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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 289, Nunmber 1, May 1985 

ON THE STRUCTURE OF WEAKLY COMPACT SUBSETS 
OF HILBERT SPACES AND APPLICATIONS 
TO THE GEOMETRY OF BANACH SPACES 

BY 

S. ARGYROS AND V. FARMAKI 

ABSTRACT. A characterization of weakly compact subsets of a Hilbert space, when 
they are considered as subsets of B-spaces with an unconditional basis, is given. We 
apply this result to renorm a class of reflexive B-spaces by defining a norm 
uniformly convex in every direction. We also prove certain results related to the 
factorization of operators. Finally, we investigate the structure of weakly compact 
subsets of ll (,). 

Introduction. A compact set is said to be uniformly Eberlein compact (U.E.C.) if it 
is homeomorphic to a weakly compact subset of a Hilbert space. 

The class of U.E.C. sets has been introduced by Benyamini and Starbird in [4]. 
That paper contains an example of an Eberlein compact set (i.e. a weakly compact 
subset of c0(f)) which is not U.E.C. Later Benyamini, Rudin and Wage [5] proved 
interesting stability properties for U.E.C. sets such as: The continuous Hausdorff 
image of a U.E.C. set is also U.E.C., and for any U.E.C. set K the set M+(K) is also 
U.E.C. in the w*-topology. In the same paper an internal topological characteriza- 
tion for U.E.C. sets was given. This result plays an important role in the proof of our 
results and its statement is given in the section of preliminaries (Proposition 0.3). 

The present paper continues the study of U.E.C. sets. We prove a structure 
property for U.E.C. sets which are considered as subsets of B-spaces with an 
unconditional basis. This property, which also characterizes the U.E.C. sets, is, 
roughly speaking, a summability condition for the elements of the set. The statement 
of the result is as follows: 

THEOREM A (1.8). Let X be a B-space with an unconditional basis { x: y E r } and 
let K be a weakly compact subset of X. Then the following are equivalent. 

(1) The set K is U. E.C. 
(2) For every ? > 0 there exists a decomposition { Tf: m E N) of F and a sequence 

{ k (m): m E N) of natural members such that for any x E K 

card(y E T', 0: lx*(x)| ? - < k(m). 
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410 S. ARGYROS AND V. FARMAKI 

The result is immediate when K is considered as a weakly compact subset of a 
Hilbert space. 

The proof of this theorem is given in the first section of the paper. We prove it for 
the special case X = co(F) (Theorem 1.7). The proof strongly depends on the set 
6( K) introduced by Definition 1.1 and proceeds with the following two main steps. 
First, we show that, for any U.E.C. subset of co(F), the set co(d(K)) is also U.E.C. 
Second, we work with this set which has richer structure than the original K and we 
obtain the desired result. The proof of the general case can be easily obtained by 
using the above result. Applying Theorem 1.7 we get a simplification of the example 
of Benyamini and Starbird [4] mentioned above (Example 1.10). This simplification 
also has been derived by an earlier unpublished work of the first named author in 
cooperation with S. Merkourakis. 

In the second section we study the relation of U.E.C. sets with certain renornings 
of B-spaces. The main result proved here is Theorem 2.3 which states: 

THEOREM B. Every reflexive B-space X, with its unit ball Sx a U. E.C. set, admits an 
equivalent norm uniformly convex in every direction. 

The definition of U.C.E.D. norm is given in the section of the preliminaries while 
certain results related to such norms, due to Troyanski, are given in the beginning of 
the second section. 

The precise relation between B-spaces, containing only U.E.C. weakly compact 
subsets and possible renormings of them by an equivalent uniformly convex in 
every direction norm, is not yet clear. Besides Theorem B we investigate this relation 
by using an example (Example 2.7) and we state some related questions. 

In the third section we introduce the class of uniformly weakly compact operators 
and we prove that any such operator can be factorized through a reflexive B-space 
admitting an equivalent uniformly convex in every direction norm. We also improve 
certain results of Davis, Figiel, Johnson and Pelczynski [6]. 

Finally, in the fourth section we show that every weakly compact subset of L1(tt) 
is U.E.C. 

Preliminaries. If F is a set we denote its cardinality by card(F) or IFI. For a subset 
A of F we denote the indicator or characteristic function corresponding to the set A 
by IA. Below we state two combinatorial lemmas. They are both used in the proof of 
the main result of this paper. 

0.1. LEMMA [17]. Let { A,: i E I } be an uncountable family of finite sets. Then there 
exists an uncountable subset I' of I and a finite set A such that for any two il * i2 

elements of I' we have A,, n A12 = A. 

0.2. LEMMA [3]. For any two natural numbers k, X and any family { A,: i = 1,... .,k } 
of sets with card( A) < X, there exists a subset I of { 1, . . ,kA } with card I = k so that 
for i1 * i2 elements of I we have i1 X Ai2 

The following proposition is an internal characterization of the U.E.C. sets and it 
is similar to the corresponding characterization for Eberlein compact sets proved by 
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Rosenthal in [16]. Before the statement of the proposition we give some related 
definitions. 

A family of sets { V6: 8 E Ai} separates the points of a given set K if, for any 
x, y E K, x # y, there exists 8 E so that Iv(x) Iv (y).The family {V3:6eA} 
is pointwise countable (finite) if every x belongs to countably (finitely) many 
elements of the family. The family { V6: 8 E Ai} is k-finite for, a given natural 
number k, if any x belongs to at most k elements of the family. 

0.3. PROPOSITION [5]. A compact set K is U. E.C. iff there exists a family { V;: 
6 E L\ } of open Fa subsets of K so that: 

(i) The family {6V: 8 E A } separates the points of K. 
(ii) There exists a decomposition of A\ into a sequence { A\,} and natural numbers 

{k(n)} I 0so that A is k(n)-finite. 

