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Abstract. In this paper we introduce and study two indices of a uniformly bounded sequence �fn�
of real valued functions defined on a set � and converging pointwise to a function f . The first index
��fn� measures uniform convergence of �fn�, while the second index ��fn−f �+ measures the relation
of the sequence �fn−f � to the positive face of the usual basis of �1. There is a close connection
between these two indices, indicated by:

(a) ��fn� <	1⇔�
�fn−f �+ <	1; and

(b) if ��fn� <	1 then ��fn−f �+ =	
 where 
 is the least ordinal with ��fn��	
 .

Using this connection the following dichotomies hold:

either [Case ��fn�=	1��fn−f � has an l1+-subsequence;
or [Case ��fn� <	1��fn� converges weakly to f in the Banach space l����. Fixing the least
countable ordinal 
 with ��fn��	
 we obtain for every countable ordinal  the further dichotomy:

either [Case <
] there exist a subsequence of �fn−f � with l1-spreading model of order ;
or [Case �
] the sequence �fn� converges 	-uniformly to f ; equivalently every subsequence
of �fn� has an A	 -convex block subsequence converging uniformly to f .

(�A��1��<	1
is the complete thin Schreier system introduced previously by the author).

There are applications of these results to Banach space theory.

1991 Mathematics Subject Classification: Primary 46B25; Secondary 05D10, 40A05

Introduction

In this paper we study uniformly bounded sequences �fn� of real valued functions
defined on a set � (with no topological structure) and converging pointwise to a
function f . The classical modes of convergence (uniform or pointwise) and of the
corresponding Banach-space behavior (such as l1-embedding) of such sequences
with the aid of suitable ordinal indices, take on, in this paper, their position as
extreme states (the ordinal 1 for uniform, the first uncountable ordinal	1 for point-
wise) between which there is a whole spectrum of intermediate states, precisely
quantified and characterized by the intermediate countable ordinals.
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The main tools in our proofs, combinatorial in nature, consist of the Ramsey-
type principle for every countable ordinal and the Pták-type theorem for every
countable ordinal proved in [7].

First (in Section 2 below) we study an ordinal index, denoted ��fn�, measuring
the degree of uniform convergence of �fn�. It may assume as its value, every
countable ordinal and also 	1. However, if we consider the sequence �fn� as a
sequence in the Banach space l���� (equivalently, as a sequence of functions
defined on the closed unit ball of the dual space �l�����∗�, then the index can
only be equal to 	1 or to a (limit) countable ordinal of the form 	
 for some

 <	1 (Theorem 2.10). This is a set-theoretic differentiation between Banach
space theory and topology. The nearer the sequence index is to the value 1, the
more its convergence resembles uniform convergence, while the nearer it is to 	1

the more its convergence resembles pointwise convergence. For the definition of
this index we employ the complete, thin Schreier system �A��1��<	1

, introduced
previously by the author in [7].

Next (in Section 3) we study the �1
+-index ��fn−f �+ of the sequence �fn−f �

(and ���n�+ for a bounded sequence ��n� in a Banach space). The index may assume
as its value, only ordinals of the form 	
 for some countable ordinal 
 and 	1

(Proposition 3.6) and measures the relation of the sequence (say (�n) in a Banach
space) with the positive face of the usual basis of l1. It is countable if and only if
the sequence �fn−f � is weakly null in l����.

The main results can be summarized as follows:

THEOREM 1. Let �fn� be a uniformly bounded sequence of real valued functions
on a set � which converges pointwise to a function f . Then,

(a) ��fn�<	1 if and only if ��fn−f �+ <	1.
(b) If ��fn�<	1, then ��fn−f �+ =	
 , where 
 is the least ordinal with ��fn��

	
 (Theorem 3.11).

Using the close connection of these two indices we state (as Theorem 3.14) the
following result, which can be considered as a natural extension of Rosenthal’s
classical l1-Theorem from the 	1-ordinal to the countable ordinals.

THEOREM. Let �fn� be a uniformly bounded sequence of real valued functions
on a set � which converges pointwise to a function f . Then, either
(1) [Case ��fn�=	1] �fn−f � has an l1+ subsequence �Theorem 2.5�;

or
(2) [Case ��fn�<	1] �fn� converges weakly to f (in the Banach space l�����.
In case (2), let ��fn−f �+ =	
 . For each countable ordinal  we obtain the further

dichotomy:
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either (2i) [Case <
] there exists a subsequence of �fn−f � with l1-spreading
model of order  (Proposition 3.10);
or (2ii) [Case 
�] the sequence �fn� converges 	-uniformly to f , or equiv-
alently every subsequence of �fn� has a concrete A	-convex block subsequence
converging uniformly to f .

Applying the previous results to the general Banach space theory we state (in
Theorem 3.15) a corresponding result for the case of a weak-Cauchy sequence
in a Banach space.

This second theorem provides dichotomies for every countable order  as well
as a limiting dichotomy for the 	1-case. The existence of analogous dichotomies
have been proved, using different approaches, for the case =1 in [17] and [13]
and for the case of a successor (non limit) countable ordinal in [3]. Additionally the
previous theorem yields an effective criterion for deciding which of the two legs
of the dichotomy actually occurs, using the l1+-index. A method of calculating the
l1+-index of sequences in certain Banach spaces is given in [9] and [12].

The author wishes to thank the anonymous referee for helpful comments.

NOTATION. We denote by� the set of all natural numbers and by� the set of all
real numbers. For an infinite subsetM of � we denote by �M�<	 the set of all finite
subsets of M and by [M] the set of all infinite subsets of M (considering them as
strictly increasing sequences).

If H�F are finite subsets of � then we write H�F if maxH�minF , while
H<F if maxH<minF . By �H � we denote the cardinality of H .

Identifying every subset of � with its characteristic function, we topologize the
set of all subsets of � by the topology of pointwise convergence. For a family F of
finite subsets of � and M ∈ ��� we write:
(i) F�M�=��mn1�����mnk�∈ �M�<	 ��n1�����nk�∈F�.
(ii) F∗=�H ∈ ���<	 �H⊆F for some F ∈F�. F is hereditary if F∗=F .
(iii) F∗=�H ∈ ���<	 �H is an initial segment of some F ∈F�. F is thin if it

contains no proper initial segment of any of its elements.

1� The basic combinatorial tools

The main tools in our proofs, combinatorial in nature, consist of the Ramsey-type
principle for every countable order and the Prák-type theorem for every countable
order. These results have been proved in [7]. We recall them here for completeness.

DEFINITION 1.1 ([7]). (The complete thin Schreier system �A���<	1
�. For

every non zero, limit ordinal � we choose and fix a strictly increasing sequence
��n� of successor ordinals smaller than � with supn�n=�.

We define the system �A���<	1
recursively as follows:
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(1) [Case �=0]

A0=�∅��
(2) [Case �=
+1]

A�=A
+1=�s⊂� � s=�n�∪s1� where n∈���n�<s1ands1∈A
��

(3) [Case �=	�+1, � countable ordinal]

A�=A	�+1 =
{
s⊂� � s=

n⋃
i=1

si with n=mins1�s1< ···<sn�

and s1�����sn∈A	�

}
�

(4) [Case �=	�, � non-zero, countable limit ordinal]

A�=A	�=�s⊆� � s∈A	�n with n=mins��

(where ��n� is the sequence of ordinals, converging to �, fixed above); and
(5) [Case � limit, 	<�<	+1 for some 0<<	1]

Let �=p	+∑m
i=1pi	

i be the canonical representation of �, where m�0,
p�p1�����pm�1 are natural numbers so that either p>1 or p=1 and m�1
and >1> ···>m>0 are countable ordinals. Then

A� =
{
s⊆� � s=s0∪

( m⋃
i=1

si

)
with sm< ···<s1<s0�

s0=s01∪···∪s0p with s01< ···<s0p�s0j ∈A	�1�j�p�

si=si1∪···∪sipi � with si1< ···<sipi �

sij ∈A	i �1� i�m�1�j�pi

}
�

We set B=A	 for each 1�<	1.

REMARK 1.2. (i) Each family A� for 1��<	1 is thin (does not contain
proper initial segments of its elements).

