
ar
X

iv
:m

at
h/

04
04

01
4v

1 
 [

m
at

h.
FA

] 
 1

 A
pr

 2
00

4 Ramsey and Nash-Williams combinatorics
via Schreier families

Vassiliki Farmaki

(Preliminary Version)

Abstract

The main results of this paper (a) extend the finite Ramsey partition

theorem, and (b) employ this extension to obtain a stronger form of the infinite

Nash-Williams partition theorem, and also a new proof of Ellentuck’s, and

hence Galvin-Prikry’s partition theorem. The proper tool for this unification

of the classical partition theorems at a more general and stronger level is the

system of Schreier families (Aξ) of finite subsets of the set of natural numbers,

defined for every countable ordinal ξ.
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Introduction

The main results of this papers (Theorem A) extend the finite Ramsey ([R],

1929) partition theorem, and employ this extension to obtain a stronger form of the

infinite Nash-Williams ([N-W], 1965) partition theorem (Theorems B, B′, C), and

also a new proof of Ellentuck’s ([E], 1974), and hence Galvin-Prikry’s ([G-P], 1973)

partition theorems.

Rather unexpectedly the ideas that lead to this purely combinatorial result have

developed, in parallel, in Banach space theory, and they involve the system of Schreier

families (Aξ) of finite subsets of the set N of natural numbers defined for every count-

able ordinal ξ. For the purpose of constructing a famous counterexample in the theory

of Banach spaces, Schreier ([S], 1930) devised the classical Schreier family F1. This

family definitely came into the attention of Banach space theory with the also famous

Tsirelson counterexample ([T], 1974), a construction that uses the Schreier family.

In 1992 Alspach-Argyros ([A-A]) introduced the generalized Schreier families Fα for

every countable ordinal α, and they used this family for the construction of Tsirelson

type spaces, described by countable ordinals. In my 1994 paper ([F1]), working on

some refinements of Rosenthal’s ([R])paper on c0 , it was first realized that the gen-

eralized Schreier families Fα, corresponded to the ordinal ωα, and that these was

room for defining the intermediate generalized Schreier families Aξ for every count-

able ordinal ξ, thus filling the internals between ωα and ωα+1, and in such a way

that the earlier generalized Schreier families Fα essentially coincide with Aωα . Inde-

pendently, and working on a quite different problem (on distortable Banach spaces),

Tomczak-Jaegermann ([TJ], 1996), considered, at the suggestion of B. Maurey as she

mentions, a variation of such families.

At this point we might say that the complete system of thin Schreier families

(Aξ) (defined in 1.3 below), although a purely combinatorial object, arose in Ba-

nach space theory. There were some Banach space results that in retrospect can be

considered as witnesses of a Ramsey type dichotomy nature of these families or of

their predecessors (Kiriakouli-Negrepontis ([M-N], 1992), Farmaki ([F1,F2], 1994),

Argyros-Mercourakis-Tsarpalias ([A-M-T], 1998), Judd ([J], 1999)).

In 1998 ([F4]) the study of the families (Aξ) was refined and employed for the

proof of a far-reaching extension of the classical Ramsey theorem (Theorem A in

this paper), one that holds for every countable ordinal ξ, of which the initial part,

concerned with finite ordinals, coincides with the classical Ramsey theorem. Denoting

by [L]<ω the family of all finite subsets of a set L, here is the statement of the theorem:
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Theorem A (Ramsey partition theorem extended to countable ordi-

nals). Let F be an arbitrary family of finite subsets of N, M an infinite subset of N

and ξ a countable ordinal number. Then, there exists an infinite subset L of M such

that

either Aξ ∩ [L]<ω ⊆ F or Aξ ∩ [L]<ω ⊆ [N]<ω \ F .

Since An = [N]n for any finite ordinal n < ω, Theorem A (= Theorem 1.5 below)

is in fact an extension of the classical Ramsey partition theorem from partitions on

the families of n-tuples to (roughly speaking) partitions on the families Aξ for any

countable ordinal ξ.