For a set F we denote by c0(F) the B-space of all functions f on F such that for all 
? > 0 the set { y E F: If(y)I ? E} is finite. The norm on c0(F) is the sup norm. Also, 
12(F) denotes the Hilbert space of all functions f on F such that lf111 = 

(Ly-E=- rIf (Y)0 < oo. In the sequel we denote the function I{YI by ey. A family 
{ x; y E F } in a B-space X is an unconditional basis provided that it generates the 

space X and, for any {xY,. . .,xy } finite subset of F, {a,}In1 real numbers and 

{ ?, },_1 E {-1, 

1},~ ~ 11 1 
E=-~ ~ ~~~= 

sEEa,x- E=( E ?a X-Y s 

Our notation and terminology for B-spaces and operators defined on them are those 
of [14]. 

0.4. DEFINITION. A B-space X is said to be uniformly convex in every direction 
(U.C.E.D.) iff, for all sequences {x,,}) 1, {y,y}X-i such that Ilxnll< 1, ilYnll< 1, 

IjI,x + y,Ij --* 2 and x,1 - yn = Xn Z, it follows that X,n --> 0 
U.C.E.D. B-spaces were introduced by Garkavi [11]. Their structure has been 

studied by Day, James, and Swaminathan [7], Zizler [20], and Troyanski [18, 19]. 
Every separable B-space admits an equivalent U.C.E.D. norm [7], but Kutzarova 
and Troyanski in [13] gave an example of a reflexive B-space not admitting an 
equivalent U.C.E.D. norm. Also, any B-space which is U.C.E.D. satisfies the fixed 

point property [20]. 
1.1. DEFINITION. In the sequel for any subset K of c0(F) we will denote by &(K) 

the set 

&(K) = {x E CO(F): 3y E K, such that lxl = lyl} 

and by 1(K) the set 

&1(K)= {x E xo(F): 3y E K, such that lxlI < yI}. 

Here lxl denotes the element of c0(F) with IxI(y) = lx(y)l and x < y denotes 
coordinatewise order. 

Clearly, the definitions of &(K), &(K) can be extended in the case of B-spaces 
with an unconditional basis. 
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The following result is due to Abramovich [1]. 

1.2. PROPOSITION. For any weakly compact subset K of a B-space with an uncondi- 
tional basis, the sets &(K), , (K) are also weakly compact. 

One of our purposes is to prove a corresponding result when K is a U.E.C. subset 
of co(r). 

1.3. PROPOSITION. Let K be a weakly compact subset of co(F). If K is U.E.C., then 
the set (K) is also U.E.C. 

In order to prove it we use the following lemma. 

1.4. LEMMA. Consider K, a weakly compact subset of 12(A), and {V}t1T, a 
pointwise countable family of open Fa subsets of K, so that 0 4 V, for all t E T. 

Then there exists a family { U; }z;EA of open Fa subsets of K such that: 
(1) Fot each 8 in A there exists t E Tso that the set V, contains the set U;. 
(2) For each t in T there exists a countable subset At of A such that 

vt = U{U6: 8 E it\). 

(3) A\ = U' h=k, where for each k E N the family {kUl }kk A, is n (k)-finite for some 
n(k) E N. 

PROOF. We assume lixii < 1 for all x E K. For every x in Vt we choose a basic 
open neighborhood Wx of x contained in Vt. With no loss of generality we may 
assume that Wx has the form 

J'J= {y E K: ly(K,) - x(kx)I < E i = ... nx 

where n E N, Ax = { M } U 1 is a finite subset of A, and ?x is a rational number. 
Furthermore, setting MX = { Xi: lx(Xx)j > 0}, we assume that ?X has been chosen so 
that Ix(X)t > ?X/2 for all X E MX. We notice that because of the property 0 ' Wx 
the set MX is nonempty. 

Each Vt is Lindelof; hence, there exist countably many elements of it, say 

{t X* } 7Xso that 
00 

Vt U wx> 
11 = 1 

CLAIM. For a fixed finite subset M of A and a fixed k E N, the set 

L = { t E T: M)t = M) 

is at most countable. 
PROOF OF THE CLAIM. Suppose on the contrary that there exist k, M such that the 

corresponding set L is uncountable. For each t E L we set Dt = A x \ M. Applying 
Lemma 0.1 to the family { Dt } teL we get an uncountable subset I of L and a subset 
D of A with Dt, n Dtf = D for any distinct elements tl, t2 of I. We also assume that, 
for any t, t' E I, ?X = E = E, and that I(Xt )- X '(X)t < ?/2 for each X E M. Fix 

to E I and consider the set 

o= {X E A: xto(X) 0 ?) 
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which clearly is at most countable. Hence there is an uncountable Ii c I with 
D, n Fo c D for any t E II. We can easily see that the element Xko belongs to the set 
W'VA, for all t E II. Hence there are uncountably many VJ with nonempty intersection. 
This contradicts our assumptions and the proof of the Claim is complete. 

Consequently, for each finite subset M of A and any k E N, the set 

{W>: Mx, = M} { XA XA M} 

is at most countable. We enumerate this as 

{W(M, r): r C N). 

Define A = TX N and U6 = WXA where 8 = (t, k). It is easy to see that the family 

{U8: 8 E A } satisfies the desired properties (1) and (2) of the statement of the 
lemma. It remains to show the last one. For this purpose, define 

A (k, m, 1, r) = {8 = (t, k): ?XA > /rm, MXI = 1, Wx = W(M, r)}. 

Obviously, 

A = U{A(k, m, 1, r): (k, m, 1, r) E N4). 

For any m, I E N, we denote by s(m, 1) the cardinality of the set 

{A c {1,...,m2 + 1}: JAI= I}. 