(ii) ([7]) Each finite subset F of � has a canonical representation with respect
to the family A� . This means that for every 1��<	1 there exist unique n∈�,
sets s1�����sn∈A� and sn+1, a proper initial segment of some element of A� ,
with s1< ···<sn<sn+1, such that F =∪n+1

i=1 si. The number n is called the type
t��F � of F with respect to A� .
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THEOREM 1.3 ([7]). �-Ramsey type theorem. Let F be an arbitrary family of
finite subsets of �, M an infinite subset of � and � a countable ordinal number.
Then, there exists an infinite subset L of M such that

eitherA�∩�L�<	⊆F or A�∩�L�<	⊆ ���<	\F �
Using the strong Cantor-Bendixson index we have developed in [7] a refined

form of the above theorem (Theorem 1.6).

DEFINITION 1.4. ([6], [4], [3]) Let F be a hereditary and pointwise closed
family of finite subsets on �. For M ∈ ��� we define the strong Cantor-
Bendixson derivatives �F��M of F on M for every �<	1 as follows:

�F�1M=�F ∈F�M��F is a cluster point of F�F ∪L� for each L∈ �M���
(where, F�M�=F∩�M�<	�.

�F��+1
M =��F��M�1M�

If � is a limit ordinal,

�F��M=⋂
�<�

�F��M�

The strong Cantor-Bendixson index of F on M is defined to be the smallest
countable ordinal � such that �F��M=∅. We denote this index by sM�F�.
REMARK 1.5.
(i) The strong Cantor-Bendixson index sM�F� is a successor countable ordinal.
(ii) If F1⊆F2, then sM�F1��sM�F2� for every M ∈ ���.
(iii) sM�F�=sM�F∩�M�<	� for every M ∈ ���.
(iv) For every M ∈ ��� and F ∈ �M�<	, according to a remark in [8], we have:

F ∈�F�1M if and only if the set �m∈M �F ∪�m� �∈F� is finite�

(v) If L is almost contained in M , then sL�F��sM�F�.
(vi) ([7]) sM��A��∗�=�+1 for every 1��<	1 and M ∈ ���.
THEOREM 1.6 ([7]). Refined �-Ramsey type theorem. Let F be a hereditary
family of finite subsets of � and M an infinite subset of �. We have the following
cases:
Case 1 If the family F∩�M�<	 is not pointwise closed, then there exists L∈ �M�
such that �L�<	⊆F .
Case 2 If the family F∩�M�<	 is pointwise closed, then there exists L∈ �M� such
that �L�<	⊆����<	\F�∗. Moreover setting

�F
M =sup�sL�F� �L∈ �M���

the following obtain:
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2(i) For every countable ordinal � with �+1<�F
M there exists L∈ �M� such

that
�A��∗∩�L�<	⊆F

2(ii) For every countable ordinal � with �F
M <�+1 there exists L∈ �M� such

that
F∩�L�<	⊆�A��

∗\A��

and equivalently,

A�∩�L�<	⊆ ���<	\F �
2(iii) If �F

M =�+1, then both alternatives may materialize.

Now we recall the �-Pták type theorem for some 1��<	1, which has been
proved in [7], using the notion of the weight of a finite subset F of � with respect
of a set of the family A� . The classical Pták’s theorem is the limiting 	1-case.

DEFINITION 1.7. For every finite subset F of �, every countable ordinal �, and
every s∈A� we define recursively the �-weight w��F�s� of F with respect to s,
to be a real (in fact, a rational) number in the real interval [0,1], as follows:

(1) [Case �=1] Since A1=��n� �n∈��, we set for every n∈�
w1�F ��n��=1 if n∈F and w1�F ��n��=0 otherwise�

(2) [Case �=
+1] Let s∈A
+1. Then, s=�n�∪s1, where n∈�, �n�<s1
and s1∈A
 . We set

w
+1�F �s�=w
�F�s1�·w1�F ��n���

(3) [Case �=	�+1 for 0��<	1] Let s∈A	�+1 . Then s=s1∪···∪sn, with
n=mins1�s1< ···<sn and s1�����sn∈A	� . We set

w	�+1�F �s�= 1
n

n∑
i=1

w	��F�si��

(4) [Case �=	� for � non-zero, countable limit ordinal]. Let s∈A	� . Then
s∈A	�n with n=mins, where ��n� is the fixed sequence of ordinals
“converging” to �, (Definition 1.1). So, w	��F�s�=w	�n �F �s�, n=mins.

(5) [Case � limit, 	0<�<	0+1 for some 0<0<	1]. In this case, � has a
unique representation of ordinals as follows: �=p0	

0 +∑m
i=1pi	

i , where
m∈�, 0>1> ···>m>0 are ordinal numbers and p0�p1�����pm�1
are natural numbers, so that either p0>1 or p0=1 and m�1.

Let s∈A� . Then s=s0∪s1∪···∪sm with sm< ···<s1<s0, where
si=si1∪···∪sipi with si1< ···<sipi and sij ∈A	i for every 0� i�m and
1�j�pi. We set

w��F�s�=
m∏
i=0

pi∏
j=1

w	i �F �s
i
j��
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REMARK 1.8 ([2], [7]). For every countable ordinal ands∈A	=Bwedefine
recursively the functions %s ��→ �0�+�� as follows:

%0
�k��n�=1 if n=k� and %0

�k��n�=0 otherwise, for every �k�∈B0�

%+1
s = 1

k

k∑
i=1

%si � for every s=s1∪···∪sk∈B+1�

%�s =%�ks �k=min s�for every s∈B�� where � is a non-zero, countable

limit ordinal.

It is easy to see that
∑
n∈�%


s �n�=1 and that s=�n∈� �%s�n� �=0�. Moreover

w	�F �s�=
∑
n∈F %

s
�n� for every F ∈ ���<	.

THEOREM 1.9 ([7]). (�-Pták theorem). Let F be a hereditary and pointwise
closed family of finite subsets of �, M ∈ ���, � a non-zero, countable ordinal and
0<&<1. If for every s∈A�∩�M�<	 there exists F ∈F such that w��F�s�>&,
then:
(i) there exists L∈ �M� such that sL�F���+1;
(ii) �F

M ��+1, and
(iii) for every ordinal 
 with 
 <� there exists L∈ �M� such that

A
∩�L�<	⊂F �

THEOREM 1.10 ([15]). (Pták’s theorem). Let F be a hereditary family of finite
subsets of � and 0<&<1. If for every non-negative, real valued function % on
� with finite support and such that

∑
n∈�%�n�=1 there exists F ∈F such that∑

n∈F %�n�>&, then there exists L∈ ��� such that �L�<	⊂F .

Finally, we give the definition of the generalized Schreier families.

DEFINITION 1.11 ([1], [2], [20]). (Generalized Schreier Families).

F0=��n� �n∈��∪�∅��

F+1=
{
F ⊆� �F =

k⋃
i=1

Fi��k��F1< ···<Fk� and Fi∈F

}
∪�∅��

If  is a limit ordinal choose and fix �n�n∈� strictly increasing to  and set

F=�F ⊆� �F ∈Fk
with k�minF�∪�∅��

REMARK 1.12.
(i) The families F for every 1�<	1 are hereditary.
(ii) If �n1�����nk�∈F and mi�ni for i=1�����k, then �m1�����mk�∈F.
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(iii) ([7]) For every 0�<	1 and M ∈ ��� there exists L∈ �M� such that

F�L�⊆�B�∗⊆F�

(iv) ([3]) sM�F�=	+1, for every 1�<	1 and M ∈ ���.
(v) ([3], [8], [7]). If F is a hereditary and pointwise closed family of finite

subsets of � and M ∈ ��� such that sM�F��	, then there exists L∈ �M�
such that F�L�⊆F .

2� The ordinal index of uniform convergence

In this section we introduce an ordinal index, denoted, ��fn�, measuring the degree
of uniform convergence of a sequence �fn� of real valued functions defined on a
set � (with no topological structure) and converging pointwise to a function f . In
general the index can take any countable ordinal or 	1 as its value; however, if
we consider, the sequence �fn� as a sequence in the Banach space l���� (equiva-
lently, as a sequence of functions defined on the closed unit ball of the dual space
�l�����∗� then the index can only be equal to 	1 or to a (limit) countable ordinal
of the form 	
 for some 
 <	1. This is an interesting fact, differentiating Banach
space theory and topology.