The extended Ramsey Theorem A implies, strengthened forms of the Nash-

Williams partition Theorem (Theorems B,B′,C). We will employ Theorem A not

for arbitrary, but only for hereditary families F of finite subsets of N. For such

families F the strong Cantor-Bedixson index sL(F) (Proposition 2.9) together with

the canonical decomposition of any subset of N w.r.t. (Aξ) (Proposition 2.4) imply

a criterion that allows us to decide (in most cases) which horn of the dichotomy

provided by Theorem A will actually hold. Denoting by [L] the family of all infinite

subsets of a set L, and by A⋆
ξ the family of all the initial segments of elements of Aξ,

here is the statement of the theorem:

Theorem B (Stronger form of Nash-Williams partition theorem for

hereditary families). Let F be a hereditary family of finite subsets of N and M

an infinite subset of N. We have the following cases:

[Case 1] If the family F ∩ [M ]<ω is not pointwise closed, then there exists

L ∈ [M ] such that [L]<ω ⊆ F .

[Case 2] If the family F ∩ [M ]<ω is pointwise closed, then setting

ξFM = sup{sL(F) : L ∈ [M ]} ;

which is a countable ordinal, the following subcases obtain:

2(i) For every countable ordinal ξ with ξ + 1 < ξFM there exists L ∈ [M ] such that

Aξ ∩ [L]<ω ⊆ F .

2(ii) For every countable ordinal ξ with ξFM < ξ + 1 there exists L ∈ [M ] such that

F ∩ [L]<ω ⊆ (Aξ)⋆ \ Aξ ;

and equivalently,

Aξ ∩ [L]<ω ⊆ [N]<ω \ F .

2(iii) If ξFM = ξ + 1, then both alternatives may materialize.

It is probably not apparent to the reader, why Theorem B (= Theorem 3.7 below)

is in fact a result that deserves to be called a (strong) form of the Nash-Williams

partition theorem. A convenient way to see this is by considering the reformulation

that Gowers([G], 2002) gave of that theorem, and which can be stated as follows:
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Nash-Williams partition theorem (in Gowers reformulation). Let F be

a family of finite subsets of N. Then there exists an infinite subset L of N, such that

either (i) [L]<ω ⊆ F ;

or (ii) for every infinite subsets I of L, there exists an initial segment s of I

which belongs to [N]<ω \ F .

Furthermore we remark that it is easy to see that WLOG we may assume in this

reformulation that F be a tree of finite subsets of N (cf. Remark 3.12).

A slightly weaker version of Theorem B, Theorem B′, (= Theorem 3.10) concerns

trees, and not necessarily hereditary families, of finite subsets of N, bringing our result

to a closer relation with the (tree form) Gowers reformulation of the Nash-Williams

partition theorem.

Let us consider a further consequence of Theorem B′ that brings forth in a clear

manner the way in which our approach yields a result substantially stronger than the

classical Nash-Williams result. The statement involves the decomposition (mentioned

above) of any subset of N w.r.t. the system (Aξ)ξ<ω1
. In fact, by Proposition 2.4

below, every (infinite or finite) subset I of N has a unique canonical representation

w.r.t. each Schreier family Aξ, in such a way that for for every ξ < ω1, there is a

unique initial segment sξ,I of I that belongs to the Schreier family Aξ.

Theorem C (Stronger form of Nash-Williams partition theorem in

Gowers reformulation). Let F be a tree of finite subsets of N. Then there exists

an infinite subset L of N, such that

either (i) [L]<ω ⊆ F ;

or (ii) there is a countable ordinal ξ0, such that for every infinite subsets I of

L, there exists an initial segment s of I which belongs to [N]<ω \ F , and which is

that unique initial segment of I that belongs to Aξ0
.

Compare this with the treeform Gowers reformulation of the Nash-Williams

theorem stated above. It is seen that our strengthened version provides, in the

second horn of the dichotomy, not only the existence of the finite initial segments sI

if I (for all infinite subsets I of L), but their determination by a countable ordinal

ξ0 in a unique and uniform way: thus the segment sI of I, does not simply exist

as provided by the classical Nash-Williams result, but is that unique finite initial

segment of I, which, according to the general decomposition of every subset of N

w.r.t. the system (Aξ)ξ<ω1
, is an element of the family Aξ0

.

Ellentuck’s theorem (not in a stronger form though), and thus the Galvin-Prikry

partition theorem, follows also from our Theorem B (cf. Theorem 4.6, Corollary 4.9,

Remark 4.10).
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On the basis of these results, it is reasonable to conclude that the Schreier system

(Aξ)ξ<ω1
, proves to be the correct combinatorial tool for the unification, extension

and strengthening of all the finite Ramsey and infinite Nash-Williams partition theo-

rems. These extended and strengthened partition theorems will no doubt find many

applications, not only in the theory of Banach spaces, but in all the various areas

where the classical combinatorial partition theorems have proved amply fruitful.