We claim that the family {U8: 8 E A(k, m, 1, r)} is s(m, /)-finite. 
To see this we choose, whenever it exists, element y of K with 

s(rn, 1) 

y = n U, for{8j,...,8s(ml)} C A(k, m, 1, r). 
i=l 

Then there exists { Xl,..., Xm2 ?+} c Us(m,')Mx,, where 8, = (t,, k,). Also jy(Xj)j > 

/rm for all i = 1,... Im2 + 1; hence, we get 

1) /2 (t2 +1 1) /2 

This is a contradiction and the proof of the lemma is complete. 
Before the proof of Proposition 1.3 we introduce some more notation for the sake 

of simplicity. 
NOTATION. We fix an enumeration {(an, b): n E N} of the open intervals with 

rational ends such that 0 0 [an, bn]. Let K be a subset of c0(F). 
For any (y, n) in y x N, we set 

V(y,n) = {x E K: x(y) E (a, bn)} 

The family { V(Y n): (-y, n) E F x N} satisfies the following properties. 
(i) Each V(Y n) is an open Fo subset of K and does not contain the zero element. 
(ii) It separates the points of K. 
(iii) It is pointwise countable. 
PROOF OF PROPOSITION 1.3. We may assume that the set K satisfies x(y) ? 0 for 

any x E K, y E F. (Otherwise we consider the mapping G: K -> K,, defined by 
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G(x) = lxl, which is continuous, and by [5] the set Kl = G[K] is U.E.C. It is clear 
that (K) = (K ).) 

Consider a homeomorphismf: K -> 12(A) so that IIf(x)II < 1 for any x E K and 
f(O) = 0. In the sequel, V(Y, ,) are subsets of K as in the previous notation. The 
family { f[JV(Y ,,)]: (y, n) E F x N} is pointwise countable and separates the points 
of the set f [K]. Hence this family satisfies the assumptions of Lemma 1.4, so there 
exists another family {A }^Ev of open Fa subsets of f[K] which satisfies the 
conclusions of Lemma 1.4. 

Set U8 = f'[Aj]. It is clear that the families {V(y 1): (-Y, n) E F x N} and 

{U'6 }8E satisfy properties (1), (2) and (3) of the conclusion of Lemma 1.4. 
For any x E U8, 8 E1 A, we choose an open neighborhood Vx of x contained in U8 

which, furthermore, has the form 

Vx= Y (E K:y(y,x) E (cx, dx), i = I,.,n, 

where, for 1 < i < n and y,- E F, cx and dx are rational numbers such that they are 
both positive in the case x(y,x) > 0 and cx = -d, otherwise. 

Each U is contained in some of the sets ,,); therefore, for each 8 E/ A and 
x E U^, there exists (y, n) so that y,x = y for some 1 < i < nx, and (c, d,) is a 
subset of (a,, b,). 

For each 8 EE A the set U, is Lindelof so there exists a countable subset {x(8, [t): 
j E N} of Ua so that Us = V 

Forx E Kands E t{-1,}II,wedefine 

V,s= { e E (K): 41(y,x) E (s(i)cx, s(i)dx), i = 1,...nx 

We set 

E = 8 EC A, e E N, s E 1, I} 
n 

and we claim that E separates the points of &(K). Indeed, for xl, x2 in &(K) with 

xi # x2we distinguish two cases. 
Case 1. 1xl * lx2i- 

Then there exists a set of the form V(,,,) so that Iv( ,)(Ixll) # IV(,'n)(IX2I). Hence, 
there is x(8, M) so that Iv, M (Ix1) # Iv 0,0 (IX2l) and, choosing a suitable s E 
{-1, 1}'" , we conclude that 

I V,(X1 ) 
I Iv, ,S X2). 

Case 2. xxll = IX21 

In this case there exists y in F with 0 xl(y) = -x2(y). We may assume that 
xl(y) > 0. Hence there is, for n E N, x1(y) E (a,, b,n), equivalently xl E nY 
while x2 X V(tY,,). It is immediate that there is (8, y) EA x N such that xl Vx(C 
and x2 V(4J8, 

We define a decomposition of E as follows: 
For (k, , /) E N3 and s C {-1, 1}'we set 

E(k, j, 1, s) = {V, ,): 8 Ak I -1,1}}. 
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Recall that the family {U6: 8 E A; } is n(k)-finite. We claim that the family 
E(k, ,u, 1, s) is also n(k)-finite. 

Indeed if there exists y E f nl '(A) V,.( , then there also exists an x E K with J y J = x 
and x E fl_jV(8 ,,. The last implies that nfl)u1 , u # 0. This contradiction estab- 
lishes the Claim. 

Using now the topological characterization of U.E.C. (Proposition 0.3) we get that 
the set &( K) is U.E.C. The proof of the proposition is complete. 

1.5. PROPOSITION. Let K be a weakly compact subset of a B-space X which is U. E.C. 
Then the set K1 = co( K) is also U. E.C. 

PROOF. We denote, as usual, the set of all regular probability measures defined on 
the space K endowed with the w* topology by M1j( K). As it has been proved in [5] 
for K a U.E.C. set, the set M((K) is also U.E.C. Consider now the map F: 

Ml ( K) co( K) which sends the measure , to its barycenter. It is well known that 
F is w* -w continuous and onto [15]. Therefore, co(K) is U.E.C. since it is the 
continuous image of M( ( K) [5]. 

1.6. LEMMA. Let K be a subset of c((F) and let L1, L2,...,Li, be pairwise disjoint 
finite subsets of F. We assume that p1I, + + p,i,, E co(&(K)). If a satisfies 
0 < a < min {p . p,},then 

a1.(II + + II) E co(&(K)) 

PROOF. First notice that, for x c co( &( K)) and a subset A of F, 

X|A = ((XIA + XlAc) + (XIA - XIAc))2 E co (&(K)). 