We characterize (in Theorem 2.5 below) the sequences of functions with count-
able index as the weakly convergent sequences of l����, equivalently as the
sequences without l1+-sequences and finally as those sequences whose every sub-
sequence has a uniform converging convex block subsequence.

In case of sequences of continuous functions defined on a compact metric space
other related indices have been defined previously in [10].

DEFINITION 2.1. Let �fn� be a sequence of real valued functions defined on a
set � and converging pointwise to a function f . For every &>0 we set

U �fn�
& = �F ∈ ���<	 � there exists '∈� such that �fi�'�−f �'���&

for every i∈F��

All the families U �fn�
& for &>0 are hereditary.

We then define the index of uniform convergence ��fn� of �fn� on � as fol-
lows:
(i) If there exists &>0 such that the family U �fn�

& is not pointwise closed, we set

��fn�=	1�

(ii) If all the families U �fn�
& for &>0 are pointwise closed, we set

��fn�=sup�sM�U �fn�
& � �M ∈ ��� and &>0��

where ��fn� is a countable ordinal.
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We say that the sequence �fn� converges �-uniformly to f on � , for some count-
able ordinal �, if ��fn���.

REMARK 2.2.
(i) A sequence �fn� of real valued functions converges uniformly to a function f

if and only if ��fn�=1. Indeed, �fn� converges uniformly to f if and only if the
families U �fn�

& for every &>0 are finite sets and equivalently if sM�U �fn�
& �=1

for every &>0 and M ∈ ���.
(ii) Every sequence of continuous functions defined on a compact, Hausdorff space

which converges pointwise to a continuous function has countable index of
uniform convergence. This happens since U �fn�

& is not pointwise closed if and
only if there exists M ∈ ��� with �M�<	⊆U �fn�

& (Theorem 1.6).
(iii) If �gn� is a subsequence of a pointwise converging sequence �fn�, then ��gn��

��fn�. So, if �fn� converges �-uniformly to a function f for some 1��<	1,
then �gn� also converges �-uniformly to f .

In the following examples we indicate that there exist pointwise converging se-
quences of real valued functions (as well as continuous functions on compact
metric spaces) either with uncountable or with countable index of uniform con-
vergence. Moreover this index can be either a limit or a successor ordinal.

EXAMPLES 2.3. (1) For n∈� we define the function fn � ���
<	→� with

fn�F�=1 if n∈F and fn�F�=0 otherwise. The sequence �fn� converges
pointwise to zero and has index of uniform convergence equal to 	1.

(2) Let � be any countable ordinal and �A��∗ be the hereditary family of finite
subsets of � corresponding to the thin Schreier family A� (Definition 1.1). The
family �A��∗, considered as a subspace of the Cantor space �0�1��, is a compact
and metric space. For every n∈� set fn � �A��∗→� with fn�F�=1 if n∈F
and fn�F�=0 otherwise. Of course �fn� is a sequence of continuous functions on
�A��∗, which converges pointwise to zero. The index of uniform convergence of
�fn� is equal to �+1, as U �fn�

& =�A��∗ for every 0<&�1, U �fn�
& =∅ for 1<&

and sM��A��∗�=�+1 for every M ∈ ��� (Remark 1.5).
(3) Let

B=
{
�i�i∈� �

∑
i∈�

�i��1

}
�

This is a compact metric space endowed with the pointwise convergence topology.
We set fn �B→� with fn��i�i∈�=n for every n∈�. The sequence �fn� of
continuous functions on B, converges pointwise to zero and has index of uniform
convergence equal to 	, since U �fn�

1/n =����n�∗ for every n∈� and consequently
sM�U �fn�

1/n �=n for every n∈�.

Now, we will characterize the class of uniformly bounded, pointwise converging
sequences of functions which have countable index of uniform convergence. In this
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characterization we make use of the notion of an �1
+-sequence in a Banach space,

which we define below. We note that the linear space of all bounded functions
defined on a set � endowed with the supremum norm is denoted by l���� and it is
a Banach space.

DEFINITION 2.4. A bounded sequence ��n� in a Banach space X is an l1+-
sequence in X if there exists &>0 such that

&
n∑
i=1

�i�

∥∥∥∥∥
n∑
i=1

�i�i

∥∥∥∥∥ for every n∈� and �1������n�0�

THEOREM 2.5. Let �fn� be a uniformly bounded sequence of real valued func-
tions defined on a set � which converges pointwise to a function f . The following
are equivalent:
(i) ��fn�<	1;
(ii) the sequence �fn−f � in l���� does not have any l1+-subsequence;
(iii) every subsequence of �fn� has a convex block subsequence converging uni-

formly to f ; and
(iv) the sequence �fn� converges weakly to f in the Banach space l����.

Proof. (i) ⇒ (ii) Let ��fn�<	1. We assume that there exists a subsequence �gn�
of the �fn� and &>0 such that

&
n∑
i=1

�i�

∥∥∥∥
n∑
i=1

�i�gi−f �
∥∥∥∥ for every n∈� and �1������n�0�

Let %��→ �0�+�� be a function such that
∑
n∈�%�n�=1 and the set �n∈� �

%�n� �%�n� �=0� is finite. Then there exists '∈� such that

&

2
<

∣∣∣∣∑
n∈�
%�n��gn−f ��'�

∣∣∣∣�
Set F =�n∈� � ��gn−f ��'��> &

4�. Obviously F ∈U �gn�
&
4

. Since

&

2
<

∣∣∣∣∑
n∈�
%�n��gn−f ��'�

∣∣∣∣�∑
n∈F
%�n�+ &

4
�

where C=supn�fn−f�<�, we have
∑
n∈F %�n�>

&
8C .

From Pták’s classical theorem (Theorem 1.10) it follows that there exists M ∈
��� such that �M�<	⊆U �gn�

- , with -=&/4. If gn=fkn for every n∈� and
M=�mn�n∈�, then setting L=�kmn �n∈�� we have that �L�<	⊆U �fn�

- ; and
consequently that U �fn�

- is not pointwise closed family (Theorem 1.6). This gives
that ��fn�=	1.
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A contradiction; hence we have proved that (i) ⇒ (ii).
(ii) ⇒ (i) Let �fn−f � has not any l1+-subsequence. We assume that ��fn�=	1.

Then there exists &>0 such that the family U �fn�
& is not pointwise closed. Hence,

there exists M=�mn�n⊆�∈� such that �M�<	⊆U �fn�
& . Set hn=fmn for every

n∈� and

U �hn�
&�1 =�F ⊆� � there exists '∈� such that f �'�−hi�'��&

for every i∈F��
U �hn�
&�2 =�F ⊆� � there exists '∈� such that hi�'�−f �'��&

for every i∈F��
Let %��→ �0�+�� be a function such that

∑
n∈�%�n�=1 and the set

F =�n∈� �%�n� �=0� is finite. Since �mn�n∈F ∈U �fn�
& , there exist F1∈U �hn�

&�1

and F2∈U �hn�
&�2 such that F =F1∪F2 and F1∩F2=∅. Hence,

either
∑
n∈F1

%�n�>
1
3

or
∑
n∈F2

%�n�>
1
3
�

From Pták’s theorem, there exists L∈ ��� such that �L�<	⊆U �hn�
&�1 ∪U �hn�

&�2 . Let
L=�ln�n∈� and gn=hln for every n∈�. Then �gn−f � is an l1+-sequence. Indeed,
let n∈� and �1������n�0. Since �l1�����ln�∈U �hn�

&�1 ∪U �hn�
&�2 , there exist '∈�

and ∈�−1�1� such that �gi�'�−f �'���& for every i=1�����n. Hence,
&
∑n
i=1�i��∑n

i=1�i�gi−f ��� A contradiction; which proves that ��fn�<	1.
(ii) ⇒ (iii) Let �fn−f � has not any l1+-subsequence and let �gn� be a sub-

sequence of �fn�. Then we can construct inductively a convex block subsequence
�hn� of �gn� such that�hn−f�< 1

n
for every n∈�.