Notation. We denote by N the set of all natural numbers. For an infinite subset

M of N we denote by [M ]<ω the set of all finite subsets of M , for k ∈ N we denote by

[M ]k the set of all k−element subsets of M , and by [M ] the set of all infinite subsets

of M (considering them as strictly increasing sequences).

If s, t are non empty subsets of N, then s � t means that s is an initial segment

of t, while s ≺ t means that s is a proper initial segment of t. We write s ≤ t if

max s ≤ min t, while s < t if max s < min t.

Identifying every subset of N with its characteristic function, we topologize the

set of all subsets of N by the topology of pointwise convergence.

1. The complete thin Schreier system and the Ramsey
partition theorem extended to countable ordinals

The main result in this section is a Ramsey type theorem for every countable

ordinal ξ (Theorem 1.5 - Theorem A), which can be considered as the countable

ordinal analogue of the classical Ramsey theorem. This theorem is stated for the

complete thin Schreier system (Aξ)ξ<ω1
, defined 1.3.

We recall Ramsey’s classical partition theorem.

Theorem 1.1 (Ramsey [R]). Let F be an arbitrary family of finite subsets of

N, M an infinite subset of N and k a natural number. Then there exists an infinite

subset L of M such that either [L]k ⊆ F or [L]k ⊆ [N]<ω \ F .

This classical Ramsey partition theorem will prove to be, in Theorem A below,

the initial segment of a whole family of Ramsey type partition results, one for every

countable ordinal ξ.

In order to arrive at the statement of the Ramsey partition theorem for any

countable ordinal ξ we need a ξ-ordinal analogue Aξ of [N]k = Ak. This is accom-

plished for every ξ < ω1, by a rather laborious transfinite induction, that depends

essentially on a (classical) representation of (limit) ordinals, involving the ordinal
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analogue of Euclidean algorithm as follows:

Proposition 1.2 (Representation of ordinals, [C2] [L]). Let α be a non-zero,

countable ordinal. For every limit ordinal ξ, so that ωα < ξ < ωα+1 , there exist

a unique natural number m ≥ 0, a sequence of ordinals α > α1 . . . > αm > 0 and

natural numbers p, p1, . . . , pm ≥ 1 (so that either p > 1 or p = 1 and m ≥ 1), such

that ξ = pωα +
∑m

i=1 piω
αi .

We are now ready to define the families Aξ, for ξ < ω1, which for reasons that

will be explained later, will be collectively called the complete thin Schreier system.

Definition 1.3 (The complete thin Schreier system (Aξ)ξ<ω1
).

For every non zero, limit ordinal λ we choose and fix a strictly increasing sequence

(λn) of successor ordinals smaller than λ with supn λn = λ.

We will define the system (Aξ)ξ<ω1
recursively as follows:

(1) [Case ξ = 0]

A0 = {∅} ;

(2) [Case ξ = ζ + 1]

Aξ = Aζ+1 = {s ⊆ N : s = {n} ∪ s1 , where n ∈ N, {n} < s1 and s1 ∈ Aζ} ;

(3) [Case ξ = ωβ+1, β countable ordinal]

Aξ = Aωβ+1 = Bβ+1 = {s ⊆ N : s =
n
⋃

i=1

si with n = min s1 , s1 < . . . < sn,

and s1, . . . , sn ∈ Aωβ};

(4) [Case ξ = ωλ, λ non-zero, countable limit ordinal ]

Aξ = Aωλ = Bλ = {s ⊆ N : s ∈ Aωλn with n = min s} ,

(where (λn) is the sequence of ordinals, converging to λ , fixed above); and

(5) [Case ξ limit , ωα < ξ < ωα+1 for some 0 < α < ω1]

Let ξ = pωα +
m

∑

i=1

piω
αi be the above representation (Proposition 1.2).

Aξ = {s ⊆ N : s = s0 ∪ (
m
⋃

i=1

si) with sm < . . . < s1 < s0 ,

s0 = s0
1 ∪ . . . ∪ s0

p with s0
1 < . . . < s0

p, s0
j ∈ Aωα , 1 ≤ j ≤ p ,

si = si
1 ∪ . . . ∪ si

pi
, with si

1 < . . . < si
pi

, si
j ∈ Aωαi , 1 ≤ i ≤ m, 1 ≤ j ≤ pi } .

Remark 1.4 (i) Aξ ⊆ [N]<ω for every ξ < ω1 and ∅ 6∈ Aξ for every ξ > 0.

(ii) Ak = [N]k for k = 1, 2, . . .