Subsequently, supposex = P1i4 + + P,+II, belongs to co(6(K)) and a E R 

satisfies a < P1 p ? p,, + Observe that the element 

Y = x? + P2 ( Pl( ,,,) = PI Il, , I- + p ( P341 + . + ,, 
P2 P2 2 P2 

also belongs to co(&( K )). Hence the lemma follows by induction. 

1.7. THEOREM. Let K be a weakly compact subset of c((F). The following are 
equivalent. 

(1) The set K is U. E.C. 
(2) For every e > 0 there exists a decomposition { FrF): m E N} of the set F and a 

sequence { k(m, e): m E N } of natural numbers so that for every x in K and m E N 

card(t y E r,(F) I x-y) > ?}< k (m, e)- 

PROOF. We may assume that lxii < I for all x E K. 
(2) (1). For n E N we set A, = { j E Z: -(n + 1) < j < n + 1, j # 0,-1} and 

for -y E F and j E A, we define 

= {x e K: 'In < x(y) < (j + 1)/n}. 

It is easy to see that the family of open F, sets 

A'7= {I/Vjy7 P F. n E N,j E A,, 
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separates the points of the set K. For (n, m) e N2 we set 

inZ1 1) = { 1(): Y E F1l/ and j E An }. 

Obviously, { (n)}(f,n f)N 2 defines a decomposition of the family )eand each 
d n(, ,) is (k(m, l/n) * card A,j)-finite. Proposition 0.3 now implies that the set K is 
U.E.C. 

(1) =* (2). Consider the set K1 = co(&(K U {e; -y e F})). Propositions 1.3 and 
1.5 imply that the set K1 is U.E.C. Hence there exists a homeomorphism f: 
K1 -* 12 (A) satisfyingf(0) = 0 and IIf(x) I ? 1 for every x e K1. 

For a fixed number c, 0 < c < 1, and any y e F, we set VY = {x E K1: Ix(y)I > 
?/4} and dy= Ee,/2. Choose an open neighborhood WY of 1(dy) contained in the 
set f[Vy] with the form 

WY = {y ef [ K,] : If( d_y)( X) - y( XY, ) I < i = 1,.. .n.Y 

where X...y. ,X%Y, e A and 0y > O. Notice that 0 4 W.y Hence, for at least one 

i {1,.. , nY },f(dY)(XY() =# 0. Therefore we may choose ?y so that, setting X'yz = XA 
0 <'?y < If(dx)(X_)I/2. 

So for any y e W7 we have 

( * ) (A )1 > If(d7)(XY)1/2 

For each yE F choose Uy an open basic neighborhood of dY so that U,Y C -'(WY) 
C Vy and with the form 

U=(x c= K : |(-YJ)I < El for y, c= S, y E}( - El )/2 < X (y) < (?E + E1 )/2) 

where SY is a finite subset of F containing y and 0 < E < ?/2. 
Notice that the set {f(d,): -y E F} is a weakly discrete subset of 12(A) and 

{ f (d,): -y Er F} u {O} is weakly compact. Therefore, for any -y E F the set 

AY= 8 EF :f(ds)(XY) > 2e-} 

is finite. 
For n, m natural numbers, set 

IF(n =) y E F: f(dY)(XY) > 1/n, card(SY U AY) < m). 

It is obvious that 

rF= U r(( ' n). 

(nr) G N2 

CLAIM. For any x E K1 

card{-y E E l F$1:x(-y)l' -> < (2n)2mn 

PROOF OF THE CLAIM. Suppose on the contrary that the Claim fails for a pair 
(n,m). This means that there exists x E K1 such that for the set A = {-y E F((n)n): 
Ix(-y)I > c} we have card A > (2n)2m. We apply Lemma 0.2 to the family {S, U A; 
-y E A} and we get a subset B of A with card B = (2n)2 such that 'y1 4 S, U A 72 for 

Yi * Y2 E B. 
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We show that ny E B + 0. Indeed, let x1 = lxl. Clearly x1 c K1 and hence 
(Lemma 1.6) xIlB c K1; from this we get that the element y = EIB/2 c K1. It is 
easy to see that y c n-y U, and from this we have that f(y) c nEf 3W,. Conse- 
quently, by (*), lf(y)(Xy)l > 1/2n holds for all -y c B. We also notice that for any 

Yi * 72 E B we haveX 71 * 2 XHence 

(f (y(/\_)2 
1/2 1 1/2 

1j~f(y)~? Bc (2n )2) = 1. 

This contradiction proves the Claim and the proof of the theorem is complete. 
The following theorem extends Theorem 1.7. 

1.8. THEOREM. Let X be a B-space with an unconditional basis {xy: -y c F } and let 
K be a weakly compact subset of X. The following are equivalent. 

(1) The setKis U.E.C. 
(2) For every ? > 0 there exists a decomposition { F,r(l m c N} of F and a sequence 

{ k(m): m c N} of natural numbers such that for any x c K 

card{-y c F,(: lx*(x)l ? < k(m). 

PROOF. We define a bounded linear one-to-one operator T: X -* co(F) with the 
rule Tx(y) = x*(x). Applying Theorem 1.7 to the set T[K] which is homeomorphic 
to the set K we get the desired result. 

Restricting our interest to the class of U.E.C. sets containing only indicator 
functions, Theorem 1.8 can be formulated as 

1.9. COROLLARY. Consider a weakly compact subset K of a B-space X with an 
unconditional basis {xy: -y Fr} that has the form { Is S c A}, for a family 9 of 
subsets of the set F. The set K is a U. E.C. set iff there exists a decomposition { F1: 

m E N} of F and a sequence { k(m): m c N} of natural numbers satisfying 

card(S n Fm) < k(m) (S E 9). 