(iii) ⇒ (iv) We assume that �fn−f � does not converge weakly to zero in
l����. Then there exists �∗ ∈�l�����∗ with ��∗��1 and &>0 such that the set
M=�n∈� � ��∗�fn−f ���&� is infinite. Replacing �∗ by −�∗, if necessary, we
can find M1∈ �M� such that �∗�fn−f ��& for every n∈M1. Set M1=�mn�n∈�
and gn=fmn for every n∈�. Then the subsequence �gn� of �fn� has no convex
block subsequence converging uniformly to f , since �∑n

i=1�igi−f��& for
every �1������n�0 with

∑n
i=1�i=1.

(iv) ⇒ (ii) We assume that �gn−f � is an l1+-subsequence of �fn−f �. Then
there exists &>0 such that &

∑n
i=1�i��∑n

i=1�i�gi−f �� for every n∈� and
�1������n�0.

Let %��→ �0�+�� be a function such that
∑�
n=1%�n�=1 and the set

�n∈� �%�n� �=0� is finite. Then there exists �∗ ∈Y ∗, where Y is the
closed linear subspace of l���� generated by �gn−f �, with ��∗��1 and
&
2 < �∑�

n=1 %�n� �∗�gn−f ��. Set F =�n∈� � ��∗�gn−f �� �
&
4�. Then

&
2 < �∑�

n=1 %�n� �
∗�gn−f ���C

∑
n∈F %�n�+ &

4 , where C=sup
n

�fn−f�<�.

Hence,
∑
n∈F %�n�>

&
4C =-. Set F =�F ∈ ���<	 : there exist �∗ ∈Y ∗ with

��∗��1 and ��∗�gn−f ��� &
4 for every n∈F }.
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From Pták’s classical theorem there exists M ∈ ��� such that �M�<	⊂F .
Since the closed unit ball of Y ∗ is weak∗-compact and metrizable, there exists
�∗ ∈Y ∗ with ��∗��1 such that �∗�gn−f ��� &

4 for every n∈M . This
gives that �gn−f � does not converge weakly to zero. That finishes the proof of the
theorem.

REMARKS. (i) �1
+-sequences which are also basic sequences are thoroughly

studied, under the term wide-(s) sequences, by H. Rosenthal in [18] and [19].
These sequences were originally introduced by I. Singer in [21], under the term
P∗-sequences.

(ii) As pointed out by the referee, the following dichotomy can be easily proved
using a classical result by Kadec-Pelczyński ([11]): every bounded sequence in
a Banach space has a basic subsequence which is either l1+, or weakly null. This
result can be further refined using Rosenthal’s l1-dichotomy theorem to obtain a
subsequence which is either a weak-Cauchy, l1+-sequence or an l1-sequence (i.e.
equivalent to the l1-basis); c.f. Proposition 1 in [19].

Using the previous theorem we can now characterize those uniformly bounded
and pointwise convergent sequences of continuous functions defined on a compact
Hausdorff space which have countable index of uniform convergence precisely as
those with continuous limit function.

COROLLARY 2.6. Let �fn� be a uniformly bounded sequence of continuous,
real valued functions defined on a compact Hausdorff space K which converges
pointwise to a function f . Then ��fn�<	1 if and only if f is a continuous function.
Proof. If ��fn�<	1, then f is continuous, according to implication (i)⇒ (iii)

of Theorem 2.5. On the other hand if f is a continuous function then ��fn�<	1,
according to Remark 2.2(ii).

For aBanach spaceX letK be the closed unit ball of its dual spaceX∗. Ifwe endow
Kwith the weak∗ topology (a sequence ��∗

n� in K converges weak∗ to some �∗ ∈
K if and only if �∗

n���→�∗��� for every �∈X�, then K is a compact Hausdorff
space. Via the natural embedding e �X→C�K� with e�����∗�=�∗��� for
every �∈X and �∗ ∈K, we have that X is isometric to a subspace of the Banach
space C�K� of all the continuous functions on K with the supremum norm. So, a
sequence ��n� in X can be considered as a sequence in C�K�.

The sequences ��n� in X which converge pointwise on K are called weak-
Cauchy. So, we can define the index of uniform convergence ���n� on K for every
weak-Cauchy sequence ��n� in a Banach space X. As we will prove below, this
index is countable if and only if ��n� converges weakly in X.

COROLLARY 2.7. Let ��n� be a bounded, weak Cauchy sequence in a Banach
space X. Then ���n�<	1 if and only if the sequence ��n� converges weakly in X
to some element � of X.
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Proof. Since ��n� is a weak-Cauchy sequence in X, there exists �∗∗ ∈X∗∗ such
that �∗��n�→�∗∗��∗� for every �∗ ∈X∗. As ��n� is considering as a sequence
of continuous functions on the closed unit ball K of X∗ converging pointwise to
�∗∗/K we have, according to the previous corollary, that ���n�<	1 if and only
if �∗∗/K∈C�K�. This equivalence gives that ���n�<	1 if and only if ��n�
converges weakly to an element � of X.

We have already seen (see Remark 2.2) that there exist pointwise convergent se-
quences of continuous functions on compact metric spaces with indices of uniform
convergence non-limit countable ordinals. It is, then, a remarkable fact that every
weakly convergent sequence in a Banach space has always index of uniform con-
vergence (equal to a limit ordinal and moreover) of the form	
 for some countable
ordinal 
 , (Theorem 2.9 below). This is a set-theoretic differentiation between
Banach space theory and topology.

LEMMA 2.8. Let �fn� be a uniformly bounded sequence of real valued functions
defined on a set � which converges pointwise to a function f and 
 a countable
ordinal. If
(i) 	
 <sI�U �fn�

& � for some I ∈ ��� and &>0, then
(ii) there exist a subsequence �gn� of �fn�n∈I and 4∈�−1�1� such that, for every

F ∈F
 , there exists '∈�so that 4 ·�gi�'�−f �'���& for every i∈F .
Proof. Let 	
 <sI�U �fn�

& �. According to Remark 1.11 (vii) there exists L∈ �I�
such that F
 �L�⊆U �fn�

& . If L=�ln�, we set hn=fln−f for every n∈� and

U �hn�
&�1 =�F ⊆� � there exists '∈� such that −hi�'��& for every i∈F��

U �hn�
&�1 =�F ⊆� � there exists '∈� such thathi�'��& for every i∈F��

Since B
⊆F
⊆U �hn�
& , for every s∈B
 there exist F1∈U �hn�

&�1 and F2∈U �hn�
&�2

such that s=F1∪F2 and F1∩F2=∅. Hence, for every s∈B
 there exists
F ∈U �hn�

&�1 ∪U �hn�
&�2 such that 1

3<w	
 �F �s�.
Set

L1=
{
s∈B
 � there exists F ∈U �hn�

&�1 such that
1
3
<w	
 �F �s�

}

and

L2=
{
s∈B
 � there exists F ∈U �hn�

&�2 such that
1
3
<w	
 �F �s�

}
�

Then B
=L1∪L2 and, according to the 	
 -Ramsey theorem (Theorem 1.3),
there exist p∈�1�2� and N ∈ ��� such that B
∩�N �<	⊆Lp. Applying the 	
 -Pták
type theorem (Theorem 1.9), we can find M ∈ �N � such that 	
 <sM�U �hn�

&�p �. Then
there exists N1∈ �M� such that F
 �N1�⊆U �hn�

&�p �. If N1=�nk�k∈�, then we set
gk=hnk for every k∈�. For every F ∈F
 we have �ni�i∈F ∈U �hn�

&�p �, hence there
exists '∈� such that �−1�p�gi�'�−f �'��& for every i∈F .
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THEOREM 2.9. Let ��n� be a sequence in a Banach space X and �∈X. If ��n�
converges weakly to � , then ���n�=	
 for some countable ordinal 
 .
Proof. Let ��n� be a sequence in the Banach space X which converges weakly

to �∈X. We assume that �=0, otherwise we replace ��n� by ��n−��. We have
���n�<	1 (Corollary 2.7), hence, there exists a unique countable ordinal 
 such
that 	
����n�<	
+1. Arguing by contradiction suppose that 	
 <���n�. Then
there exist M ∈ ��� and &>0 such that 	
 <sM�U ��n�

& �. Since 1<sM�U ��n�
& �,

there exists I ∈ �M� such that inf���n� �n∈ I��&. Of course 	
 <sI�U ��n�
& �.

