∈ B<ω(N), D0 ∈ Bω(N) and

[t,D0] ∩ Uk = ∅ for every k ∈ N with k ≤ |t|} .

The family G satisfies conditions (i) and (ii) of Lemma 5.3. Indeed, according to
Theorem 5.2, for every t ∈ B<ω(N), D ∈ Bω(N) and k ∈ N there exists D′

0 < D such
that [t,D′

0] ∩ Uk = ∅, as it is impossible that [t,D′
0] ⊆ Ûk. Thus G satisfies (i) and

obviously satisfies (ii). Hence, according to Lemma 5.3, there exists D2 ∈ [s,D1]
such that [s ∗ t,D2] ∈ G for every t ∈ B<ω(D2 − s). Then, [s,D2]∩ U = ∅. Indeed,
let D3 ∈ [s,D2] ∩ U . Then, D3 ∈ [s,D2] ∩ Uk for some k ∈ N. Hence, there exists
t ∈ B<ω(D2 − s) with s ∗ t ∝ D3, k ≤ |s ∗ t| and [s ∗ t,D2] ∩ Uk 
= ∅. Then,
[s ∗ t,D2] /∈ G. A contradiction, since t ∈ B<ω(D2 − s). Thus, [s,D2] ∩ U = ∅.
This implies that D2 /∈ Û , which is a contradiction, since D2 ∈ [s,D1] ⊆ Û . Hence,
the first alternative of Theorem 5.2 for the partition U is impossible, so the second
alternative holds for U . �

We recall the definition of the completely Ramsey families of infinite-ordered
disjoint collection given in [M].

Definition 5.6. A family U ⊆ Bω(N) of infinite-ordered disjoint collections is
called completely Ramsey if for every s ∈ B<ω(N) and every D ∈ Bω(N) there exists
D1 < D such that

either [s,D1] ⊆ U or [s,D1] ⊆ Bω(N) \ U .

A further consequence of Theorem 5.2 is the following corollary which gives the
characterization of completely Ramsey families (also proved in [M] and indepen-
dently in [T1]).

Corollary 5.7. A family U ⊆ Bω(N) is completely Ramsey if and only if U has
the Baire property in the topology TE.

Proof. Let U ⊆ Bω(N) have the Baire property in the topology TE . Then U =
B�C = (B ∪ Cc) ∪ (C ∩ Bc), where B ⊆ Bω(N) is TE-closed and C ⊆ Bω(N) is TE-
meager (Cc = Bω(N)\C). According to Corollaries 5.4 and 5.5, for every s ∈ B<ω(N)
and D ∈ Bω(N), there exists D1 < D such that [s,D1] ⊆ Cc and consequently there
exists D2 < D1 such that

either [s,D2] ⊆ B ∩ [s,D1] ⊆ B ∩ Cc ⊆ U
or [s,D2] ⊆ Bc ∩ [s,D1] ⊆ Bc ∩ Cc ⊆ Uc.

Hence, U is completely Ramsey.
On the other hand, if U is completely Ramsey, then U = U♦ ∪ (U \ U♦) and

U \ U♦ is a meager set in TE . Hence U has the Baire property in the topology
TE . �

Remark 5.8. (i) Every subset U of Bω(N) which is a Borel set in the topology of
pointwise convergence is completely Ramsey, since it has the Baire property in the
topology TE .

(ii) Every subset of Bω(N) which is an analytic set in the topology of pointwise
convergence is completely Ramsey, since every analytic set (in this topology) has
the Baire property.
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