Applying Corollary 1.9 we simplify the example in [4] of a set K which is Eberlein 
compact but not U.E.C. 

1.10. EXAMPLE. We denote by F the set H%{ 1,... n }. A subset A of F is said to 
be admissible if it satisfies the following condition. 

There exists a natural number n = n (A) so that for any x, 
y EA with x * y we have x(j) = y(j) for j < n - 1 and 
x(n)+ y(n). 

Consider the set K = { IA: A c F, A is admissible}. We show that K is a weakly 
compact subset of co(F). To see this, we first notice that if A is not admissible, there 
exist y1, 72, y3 elements of A so that the set {1, 72, 73 } also is not admissible. 
Therefore the set K is a closed subset of the space {0, 1 }F endowed with the product 
topology, and since the weak topology of co(F) coincides with the pointwise 
convergent topology we get that K is indeed weakly compact. 
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It remains to show that K is not U.E.C. Assume that K is U.E.C. From Corollary 
1.9 there exists a decomposition { F,,: m E N} of F and natural numbers { k(m)}1=1 
so that card(A n) F,,) < k(m) for any admissible set A and m E N. On the other 
hand, by Baire's theorem there exists an mo E N and a basic open subset V = 

(nl, ... ink) x Ht00=k+1{l,. . . ,n } of F so that F,,(, n Vis dense in V. Hence we easily 
see that the set 

F170 
contains arbitrarily large admissible sets. This is a contradiction 

and the proof is complete. 

2. We are now going to apply Theorems 1.7 and 1.8 in order to get equivalent 
U.C.E.D. norms on B-spaces. The results of this section also depend on two lemmas 
of Troyanski [18]. For the sake of completeness we state them below. 

2.1. LEMMA [18]. If a B-space X admits a bounded linear one-to-one operator T: 
X -, l(F) so that: 

For any ? > 0 there exists a decomposition { F,r( m E N} of F with the property: 

For any x E X, card{-y E F,r-: ITx(y)II > ?IITIIIIxII) < m. 

Then Xadmits an equivalent U.C.E.D. norm. 

2.2. LEMMA [18]. A B-space with an unconditional basis {xy: y E F} admits an 
equivalent U.C. E. D. norm iff: 

For any ? > 0 there exists a decomposition 

F{ '-: m E Nof F such that 1,, > - 

for every m E N and subset { -y1. -y,,m } of ' 

2.3. THEOREM. Any reflexive B-space X whose unit ball is a U.E.C. set admits an 
equivalent U.C. E. D. norm. 

PROOF. By the fundamental theorem of Amir and Lindenstrauss [2] there exists a 
bounded one-to-one operator T: X -> c0(F). We assume that lIT I = 1 and hence the 
set T[S.] is a U.E.C. subset of the unit ball of co(F). A combination of Theorem 1.7 
and Lemma 2.1 gives the desired result. 

As we mentioned in the section of preliminaries, every B-space X with a U.C.E.D. 
norm satisfies the fixed point property. Hence Theorem 2.3 implies the following 
corollary. 

2.4. COROLLARY. Every reflexive B-space whose unit ball is a U. E.C. set admits an 
equivalent norm satisfying the fixed point property. 

The question whether the converse of Theorem 2.3 holds is still open. A partially 
positive answer to this problem is given by the following result. 

2.5. THEOREM. Let X be a B-space with an unconditional basis. If X admits an 
equivalent U.C. E. D. norm, then every weakly compact subset of X is U. E.C. 

PROOF. Consider K weakly compact subset of X. The set K is bounded; therefore, 
there exists t > 0 with llxll < t for every x E K. For fixed - > 0 set c' = ?/ and 
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define a decomposition { F(, ): m E N} of F so that the conclusion of Lemma 2.2 is 
satisfied. 

We claim that for any x E K 

card -y E =r ( l) ): |x*(x)l > ?; < m. 

Assume that this is not the case. Then there are xo E K and mo E N so that for 
the set A = { y e F(,-f): lx*(xo)l > c} we have card A ? miO. Since { x }7 is an 
unconditional basis we get 

||xo|| > ?| Lx'YI 2 ?- = -~ 

This is a contradiction proving the Claim and the theorem. 
In [13] an example is given of a reflexive B-space with an unconditional basis and 

without an equivalent U.C.E.D. norm. By the following result we show the existence 
of such a B-space using factorization techniques from [6]. 

2.6. COROLLARY. There exists a reflexive B-space with an unconditional basis and 
without an equivalent U. C. E. D. norm. 

PROOF. In [6] it is proved that every weakly compact set W is topologically 
homeomorphic to a weakly compact subset of a reflexive B-space X(W) with an 
unconditional basis (see 3.4 below). Let W be the Benyamini-Starbird set (Example 
1.10). Theorem 2.5 implies that X(W) does not admit an equivalent U.C.E.D. norm, 
completing the proof. 

The converse of Theorem 2.5 fails in general. We next give an example of a 
B-space X with an unconditional basis so that every weakly compact subset of it is 
U.E.C. but no equivalent U.C.E.D. norm is defined on X. 

2.7. EXAMPLE. Consider the set F = HL1{,. . . ,n } and define the family 9 of 
admissible sets in the same fashion as in Example 1.10. Namely, an A c F is 
admissible iff there exists n E N such that for any 'y1, Y2 E A, 'y1 * 72 we have 

Y7i) = 72C') forj < n and y1(n) * y2(n). 

Define the B-space X as the completion of the space of all real valued functions p 
from F with finite support and with norm given by 

11P11 = SUP ( E I9(PY)I 
Be.9 yeB 

Set ey = I{ and notice that the family { ey: -y E F} is an unconditional basis for 
the space X. Denote by W the B-space generated by the family { e*: -y E F } which, 
of course, is an unconditional basis for the space W. 