Using the previous lemma, we can find a subsequence �yn� of ��n�n∈I such that
for every F ∈F
 there exists �∗ ∈X∗ with ��∗��1 and �∗�yn��& for every
n∈F
 . Since �yn� is weakly null we can assume that �yn� is a basic sequence ([5]).

According to Lemma 1.2 in [3] for every 0<-<1 there exists a subsequence
�zn� of �yn� such that for every n∈�, F ⊆�1�����n� and �∗ ∈X∗ with ��∗��1
and �∗�zi��& for every i∈F there exists y∗ ∈X∗ with �y∗��1 satisfying the
following two conditions:
(i) y∗�zi�>�1−-�& for every i∈F ; and
(ii) �y∗�zi��<&·- for every i∈�1�����n�\F .
Let k ∈ � and s1�����sk∈B
 with s1 < ··· < sk. Since B
⊆F
 , for every
�∈�1�����k� there exists �∗

� ∈X∗ with ��∗
�� � 1 and �∗

��zi� � & for every
i∈s�. Hence, for every �∈�1�����k� there exists y∗� ∈ X∗ with �y∗�� � 1
satisfying:
(i) y∗��zi�>�1− 1

2k �& for every i∈s�; and
(ii) �y∗��zi��< &

2k for every i∈⋃k
n=1sn\s�.

Set y∗= y∗1+···+y∗k
k

. Of course �y∗��1 and for every �∈�1�����k� and i∈s�
we have:

y∗�zi� =
1
k

(
y∗��zi�+

k∑
n=1
n�=�

y∗n�zi�

)
�
&

k

(
1− 1

2k

)
− 1
k

k∑
n=1
n�=�

�y∗n�zi��

�
&

k

(
1− 1

2k

)
− &

2k
�k−1�
k

= &

2k
�

This means that s1∪···∪sk∈U �zn�
&
2k

. Hence, �k	
 ⊆� �zn�&
2k

for every k∈�. From

Remark 1.5 we have that s��U �zn�
&
2k

�k	
 for every k∈� and consequently that
���n����zn��	
+1.

A contradiction to our hypothesis that ���n�<	
+1; hence ���n�=	
 .
We can further clarify the difference in behavior of the index of uniform conver-

gence between Banach space and topology by the following consideration. If �fn�
is a uniformly bounded sequence of real valued functions defined on a set � which
converges pointwise to a function f , then its index of uniform convergence ��fn� on
� can be equal to any countable ordinal � (Examples 2.3). On the other hand if we
consider �fn� as a bounded sequence in the Banach space l���� or equivalently as
a sequence of continuous functions defined on the closed unit ball K of �l�����∗,
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then �fn� has index of uniform convergence equal to 	1 if ��fn�=	1 and of the
form 	
 , where 
 is the least countable ordinal with ��fn�<	
 in case ��fn�<	1.

THEOREM 2.10. Let �fn� be a uniformly bounded sequence of real valued func-
tion defined on a set � which converges pointwise to a function f . If ��fn� is
the index of uniform convergence of �fn� on � and ��fn�B is the index of uniform
convergence of �fn� as a sequence in l����, then:
(i) ��fn�=	1 if and only if ��fn�B =	1; and

(ii) If ��fn�<	1, then ��fn�B =	
 , where 
 is the least countable ordinal with
��fn��	
 .

Proof. (i) If follows from Theorem 2.5 and Corollary 2.7.
(ii) Let ��fn�<	1. According to Theorem 2.9 and (i) there exists a countable

ordinal 
 such that ��fn�B =	
 . Obviously ��fn����fn�B .
Let <	1 such that 	<��fn�B . According to Lemma 2.8, there exist &>0,

4∈�−1�1� and a subsequence �gn� of �fn�, such that for every s∈B there exists
�∗ ∈K (K is the closed unit ball of �l�����∗) such that 4��∗�gn�−�∗�f ���& for
every n∈s. Then,∥∥∥∥∥

∑
n∈s
%s �n�gn−f

∥∥∥∥∥�& for every s∈B�

where %s ��→ �0�1� is the convex combination with respect to s, defined in
Remark 1.8. This gives that for every s∈B there exists '∈� with

&

2
<

∣∣∣∣∣
∑
n∈s
%s �n��gn�'�−f �'��

∣∣∣∣∣�
∥∥∥∥∥
∑
n∈s
%s �n�gn−f

∥∥∥∥∥�
Set F =�n∈s � ��gn−f ��'��> &

4 . Then F ∈U �gn�
& and

&

2
<

∣∣∣∣∣
∑
n∈s
%s �n�gn�'�−f �'�

∣∣∣∣∣�
∣∣∣∣∣
∑
n∈F
%s �n�gn�'�−f �'�

∣∣∣∣∣
+
∣∣∣∣∣
∑
n∈s\F

%s �n�gn�'�−f �'�
∣∣∣∣∣�Cw	a�F �s�+ &4 �

where C=supn�gn−f�. Hence, w	�F �s�>
&

4C . According to the 	-Pták
type theorem (Theorem 1.9) there exists L∈ ��� such that sL�U �gn�

&
4
�>	. Hence

sM�U �fn�
&
4
�>	 for M=�in�n∈L. So, 	<��fn�. This gives that 
 is the least

countable ordinal with ��fn��	
 .
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3� Uniform convergence for every countable ordinal

In this section, firstly we study and obtain a characterization of the �-uniform
convergence of sequences of functions (for all limit ordinals �<	1) defined (in
the general topological setting) on an arbitrary set � , in terms of the complete thin
Schreier system (A���<	1) (in Theorem 3.1 and Proposition 3.2 below). We
believe that this characterization is so natural and basic that can take the place of a
definition.

Secondly, restricting ourselves to the Banach space setting we obtain (in The-
orem 3.13) a stronger characterization of the 	-uniformly convergent sequences
as those sequences, for which every subsequence has a uniformly converging (not
simply convex but specifically) B-convex block subsequence, refining Theorem
2.5.

Combining all these results we obtain a dichotomy theorem which can be con-
sidered as the natural extension of Rosenthal’s l1-theorem.

THEOREM 3.1. Let �fn� be a sequence of real valued functions defined on a
set � which converges pointwise to a function f . Also, let � be a limit countable
ordinal and ��n� be a sequence of ordinals strictly increasing to �. The following
are equivalent:
(i) �fn� converges �-uniformly to f (i.e. or ��fn����; and

(ii) for every M ∈ ��� there exists a strictly increasing sequence %��→M such
that for every M ∈ ��� there exists a strictly increasing sequence %��→M
such that for every &>0 there exists n0=n0�&�∈� so that

�%�n� �n�n0 and �f%�n��'�−f �'���&�∈�A�n0
�∗\A�n0

for every '∈��

Proof. (i) ⇒ (ii) Let ��fn��� and M ∈ ���. We claim that for every L∈ ���
and &>0 there exists I ∈ �L� such that

�IU �fn�&
=sup�sN �U �fn�

& � �N ∈ �I��<��

Indeed, suppose that it does not hold. Then there exists L∈ ��� and &>0 such
that for every I ∈ �L� we have sup�sN �U �fn�

& � �N ∈ �I��=�. Hence, there exists
a decreasing sequence �In�n∈� in �L� such that sIn�U �fn�

& �>�n for every n∈�.
Setting I=�inn�n∈� if In=�ink�k∈� for every n∈� we have that sI �U �fn�

& ��
sIn�U �fn�

& �>�n for every n∈�. So, sI �U �fn�
& ���. Since sI �U �fn�

& ) is a successor
ordinal we have sI �U �fn�

& ���+1. A contradiction, which proves our claim.
Using the refined form of the �-Ramsey type theorem, (Theorem 1.6), we can

find inductively an increasing sequence �kn� in � and a decreasing sequence �In�
in �M� such that

U �fn�
1
n

∩�In�<	⊆�A�kn
�∗\A�kn

for every n∈��



THE UNIFORM CONVERGENCE AND 11-BEHAVIOR 65

Indeed, for &=1, according to the previous claim, there exists M1∈ �M� such
that �M

U �fn�1

<�k1 +1<�. According to the refined �k1 -Ramsey type theorem there

exists I1∈ �M1� such that U �fn�
1 ∩�I1�<	⊂�A�k1

�∗\A�k1
. For the same reasons

there exist M2∈ �I1� and k2∈� such that �M2

U �fn�1
2

<�k2 +1<� and consequently

I2∈ �I1� such that U �fn�
1
2

∩�I2�<	⊂�A�k2
�∗\A�k2

. We continue in analogous way.