(iii) B1 = Aω = {s ∈ [N]<ω : s = (n1 < . . . < nk) with n1 = k} .

Thus Aω is a modification of the classical Schreier family ([S])
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F1 = {s ⊆ N : s = (n1 < . . . < nk) with n1 ≥ k} .

In this sense Aω is a thin Schreier family (this notion, used also, by Pudlak - Rödl,

will be defined precisely later on in Definition 2.1).

(iv) Bα = Aωα , for α < ω1, is defined using only Bβ = Aωβ for β < α, and not

using all previously defined families Aξ, ξ < ωα. Bk, for k ∈ N, is a modification of

generalized Schreier families defined by Alspach-Odell ([A-O]); and more generally

Bα, for α < ω1 is a modification of the families Fα, defined by Alspach-Argyros

([A-A]).

Now that the definition of the complete thin Schreier system (Aξ)ξ<ω1
is given,

we are ready to state the first Ramsey partition theorem, for any countable ordinal

ξ, a theorem whose scope can be appreciated by the fact that the classical Ramsey

theorem corresponds to a finite ordinal ξ < ω.

Theorem 1.5 (=Theorem A, Ramsey partition theorem extended to

countable ordinals). Let F be an arbitrary family of finite subsets of N, M an

infinite subset of N and ξ a countable ordinal number. Then, there exists an infinite

subset L of M such that

either Aξ ∩ [L]<ω ⊆ F or Aξ ∩ [L]<ω ⊆ [N]<ω \ F .

In order to prove this theorem, we must find a way to relate the complete thin

Schreier system (Aξ)ξ<ω1
with Ramsey type partition. This is done in Proposition

1.7. The connecting concept that suits this purpose turns out to be the ξ-uniform

families, which were defined by Pudlák and Rödl ([P-R]), an inductive concept in-

corporated in Proposition 1.7 below.

Definition 1.6 Let L be a family of finite subsets of N. We set

L(n) = {s ∈ [N]<ω : {n} < s and {n} ∪ s ∈ L} for every n ∈ N .

Proposition 1.7 For every countable ordinal ξ there exists a concrete sequence

(ξn) of countable ordinals such that Aξ(n) = Aξn
∩ [N∩ (n, +∞)]<ωfor every n ∈ N.

Moreover, ξn = ζ for every n ∈ N if ξ = ζ + 1 is a successor ordinal and (ξn) is a

strictly increasing sequence with supnξn = ξ if ξ is a limit ordinal.

Proof We will prove it by recursion on ξ.

(1) [Case ξ = 1] For every n ∈ N we have

A1(n) = {∅} = A0 ∩ [N ∩ (n, +∞)]<ω.

(2) [Case ξ = ζ + 1] For every n ∈ N we have

Aξ(n) = {s ⊆ N : {n} < s and s ∈ Aζ} = Aζ ∩ [N ∩ (n, +∞)]<ω .
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(3) [Case ξ = ωβ+1 for 0 ≤ β < ω1] For every n ∈ N we have

Aξ(n) = {s ⊆ N : {n} < s, {n} ∪ s =
n
⋃

i=1

si , s1 < . . . < sn and s1, . . . , sn ∈ Aωβ}

= {s ⊆ N : s = s0 ∪ (
n
⋃

i=2

si) with s0 ∈ A(ωβ)n
∩ [N ∩ (n, +∞)]<ω,

s0 < s2 < . . . < sn and s2, . . . , sn ∈ Aωβ}

= A(n−1)ωβ+(ωβ)n
∩ [N ∩ (n, +∞)]<ω ,

according to the induction hypothesis. Hence, ξn = (n − 1)ωβ + (ωβ)n for every

n ∈ N and obviously supn ξn = ωβ+1. We note that in case ξ = ω we have

ξn = n − 1, since ω0 = 1 .

(4) [Case ξ = ωλ for λ non-zero, countable limit ordinal] Let (λn) be the sequence

of successor ordinals converging to λ fixed in the definition of the system (Aξ)ξ<ω1
.

For every n ∈ N we have

Aξ(n) = {s ⊆ N : {n} < s and {n} ∪ s ∈ Aωλn}

= {s ⊆ N : s ∈ Aωλn (n)} = A(ωλn)n
∩ [N ∩ (n, +∞)]<ω ,

according to the induction hypothesis. If λn = µn + 1 for every n ∈ N, then

ξn = (ωλn)n = (ωµn+1)n = (n − 1)ωµn + (ωµn)n for every n ∈ N .