For any admissible subset B of F it is easy to see that 

ZE e = IBI and 1 Ee * = 1. 
-y eB -y eB 
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FACT. Every weakly compact subset of W is metrizable and hence U.E.C. 
In order to prove it we need the following two lemmas. 

LEMMA A. For each infinite subset A\ of F there is an infinite sequence (y) c i\ so 
that (e*), is 2-equivalent to the unit vectors of 11(N). 

PROOF. Assume i\ is countable. We decompose the set &\31 of all three-point 
subsets of i\ into two sets G, H as follows: We set {Y 1, Y2, y3 } in G iff it is 
admissible. By the well-known Ramsey theorem there exists an infinite subset E of i\ 
so that either E [3] c G or E [3] c H. The case E [3] c G implies that E is admissible 
which is impossible. Hence the case E [3] c H remains which, equivalently, means 
that any admissible subset of E contains at most two elements. 

Consider the closed linear span XE of the family { eY: -y E ? }. We show that XE is 
2-equivalent to the space co(N). Indeed, for any element q; of XE with finite support 
we have 

11(11 =sup 1((Yi)1 + (m2)11 < 2 sup } (y)l < 211(IIl 
'Y1.Y2 E=-E YES- 

The family { e,Y: -y E F} is an unconditional basis for the space X. Hence the 
family { e : -y c E } is 2-equivalent to the unit vectors of /1(N) and the proof of the 
lemma is complete. 

LEMMA B. Let K be a weakly compact subset of a B-space X with an unconditional 
basis {eY: -y c F}. Then the set A = {eY: 3x c K x(y) 0}U{O} is u-weakly 
compact. 

PROOF. The set W= co(61(K)) is weakly compact [1]. Set A,1 = {eY: 3x c K 
Ix(y)I ? 1/n} and notice that (A,,/n) U {O} is a subset of W. Hence A,, U {O} is 
weakly compact provided that A,,/n U {0} is a weakly closed subset of W. To see 
this choose a sequence (eYk) from A,1. The only possible limit point for weakly 
convergent subsequences of (ey /n)' is the element 0 c X. Therefore the set 
(A ,/n) U {O} is sequentially closed and by Eberlein's criteria [9] it is weakly closed. 

PROOF OF THE FACT. Consider a weakly compact subset K of W. We show that the 
set 

D= {e :3x c Kx(y) =0 } 

is at most countable. 
Indeed assuming that D is uncountable, Lemma B implies that there exists a 

sequence (e, ) from D weakly convergent to zero. On the other hand, by Lemma A 
we have that a subsequence (ey ) is equivalent to the unit vectors of 11(N). This is a 
contradiction proving that D is countable and therefore K is U.C.E.D. as a subset of 
a separable subspace of W. 

We finally show that W does not admit an equivalent U.C.E.D. norm. If it did, 
then by Lemma 2.2 for ? = X, there exists a decomposition { F,,(): m e N} so that 
for each m e N, {c.-Y} C () we have 

Le* > 2. 
1=1 
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On the other hand, using Baire's theorem we find m0 c N with 1('0) containing 
arbitrarily large admissible subsets. This is a contradiction since we have noted that 
for any admissible set B we have IIZyE B e11 = 1. This completes the proof of the 
desired properties of the example. 

2.8. REMARK. (a) We still do not know if there exists a W.C.G. B-space X 
containing only U.E.C. weakly compact subsets and not admitting an equivalent 
U.C.E.D. norm. Candidates for counterexamples are the nonseparable L1(p)-spaces, 
for y finite measures. Indeed, the first author mentioned in the fourth section shows 
that the weakly compact subsets of these spaces are U.E.C. The existence of an 
equivalent U.C.E.D. norm on L1(p) does not seem known yet. 

(b) The results of this section indicate a relation between the existence of a 
U.C.E.D. norm on a B-space X, which is a geometric property, and of the analytic 
property that each weakly compact subset of X is U.E.C. The exact relation between 
them is not clear to us. In the case of reflexive B-spaces with an unconditional basis, 
Theorems 2.3 and 2.5 show the equivalence of these properties. 

We state below the main open questions. 
2.9. PROBLEM. Let X be a B-space with a U.C.E.D. norm. 
(i) Assuming that X is reflexive, is its unit ball U.E.C.? 
(ii) In general, does X contain only U.E.C. weakly compact subsets? 
(c) The relation between U.E.C. sets and the fixed point property seems also 

interesting. Related to this is the following problem. 
2.10. PROBLEM. Let X be a B-space containing only U.E.C. weakly compact 

subsets. Does there exist an equivalent norm on it satisfying the fixed point 
property? 

3. In this section a new class of operators is introduced. We will call them 
uniformly weakly compact and we investigate their factorization through "nice" 
B-spaces. 

3.1. DEFINITION. A linear operator T: X -* Y is called uniformly weakly compact if 
the weak closure of the set T[Sx] is a U.E.C. subset of the space Y. 

3.2. REMARK. Every U.W.C. operator is weakly compact. In general, the converse 
is not correct. The factorization theorem (see Notation 3.3 below) implies that every 
weakly compact subset of a B-space Y is U.E.C. iff any weakly compact operator 
into Y is U.W.C. 

Our results are closely related to the factoring reflexive B-space Y described in [6]. 
In the following notation we restate the main steps of the construction of this space 
as well as its basic properties. 

3.3. NOTATION. Fix a convex symmetric weakly compact subset W of a B-space 
(X, 11 11). 

For each n = 1, 2, ... we denote by 11 *I,- the gauge of the set 

V,l = 2'" W + 2 "Sx. 