Set %�n�= inn if In=�inm�m∈� for every n∈�. For every &>0 there exists
�∈� with 1

�
<&. Set n0�&�=n0=k�. For each '∈� we have

�%�n� �n�n0 and �f%�n��'�−f �%���&�∈�A�n0
�∗\A�n0

�

(ii) ⇒ (i) Let the condition (ii) holds. Suppose that ��fn�>�. Then there exist
&>0 and M ∈ ��� such that sM�U �fn�

& �>�>�n+1 for every n∈�. According
to the condition (ii) there exist L∈ �M� and n0∈� such that

U �fn�
& ∩�L�<	⊆�A�n0

�∗\A�n0
�

We have sL�U �fn�
& ��sM�U �fn�

& ��n0 +1, so applying the refined �n0 -Ramsey type
theorem there exists I ∈ �L� such that A�n0

∩�I�<	⊆U �fn�
& ∩�L�<	. This is a

contradiction; hence ��fn���.

For an arbitrary countable ordinal �, not necessarily limit, the �-uniform con-
vergent sequences have an analogous property, which however does not constitute
a characterization. It constitutes a characterization in case we know that ��fn� is a
limit ordinal, as in the case of weakly convergent sequences in Banach spaces.

PROPOSITION 3.2. Let �fn� be a sequence of real valued functions on a set �
converging pointwise to a function f and � a countable ordinal. If
(i) �fn� converges �-uniformly to f , then
(ii) for every M ∈ ��� there exists a strictly increasing function %��→M such

that for every &>0 there exists n0=n0�&�∈� so that

�%�n� �n�n0 and �f%�n��'�−f �'���&�∈�A��
∗\A� for every '∈��

Statements (i) and (ii) are not equivalent in general. If (ii) holds then either ��fn��
� or ��fn�=�+1.
Proof. Let � be a countable ordinal number with ��fn���. Then

�MU �fn�1
n

=sup�sL�U �fn�
1
n

� �L∈ �M��<�+1

for every n∈� and M ∈ ���.
According to the refined �-Ramsey type theorem, (Theorem 1.6), for every n∈

� and M ∈ ��� there exists L∈ �M� such that U �fn�
1
n

∩�L�<	⊆�A��
∗\A� .
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Inductively, we can find a decreasing sequence �Ln�n∈� in ��� such that

U �fn�
1
n

∩�Ln�<	⊆�A��
∗\A� for every n∈��

Set L = �lnn�n∈� if Ln = �lni �i∈� for every n ∈ �, and %�n�= lnn for every
n∈�. For every &>0 there exists n0=n0�&� such that 1

n0
<&. Hence, for each

'∈� we have that

�%�n� �n�n0 and �f%�n��'�−f �'���&�∈U �fn�
1
n0

∩�Ln0�<	⊆�A��
∗\A��

Now suppose that (ii) holds and hat ��fn� �=�+1. If ��fn�>�+1, then there
exist &>0 and M ∈ ��� such that sM�U �fn�

& �>�+1. According to the refined
�-Ramsey type theorem there exists L∈ �M� such that A��L�

<	∩�L�<	⊆U �fn�
& .

But according to (ii) there exists I ∈ �L� such that U �fn�
& ∩�I�<	⊆�A��

∗\A� . This
is a contradiction; hence ��fn���.

With the following example we will prove that the statements (i) and (ii) are not
equivalent in general.

EXAMPLE. Let �=�F ∈ ���<	 �2�F and �F �=minF−1���F � denotes the car-
dinality of F ). For every I ∈ ��� we have sI ��∗�=	+1. Indeed, the family �
is 	-uniform onM=�\�1� (for the definition see [14] and [7]), so sL��∗�=	+1
for every L∈ �M� according to [7]. This gives that sI ��∗�=	+1 for every
I ∈ ��� (see Remark 1.5 (v)).

For every n∈� set fn ��→� with fn�F�=1 if n∈F and fn�F�=0
otherwise. Of course, the sequence �fn� converges pointwise to zero and U �fn�

& =
�∗ for every 0<&�1. Hence, ��fn�=	+1. But for every &>0 and F ∈� we
have

�n∈� � �fn�F���&�∈�A	�
∗\A	�

This finishes the proof of the proposition.

As a corollary of Theorem 3.1 we have the following characterization of the
	-uniformly convergent sequences in terms of the uniform pointwise convergence,
in the sense given by Mercourakis in [13].

COROLLARY 3.3. Let �fn� be a sequence of real valued functions on a set �
converging pointwise to a function f . The following are equivalent:
(i) �fn� converges 	-uniformly to f (equivalently ��fn��	�; and
(ii) every subsequence �gn� of �fn� has a subsequence �hn� with the following

property: for every &>0 there exists n0�&�∈� such that

��n∈� � �hn�'�−f �'���&��<n0�&� for all '∈��
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Proof. (i) ⇒ (ii) If ��fn��	, then according to Theorem 3.1 every subsequence
�gn� of �fn� has a further subsequence �hn� such that for every &>0 there exists
n0=n0�&�∈� so that �n∈� �n�n0 and �hn�'�−f �'���&�∈�An0

�∗\An0

for every '∈� . This gives that ��n∈� � �hn�'�−f �'���&���2n0 for every
'∈� .

(ii) ⇒ (i) This is a consequence of Theorem 3.1, setting �n=n for every n∈�.

REMARK 3.4. (i) For every limit ordinal �, by choosing appropriate sequences
strictly increasing to � (as in Theorem 3.1), we can obtain interesting descriptions
of the �-uniform convergence. For example in case �=	+1, choosing the se-
quence �n	�n∈� we obtain that: a sequence �fn� converges 	+1-uniformly to
f if and only if for every M ∈ ��� there exists a strictly increasing sequence
%��→M such that for every &>0 there exists n0∈� so that the type (see
Remark 1.2 (ii)) of the set

�%�n� �n�n0 and �f%�n��'�−f �'���&�
with respect to B is at most n0.

(ii) Papanastassiou and Kiriakouli in [14], using the generalized Schreier fam-
ilies �F�<	1

instead of �A	�<	1
, defined in a similar way the 	-uniform

pointwise convergence of a sequence of functions, extending the uniform pointwise
convergence of Mercourakis (case �=	).

In order to obtain our principal result (in Theorem 3.13), according to which the
	-uniformly convergent sequences are identified with those sequences, for which
every subsequence has a uniformly converging (not simply convex, but specific-
ally) B-convex block subsequence, we must analyze the close connection that
exists between the index of uniform convergence, and the l1+-(and l1-) index of
sequences. We define these indices below.

DEFINITION 3.5. Let ��n� be a bounded sequence in a Banach space X. For
every &>0 we set

W ��n�
& =

{
F ∈ ���<	 �&∑

i∈F
�i�

∥∥∥∥∥
∑
i∈F
�i�i

∥∥∥∥∥ for every ��i�i∈F ⊆ �0�+��
}
�

C��n�& =
{
F ∈ ���<	 �&∑

i∈F
��i��

∥∥∥∥∥
∑
i∈F
�i�i

∥∥∥∥∥ for every ��i�i∈F ⊆�

}
�

We define the l1+-index �
�n�
+ of ��n� (resp. the l1-index ���n�1 of ��n�) as follows:

(1) If there exists &>0 such that the family W�n�
& (resp. the family C��n�& ) is not

pointwise closed, then we set

�
��n�+ =	1 � resp. ���n�1 =	1�� and



68 V. FARMAKI

(2) if all the families W ��n�
& (resp. the families C��n�& ) for &>0 are pointwise

closed, then we set

�
��n�+ =sup�sM�W ��n�

& � �M ∈ ��� and &>0�� and respectively

�
��n�
1 =sup�sM�C��n�& � �M ∈ ��� and &>0��

which are countable ordinals.