Of course supn ξn = ωλ, since ωµn ≤ (n − 1)ωµn ≤ (n − 1)ωµn + (ωµn)n .

(5) [Case ξ limit, ωα < ξ < ωα+1 for some 0 < α < ω1 ] For simplicity we examine

firstly the case ξ = pωα for some p ∈ N with p > 1. For every n ∈ N we have

Aξ(n) = {s ⊆ N : {n} < s and {n} ∪ s =

p
⋃

i=1

si with s1 < . . . < sp

and si ∈ Aωα for 1 ≤ i ≤ p}

= {s ⊆ N : s = s0 ∪ (

p
⋃

i=2

si) with {n} < s0 < s2 < . . . < sp,

s0 ∈ A(ωα)n
and s2, . . . , sp ∈ Aωα}

= A(p−1)ωα+(ωα)n
∩ [N ∩ (n, +∞)]<ω .

Thus ξn = (pωα)n = (p−1)ωα +(ωα)n for every n ∈ N. Of course, supn ξn = ξ,

since supn (ωα)n = ωα.

8



Now, let ξ = β + pωα, where p ∈ N with p ≥ 1 and β is an ordinal number with

0 < β < ξ (see Proposition 1.2). Then for every n ∈ N we have

Aξ(n) = {s ⊆ N : {n} < s, {n} ∪ s = s1 ∪ s2, s1 < s2, s1 ∈ Apωα and s2 ∈ Aβ}

= {s ⊆ N : s = s0 ∪ s2 with {n} < s0 < s2 , s0 ∈ Apωα(n) and s2 ∈ Aβ}

= {s ⊆ N : s = s0 ∪ s2 with {n} < s0 < s2, s0 ∈ Apωα(n) and s2 ∈ Aβ}

= Aβ+(pωα)n
∩ [N ∩ (n, +∞)]<ω .

Hence, ξn = β + (pωα)n = β + (p − 1)ωα + (ωα)n for every n ∈ N. Of course,

supn ξn = ξ.

This finishes the proof.

We now, mimicking the standard proof of the classical Ramsey theorem, prove

the ξ-Ramsey type theorem for every countable ordinal ξ.

Proof of Theorem 1.5 We will prove it by recursion on ξ. Let ξ = 1. Then,

A1 = {{n} : n ∈ N}. Let F ⊆ [N]<ω and M ∈ [N]. Set I = {m ∈ M : {m} ∈ F}

and consequently set L = I in case I is infinite and L = M \ I otherwise. Of course,

either A1 ∩ [L]<ω ⊆ F or A1 ∩ [L]<ω ⊆ [N]<ω \ F .

Let ξ > 1. Assume that the theorem is valid for all ordinal ζ < ξ. Let F ⊆ [N]<ω

and M ∈ [N]. Set m1 = minM , M1 = M \{m1} and F1 = {s ⊆ M1 : {m1}∪s ∈ F}.

According to the previous proposition, Aξ(m1) = Aξm1
∩ [N \ {1, . . . , m1}]<ω with

ξm1
< ξ. Therefore, from the induction hypothesis, there exists L1 ∈ [M1] such that

either Aξm1
∩ [L1]<ω ⊆ F1 or Aξm1

∩ [L1]<ω ⊆ [N]<ω \ F1. Hence,

either Aξ(m1) ∩ [L1]<ω ⊆ F1 or Aξ(m1) ∩ [L1]<ω ⊆ [N]<ω \ F1.

Set m2 = minL1 , M2 = L1 \ {m2} and F2 = {s ⊆ M2 : {m2} ∪ s ∈ F} . Since

Aξ(m2) = Aξm2
∩ [N \ {1, . . . , m2}]<ω with ξm2

< ξ, and according to the induction

hypothesis, there exists L2 ∈ [M2] such that

either Aξ(m2) ∩ [L2]<ω ⊆ F2 or Aξ(m2) ∩ [L2]<ω ⊆ [N]<ω \ F2.

Set m3 = minL2, M3 = L2 \ {m3} and proceed analogously.

In this way we can construct a strictly increasing sequence I = (mn)
n∈N in M , two

decreasing sequences (Mn)
n∈N, (Ln)

n∈N in [M] such that:

(i) mκ ∈ Ln for every κ > n;

(ii) Ln ⊆ Mn for every n ∈ N; and

(iii) If Fn = {s ⊆ Mn : {mn} ∪ s ∈ F}, then

either Aξ(mn) ∩ [Ln]<ω ⊆ Fn or Aξ(mn) ∩ [Ln]<ω ⊆ [N]<ω \ Fn.