We define Illxlll = (ZI-'11xI1j2,, and we set Y = {x E X: Illxlll < co}. The following 
properties are proved in [6]. 
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(1) W c Sy. 
(2) (Y, III - 1) is reflexive. 
(3) The identityj: Y -> X is continuous. 
(4) Assume that X has an unconditional basis { xy: -y c F } and for any finite 

F ci F we have PF(W) C XFW. (Here, PFdenotes the usual projection of X on to the 
space generated by the set {x.: -y c F}.) Then the set {x,: -y E F} F) Y is an 
unconditional basis for the space Y. 

In the sequel, for given X and W, the letters and symbols Y, S y,j, V, I * Il , will be 
used in their above defined context. 

3.4. REMARK. Consider a weakly compact subset K of a B-space X with an 
unconditional basis {x : -y F F. Abramovich [1] proved that the set &1(K) (see 
Definition 1.1) is also weakly compact. Hence the set W = 61(co(K U (-K))) 
satisfies the assumptions of condition (4) in Notation 3.3 and, consequently, we 
conclude that any Eberlein compact set K is homeomorphically embedded into a 
reflexive B-space Y with an unconditional basis [10]. 

3.5. LEMMA. Consider a convex symmetric weakly compact subset W of a B-space X 
which is U. E.C. Then the unit ball Sy of the factoring space Y is also U. E.C. 

PROOF. The identity map j: (Y, I 111) - (X, 11 11) is continuous. Therefore the 
B-space Z, the norm closure of j[Y], is weakly compactly generated (W.C.G.) and by 
[2] there is a linear one-to-one T: Z -* co(F) with 11THJ = 1. 

We wish to show that the weakly compact set T o j[Sy] satisfies condition (2) of 
Theorem 1.7. By our assumptions the set W is a U.E.C. subset of Z; hence, T[W] 
satisfies condition (2) of Theorem 1.7. Set e = 1/2412 and we choose a decomposi- 
tion {fF,,: m c NJ so that for anyx c Wandm c N, 

(*) card{(y E F,(): T(x)(y)I> 1/24n2} < k(m). 

CLAIM. For any x c Sy and m c N, 

(* *) card{'y E F,(7T: To j(x)(y)I> 1/n} < k(m). 

PROOF OF THE CLAIM. Assume, on the contrary, that the relation (* *) fails for 
some xo E SY and mo0 c N. 

For fixed k E N choose X > 0 such that xo c XVk or, equivalently, xo = X2kw + 

2-kXy for some w c Wandy c Sv. 
Notice that the last equality implies that y is an element of the space Z. 
By the relation (*) and the choice of xo we get a EO FM( such that 

|To j(xo)(-yo) > 1/n and IT(w)(y0)j < 1/24112. 

By the linearity of T we also have for all y F F 

To j(xo)(y) = X2kT(w)(y) + X2-kT(y)(y). 

Therefore for any k c N and X E R such that x c XVk we have that 

1/n < X(2k/24,12 + 112k) < X(2k/24,n2 + 1). 

Recall that IIXIIk = inf{X: x c XVk}. Hence 

1/n ? IIXOIlk (2k/2 + 
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Therefore for k = 1,. . ., 4n2 the last inequality gives 

|lXIlik > 112n; 
hence, 

oo 1/2 4,l2 \1/2 

1? (h1 IXOI) E (;2 xk) > 1. 

This is a contradiction proving the Claim. The proof of the lemma follows from this 
claim and Theorem 1.7. 

The next result is an immediate consequence of Theorem 1.8. 

3.6. LEMMA. For any U. E.C. subset K of a B-space with an unconditional basis the 
set 1?(K) is also U.E.C. 

We now pass to some consequences of Lemmas 3.5 and 3.6. Certain of them 
improve corresponding results from [6]. 

3.7. COROLLARY. Every U. W.C. operator T: X -- Y can be factorized through a 
reflexive B-space R(T) with an equivalent U.C. E. D. norm. If, furthermore, Y has an 
unconditional basis, then R(T) may be chosen with an unconditional basis. 

3.8. PROPOSITION. For any reflexive B-space X with an unconditional basis { x: 
-y E F)} there exists a reflexive B-space R(X) with an unconditional basis, an equiva- 
lent U.C. E. D. norm and a linear bounded one-to-one operator T: R(X) -- X with 
dense range. 

PROOF. We set K= {ey: y E F} u {o} which is a U.E.C. subset of X. Consider 
the factoring space R(X) corresponding to the set W = ol(co(K U (-K))). The 
space R(X) has an unconditional basis, and from Lemmas 3.5, 3.6 and Theorem 2.3 
we get that R(X) admits an equivalent U.C.E.D. norm. Finally, it is clear that the 
identity mapj: R(X) --X has dense range. 

3.9. COROLLARY. A B-space X is W.C.G. iff there exists a reflexive B-space R( X) 
with an unconditional basis, a U.C.E.D. norm and a linear bounded one-to-one T: 
R( X) -- X with dense range. 

PROOF. From the results of [6] there exists a space R(X) satisfying all the desired 
properties except that of the U.C.E.D. norm. Applying Proposition 3.8 to space 
R( X) we get the desired space R( X). 

3.10. REMARK. We conclude this section by giving two simple examples. The first 
corresponds to Corollary 3.7 and the second to Corollary 3.9. Both show that, for 
the spaces R(T) and R(X), it is not always possible to admit an equivalent 
uniformly convex norm. 

3.11. EXAMPLE. We set X= (EqeQ ED lq(F))2 where Q denotes the rational 
numbers q so that 1 < q < oc and F is an infinite set. It is clear that the unit ball of 
X is a U.E.C. set and its norm is U.C.E.D. 

The space X does not admit an equivalent uniformly convex norm. Hence the 
identity map j: X -* X is not factorized through any uniformly convexifiable 
B-space. 
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3.12. REMARK. Assume that the set F in the previous example is uncountable. 
Then the conclusion is strengthened as follows: 

The unit ball of the space X is not affinely homeomorphic in the weak topology to 
a subset of any uniformly convex B-space. 