PROPOSITION 3.6. Let ��n� be a bounded sequence in a Banach space X.Then
(i) ���n�1 ��

��n�+ . These indices are not equal in general.
(ii) ���n�1 <	1 if and only if ��n� has not any subsequence equivalent to the unit

basis of l1 and equivalently if ��n� is weak Cauchy.
(iii) ���n�+ <	1 if and only if ��n� has not any l1+-subsequence and equivalently if

��n� converges weakly to zero.
(iv) If ���n�+ <	1, then �

��n�+ =���n�1 =	
 for some 0�
 <	1.
Proof. (i) C��n�& ⊆W ��n�

& for every &>0, hence ���n�1 ��
��n�+ . The two indices

are not equal in general. Indeed, let �sn� be the summing basis of c0. Of course
�sn�=1 for every n∈�. It is easily proved that ���n�1 =	, but ���n�+ =	1.

(ii) ���n�1 =	1 if and only if ��n� has an l1-subsequence (Theorem 1.6). So,
�
��n�
1 <	1 if and only if ��n� is weak Cauchy according to Rosenthal’s l1-theorem

[16].
(iii) ���n�+ =	1 if and only if ��n� has an l1+-subsequence, (Theorem 1.6). Hence

�
��n�+ <	1 if and only if ��n� converges weakly to zero, according to Theorem 2.5.
(iv) Let ���n�+ <	1. Firstly, we will prove that ���n�+ =	
 for some 0�
 <	1.

Since ���n�+ <	1 there exists a unique countable ordinal 
 with 	
���fn�+ <

	
+1. Arguing by contradiction, we suppose that 	
 <���n�+ . Then there exist
M ∈ ��� and &>0 so that 	
 <sM�W ��n�

& �. Since 1<sM�W ��n�
& �, there exists

I ∈ �M� with inf���n� �n∈ I��&. Of course 	
 <sM�W ��n�
& ��sI �W ��n�

& �.
So, according to Remark 1.12, there exists L∈ �I� such that F
 �L�⊆W ��n�

& . If
L=�ln�n∈�, we set yn=�ln for every n∈�. Since ��yn�+ <	1, the sequence �yn�
is weakly null and seminormalized, so it has a basic subsequence �zn� with basic
constant C�1.

Let k∈� and s1�����sk∈B
 with s1< ···<sk and s=⋃k
n=1sn. Since �zn�

is basic, for every ��i�i∈s⊆ �0�+�� we have �∑i∈s �izi�� 1
4C �

∑
i∈sn �izi� for

every n=1�����k, and consequently �∑i∈s �izi�� 1
4kC

∑k
n=1�

∑
i∈sn �izi��

&
4kC

∑
i∈s �i, since B
 ⊆ F
 ⊆ W �zn�

& . This gives that Ak	
 ⊆W �zn�

-k
for every

k∈�, where -k= &
4kC . So, s��W �zn�

-k
��k	
 for every k∈�. If zn=�mn for

every n∈�, then setting N =�mn �n∈��, we can verify that sN �W ��n�

-k
��k	


for every k∈�. Hence, ���n�+ �k	
 for every k∈�. But it is impossible, since
we assumed that ���n�+ <	
+1. Thus ���n�+ =	
 .
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Now, we will prove that ���n�1 =���n�+ . If 
=0, then ��n�→0 and obviously
�
��n�
1 =1=���n�+ . We assume that 1�
 . Let � be an ordinal with 1<�<	
 .

Then there exists M ∈ ��� and &>0 such that �<sM�W ��n�
& � and moreover

inf���n� �n∈M��&. The sequence ��n�n∈M is weakly null and seminormalized.
According to the “l1-unconditional” theorem of Argyros-Mercourakis-Tsarpalias
in [3], there exist L∈ �M� and C�&�>0 so that W ��n�

& ∩�L�<	⊆C��n�C�&�. Since

�<sM�W ��n�
& ��sL�W ��n�

& ��sL�C��n�C�&��, we have that ���n�1 >�, and consequently

that ���n�1 �	
=���n�+ . Hence ���n�1 =���n�+ =	
 .
This finishes the proof.

Now we will prove the close connection that exists between the index of uni-
form convergence and the l1+-index of a sequence of functions. Already, we have
proved in Theorem 2.5 that the index of uniform convergence of a sequence �fn�
(defined on a set � and converging pointwise to a function f ) is countable if and
only if the �1

+=-index of �fn−f � is countable. This relation which corresponds to
the limiting 	1-case, is extended to any ordinal, by proving (in Theorem 3.11) that
if the index of uniform convergence is a countable ordinal �, then the l1+-index (as
well as the l1-index) is equal to 	
 , where 
 is the least ordinal with �<	
 , (turns
out to be equal to ��fn�B , c.f. Theorem 2.10).

In order to prove this relation, firstly we will characterize all the ordinals  with
	<��fn� in Proposition 3.10 below. In this characterization we use the notion of
the l1-spreading model of order , for some 1�<	1, (Definition 3.7), and also
the notion of the convex combination of a sequence with respect to an element of
the family B (Definition 3.9).

DEFINITION 3.7. Let ��n� be a bounded, sequence in a Banach space X and 
be a countable ordinal with 1�<	1. We say that ��n� has l1-spreading model
of order  if there exists &>0 such that

&
∑
i∈F

��i��
∥∥∥∥∥
∑
i∈F
�i�i

∥∥∥∥∥ for every F ∈F and ��i�i∈F ⊆��

REMARK 3.8. (i) A sequence ��n� has a subsequence with l1-spreading model of
order  if and only if 	<���n�1 . Indeed, if 	<���n�1 , then there exist &>0 and
M ∈ ��� such that 	<sM�C��n�& � and consequently L∈ �M� with F�L�⊆C��n�&

(Remark 1.12 (v)). On the other hand, if �yn�=��n�n∈M has l1-spreading model
of order , then there exists &>0 so that B⊆C�yn�& . Hence ���n�1 �sM�C��n�& ��
s��C�yn�& ��s��B�=	+1>	.

(ii) A bounded sequence ��n� has a subsequence with l1-spreading model of
the greatest possible order if and only if either ���n�1 =	1, or ���n�1 =	
+1 for some
countable ordinal 
 .
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(iii) If a bounded sequence ��n� has for every countable ordinal  a subsequence
with l1-spreading model of order , then it has a subsequence equivalent to the
usual basis of l1.

DEFINITION 3.9. Let ��n� be a sequence in a Banach space X and  be a
countable ordinal. Then
(1) The convex combination cs ��n� of the sequence ��n� with respect to an

element s of B is defined as follows:

cs ��n�=
∑
n∈s
%s �n��n�

where %s ��→ �0��� is the finite supported function defined in Remark 1.8.
(2) A sequence �zk� in X is a B-convex block subsequence of ��n�, if and only

if zk=csk��n� for every k∈�, where �sk�⊆B with s1<s2< ··· . The set⋃
k∈�sk is called the support of �zk�.

Using the canonical representation with respect to the family B (Remark 1.2),
it can be proved that for every M ∈ ��� there exists a unique B-convex block
subsequence of ��n� with support M .

PROPOSITION 3.10. Let �fn� be a uniformly bounded sequence of real valued
functions defined on a set � which converges pointwise to a function f and  be a
countable ordinal. If ��fn�<	1 the following are equivalent:
(i) 	<��fn�;
(ii) there exists a subsequence �gn� of �fn�, &>0 and 4∈�−1�1� such that, for

every F ∈F, there exists '∈� so that 4 ·�gi�'�−f �'��& every i∈F ;

(iii) 	<��fn−f �+ =��fn−f �1 ;
(iv) there exists a subsequence of �fn−f � with l1-spreading model or order ;
(v) there exist a subsequence �gn� of �fn�, &>0 and I ∈ ��� such that

&��cs �gn�−f� for every s∈B∩�I�<	�

Proof. (i) ⇒ (ii) This is already proved in Lemma 2.8.
(ii) ⇒ (iii) According to condition (ii) there exist a subsequence �gn�=�fn�n∈M

of �fn� and &>0 such that B⊆F⊆W �fn�
& . Then

	<	+1=s��W �gn−f �
& ��sM�W �fn−f �

& ���
�fn−f �+ �

Proposition 3.6 finishes the proof.
(iii) ⇒ (iv) It is proved in Remark 3.8 (i) .
(iv) ⇒ (v) It is obvious.
(v) ⇒ (i) Let �gn� be a subsequence of �fn��&>0 and I ∈ ��� such that

&��cs �gn�−f� for every s∈B∩�I�<	, and let s∈B∩�I�<	. Then there
exists '∈� such that &2< �∑n∈s%


s �n��gn−f ��'����cs �gn�−f�.
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Set F =�n∈s � ��gn−f ��'��> &
4�. Then F ∈U �gn�

&
4

and

&

2
<

∣∣∣∣∣
∑
n∈F
%s �n��gn−f ��'�

∣∣∣∣∣+
∣∣∣∣∣
∑
n∈s\F

%s �n��gn−f ��'�
∣∣∣∣∣�w	�F�s�-+ &4 �

where -=sup�gn−f�. Hence, w	�F�s�>
&
4- .

According to the 	-Pták type theorem (Theorem 1.9) there exists L∈ �I� such
that sL�U �gn�

&
4
�>	. So we have sM�U �fn�

&
4
�>	 for M=�mn �n∈L�, and

consequently 	<��fn�, as required.
This finishes the proof.

THEOREM 3.11. Let �fn� be a uniformly bounded sequence of real valued func-
tions defined on set � which converges pointwise to a function f . Then
(i) ��fn�=	1 if and only if ��fn−f �+ =	1.
(ii) If ��fn�<	1, then ��fn−f �1 =��fn−f �+ =	
 , where 
 is the least countable

ordinal with ��fn��	
 .
Proof. (i) It follows from Theorem 2.5 and Proposition 3.6.
(ii) Let ��fn�<	1. Then ��fn−f �+ <	1 (according to (i)) and moreover ��fn−f �1 =

�
�fn−f �+ =	
 for some countable ordinal 
 (Proposition 3.6). According to Pro-

position 3.10 we have that

�0�<	1 �	
<��fn��=�0�<	1 �<
��

This equality gives that 
 is the least ordinal with ��fn��	


COROLLARY 3.12. Let ��n� be a sequence in a Banach space X and �∈X.
If ��n� converges weakly to �, then ���n�=���n−��+ =���n−��1 =	
 for some
countable ordinal 
 .
Proof. It follows from Theorem 3.11 and Theorem 2.9.

Now, we can state our principal result, according to which the 	-uniformly con-
vergent sequences of functions are identified with the sequences whose every sub-
sequence has a uniformly convergent B-convex block subsequence (thus com-
pleting Theorem 3.1) and also with the sequences which do not have subsequences
with l1-spreading model of order .

THEOREM 3.13. Let �fn� be a uniformly bounded sequence of real valued fun-
ctions defined on a set � which converges pointwise to a function f . For a countable
ordinal  the following are equivalent:
(i) The sequence �fn� converges 	

-uniformly to f (or equivalently ��fn��	);
(ii) ��fn−f �+ =��fn−f �1 �	;
(iii) the sequence �fn−f � in l���� does not have any subsequence with l1-

spreading model of order ;
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(iv) for every subsequence �gn� of �fn� and M ∈ ��� there exists L∈ �M� such
that

�cs �gn�−f�<
1

mins
for every s∈B∩�L�<	� and

(v) every subsequence �gn� of �fn� has aB-convex block subsequence converging
uniformly to f .

Proof. (i) ⇔ (ii) and (i) ⇔ (iii) They follow from Proposition 3.10.
(i) ⇒ (iv) Let ��fn��	. According to Proposition 3.10 ((i) ⇔ (v)) for every

subsequence �gn� of �fn�, &>0 and L∈ ��� there exists s∈B∩�L�<	 such
that �cs �gn�−f�<&. Let �gn� be a subsequence of �fn� and M ∈ ���. We
set F1 = �F ∈ B ��cs �gn� − f� < 1�. Then B ∩ �L�<	 ∩ F1 �=∅ for
every L∈ �M�. According to 	-Ramsey type theorem (Theorem 1.3) there exists
L1∈ �M� such that �cs �gn�−f�<1 for every s∈B∩�L1�

<	. Set F2=�s∈
B ��cs �gn�−f ��< 1

2�. Since B∩�L�<	∩F2 �=∅ for every L∈ �L1�, there
exists L2∈ �L1� such that �cs �gn�−f ��< 1

2 for every s∈B∩�L2�
	.

Inductively, we can find a decreasing sequence �Ln� in ��� such that

�cs �gn�−f�<
1
n

for every n∈� and s∈B∩�Ln�<	�
Set L=�lnn�n∈� if Ln=�lni �i∈� for every n∈�.

For every s=�n1�����nk�∈B∩�L�<	 we have that s∈B∩�Ln1�<	, so

�cs �gn�−f�<
1
n1

= 1
mins

�

(iv) ⇒ (v) Let �gn� be a subsequence of �fn�. Then there exists L∈ ��� such
that

�cs �gn�−f�<
1

mins
for every s∈B∩�L�<	�

According to [7] (see Definition 3.9) there exists a (unique) sequence �sk� in
B with s1<s2< ··· and L=⋃�

k=1 sk. Obviously, the B-convex block
subsequence �csk�gn�� of �gn� converges uniformly to f .

(v) ⇒ (iii) If a subsequence of �fn� has a B-convex block subsequence con-
verging uniformly to f , then obviously it has not l1-spreading model of order
.

Now, we are in position to gather previous results and hereby state a dichotomy
result that can be considered as the natural extension of Rosenthal’s classical l1-
theorem [16] (recalled here for convenience) from the 	1-ordinal to the countable
ordinals.

ROSENTHAL’S THEOREM ([16]). Let �fn� be a uniformly bounded sequence
of real valued functions defined on a set � . Then

either (1) �fn� has a subsequence equivalent to the unit basis of l1;
or (2) �fn� has a pointwise convergent subsequence.
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THEOREM 3.14. Let �fn� be a uniformly bounded sequence of real valued func-
tions defined on a set � and pointwise convergent to a function f . Then
either [Case ��fn�=	1]�fn−f � has an l1+-subsequence;
or [Case ��fn�<	1]�fn� converges weakly to f in the Banach space l����.
Fixing the least countable ordinal 
 for which ��fn��	
 , we obtain for every
countable ordinal  the further dichotomy:
either [Case <
] there exists a subsequence of �fn−f � with l1-spreading
model of order ;
or [Case �
] the sequence �fn� converges 	-uniformly to f or equiva-
lently every subsequence of �fn� has a B-convex block subsequence converging
uniformly to f .

Applying the previous result to the general Banach space theory we have the
following:

THEOREM 3.15. Let ��n� be a bounded sequence in a Banach space X.

(1) either the ��n� has a subsequence equivalent to the unit basis of l1; or ��n�
has a weak Cauchy subsequence.

(2) If ��n� is a weak Cauchy sequence converging weak∗ to an element �∗∗ of x∗∗,
either ��n−x∗∗� has an l1+-subsequence; or ��n� converges weakly to some
element � of X.

(3) If ��n� converges weakly to some element � of X, then there exists a (unique)
ordinal 
 such that ���n�=���n−��+ =���n−��1 =	
 . So, for each countable
ordinal  we obtain the following:
(3i) either [Case <
] there exists a subsequence of ��n−�� with l1-

spreading model of order ;
(3ii) or [Case �
] the sequence ��n� converges 	-uniformly to �,

or equivalently every subsequence of ��n� has a B-convex block sub-
sequence norm converging to �.

We conclude with the observation that we classify the class WX of all the weakly
convergent sequences of a Banach space X into an increasing hierarchy
�WX

 �0�<	1
, where

WX
 =���n�⊆X ���n� is weakly convergent and ���n��	��

With the help of the previous theorem these classes can be characterized as
follows.

COROLLARY 3.16. Let X be a Banach space, ��n� a sequence in X converging
weakly to some �∈X. For each countable ordinal number 
(i) ��n�∈WX

 if and only if for every subsequence �yn� of ��n� andM ∈ ��� there
exists a Ba-convex block subsequence of �yn� supported on M and norm
convergent to �; and
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(ii) ��n�∈WX\WX
 if and only if there exists a subsequence of ��n� with l1-

spreading model of order .
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