We may derive this result by showing first that every uniformly convex B-space is 
mapped by a linear bounded one-to-one operator into IP( AX) for a suitable 1 < p < x 
[12]. 

Therefore any affine homeomorphism of Sx into a uniformly convex space Y 
defines a bounded linear one-to-one operator T: X -- IP(A) for a suitable p with 
1 < p < cx. This contradicts the choice of the space X. 

3.13. EXAMPLE. Consider the space C(K) of continuous real valued functions on a 
compact set K which is Eberlein compact and not U.E.C. Then the reflexive B-space 
R(C(K)) defined by Corollary 3.9 is not uniformly convexifiable. 

To see this let T: R(C(K)) C(K) be a linear bounded operator with dense 
range. We denote by T *: M(K) R R*(C(K)) the conjugate of T which is one-to-one 
and w*-continuous. Hence K is homeomorphic to a weakly compact subset of the 
space R*(C(K)). Therefore R*(C(K)) is not uniformly convexifiable and by known 
results R(C(K)) also is not uniformly convexifiable. 

4. In this section we prove that the weakly compact subsets of Ll(p)-spaces are 
U.E.C. 

We start with some preliminaries. 
4.1. We denote by L1t-1, 1}' the B-space of all integrable real valued functions 

defined on the compact group {-1, 1}' supporting the Haar measure. We denote by 

ST {1, ) 1} -}* {-1, 1} the projection onto the i-coordinate. For any S c I finite set 

the S-Walsh function is denoted by Ws = III , 71JII. It is well known that the family 
{ W: S c I, S finite} defines a bounded one-to-one operator 

T: Ll{-, 1} I I 
co(F), 

where r denotes the set of all finite subsets of I and, for S E r, Tf(S) = ff - Ws * d,u. 
4.2. We will use the following well-known characterization of weakly compact 

subsets of L1(%): 
A set K c L1(%) is weakly relatively compact iff for each E > 0 there exists 

8(E) > 0 so that for all f E K and measurable sets V with pu(V) < 8(E) we have 

fvlf Ifd,< . 

The first author thanks Professor S. Pichoredes for his help in the proof of the 
next lemma. 

4.3. LEMMA. Let ,u be a probability measure andf, fl,f2,...f elements of L(,u) so 
that 

(1)f = =1lalf, lif 111111 < 1, l|f Lo = I112 = 1 and 

f f, d,u = O for i 0 j. 
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(2) Given E > 0, there exists k E N so that for all measurable sets V with ,M(V) < 1/k 

if IfId, < 

Put J = {i < n: Ia,I > 2c}; then IJI < (k/c)2. 

PROOF. We set A = {x: If(x)I > k}. We notice that k,u(A) < fAIf(t)I d,u < 1, 
hence ,(A) < 1/k. Assume, on the contrary, that the conclusion of the lemma fails. 

Consider the function 4 = fIA, and observe that 

(*) ~~~~~~~~lif - oil, < 
Extend the family {'fn}71 to a complete biorthogonal system of L2(A), say 

{ fI}7. =I f U f,}, Therefore 

4 = , b,f, + b,f,. 
1 eJ 

By (*) it follows that for 1 < i < n we have I b, - a < , and therefore 

k > ?1kk11 21141122 ( b)2 ) 2 JI E /j 
J 

This is a contradiction proving the lemma. 

4.4. THEOREM. Every weakly compact subset of L1{ -1,1 }I is U. E.C. 

PROOF. Let K be a weakly compact subset of Ll{-1, 1}' with Ilf 11 < 1 for all 
f E K. We denote by T: Ll{-1, 1} -- co(F) the operator defined in 4.1. For fixed 
E > 0 there exists, by 4.2, a k E N so that for every f E K and any measurable set V 
satisfying A(V) < 1/k we have ivlf I dA < e/4. We claim that 

{ s E F: Tf (S) > E} I < 4k 2/e2. 

To show this choose a fi'nite linear combination h = Y271a1Ws of Walsh functions so 
that Ih - f I < e/4 and IihI < 1. Notice that fvIhI dA < e/2 whenever A (V) < 1/k; 
therefore, applying Lemma 4.3 we get 

{(i: 1 < i < nIa|>I }| < 4k2/A2. 

We also remark that 
., 

Th = ales ,. 
*= 1 

(Here es denotes the SI-unit vector of co(F).) 
Let { hn } l be a sequence of linear combinations of Walsh functions so that h -? f 

and If - h, I I < c/4. Then Th,, -> Tf and each Th,, satisfies property (*). Hence Tf 
itself satisfies property (*), and by Theorem 1.7 we get the desired result. The proof 
of the theorem is now complete. 
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4.5. REMARK. (a) A combination of Maharam's theorem and Kakutani's represen- 
tation theorem allows us to extend the result of Theorem 4.4 to arbitrary L1(yU)-space. 

(b) Notice that the proof of Theorem 4.4 actually shows that if K c L1{-1, 1} is a 
weakly compact set and E > 0 is given, then there exists a natural number N(K, c) so 
that for all f E K 

(S cI: ITfI(S)| > } < N(K, c). 

Here T denotes the operator defined in 4.1. 
We finish this section with some remarks related to possible renormings of L1(yU). 
4.6. REMARK. (a) As we have noticed in Remark 2.8 we do not know whether or 

not every L'(yu)-space admits an equivalent U.C.E.D. norm. We can show that Day's 
strictly convex norm [8] on L1(%) fails to be U.C.E.D. 

(b) It can be shown that Day's norm on L1(%) satisfies the fixed point property. 
More precisely every convex weakly compact subset of L%(u) has normal structure 
[8]. This is proved by using Theorem 4.4 and [19, Proposition 3.4]. 
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