Set I1 = {mn ∈ I : Aξ(mn) ∩ [Ln]<ω ⊆ Fn} and I2 = I \ I1. If I1 is infinite,

then Aξ ∩ [I1]<ω ⊆ F . Indeed, let F ∈ Aξ ∩ [I1]<ω and let mn = minF . Then

F = {mn} ∪ s for some s ∈ Aξ(mn). Since mn < s and s ∈ [I]<ω we have that
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s ⊆ Ln using (i). Hence, s ∈ Aξ(mn) ∩ [Ln]<ω. Since mn ∈ I1, we have that s ∈ Fn,

and consequently F = {mn} ∪ s ∈ F .

If I2 is infinite, then, analogously can be proved that Aξ ∩ [I2]<ω ⊆ [N]<ω \ F .

Setting L = I1 if I1 is infinite, and L = I \ I1 otherwise we have that

either Aξ ∩ [L]<ω ⊆ F or Aξ ∩ [L]<ω ⊆ [N]<ω \ F .

This finishes the proof.

Corollary 1.8 Let M be an infinite subset of N, {P1, . . . , Pn} a finite partition

of [M ]<ω and ξ a countable ordinal number. Then there exists L ∈ [M ] and

i ∈ {1, . . . , n} such that Aξ ∩ [L]<ω ⊆ Pi.

Corollary 1.9 Let F be a family of finite subsets of N, M ∈ [N] and ξ a

countable ordinal. If Aξ ∩F ∩ [I]<ω 6= ∅ for every I ∈ [M ], then there exists L ∈ [M ]

such that Aξ ∩ [L]<ω ⊆ F .

2. Three basic properties of the complete thin Schreier system

In this section we will prove three basic properties of the complete thin Schreier

systems (Aξ)ξ<ω1
, namely

(a) Each family Aξ is thin (Proposition 2.2);

(b) every (finite of infinite) subset of N has (unique) canonical representation

with respect to each family Aξ (Proposition 2.4); and

(c) the strong Cantor-Bendixson index of Aξ (given in Definition 2.6 below) is

precisely ξ + 1; and this index is stable if Aξ is restricted to Aξ ∩ [M ]<ω for any

infinite subset M of N (Proposition 2.9).

These properties will be necessary for establishing, Theorem B in the next section

3, in case we have not an arbitrary, but only a hereditary family F of finite subsets, an

effective criterion that allows us to decide (is most cases) which horn of the dichotomy

provided by Theorem A will actually hold. Although not immediately apparent, it

turns out, as we shall see in section 3, that Theorem B is in fact a strengthened

Nash-Williams partition theorem.

We start with some definitions.

Definition 2.1 Let F be a family of finite subsets of N.

(i) F is thin if there are no elements s, t ∈ F with s a proper initial segment (in

the order of the natural numbers) of t.
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(ii) F⋆ = {t ∈ [N]<ω : t is an initial segment of some s ∈ F} ∪ {∅}.

(iii) F⋆ = {t ∈ [N]<ω : t is a subset of some s ∈ F}.

(iv) F is hereditary if F⋆ = F .

(v) F is a tree if F⋆ = F .

Proposition 2.2 Every family, Aξ for ξ < ω1, is thin.

Proof We will prove it by induction on ξ. The family A1 = {{n} : n ∈ N} is

obviously thin. Let ξ > 1. Assume that Aζ is thin, for every ζ < ξ . Let s ∈ Aξ

and t a proper initial semgent of s. If t = ∅, then t 6∈ Aξ (Remark 1.4 (i)). Let

t 6= ∅. If m = mins, then t \ {m} is a proper initial segment of s \ {m}. Since

s\{m} ∈ Aξ(m) ⊆ Aξm
for some ξm < ξ (Proposition 1.7), and Aξm

is thin, we have

that t \ {m} 6∈ Aξm
and consequently t 6∈ Aξ. This proves that Aξ is a thin family.

In the following we will prove that every subset of N has canonical representation

with respect to each family Aξ.

Definition 2.3 Let F be a family of finite subsets of N.

(i) A non-empty, finite subset s of N has canonical representation RF(s) =

{s1, . . . , sn, sn+1} with type tF (s) = n with respect to F , if there exist unique n ∈ N,

s1, . . . , sn ∈ F and sn+1 a proper initial segment of some element of F with s1 <

. . . < sn < sn+1 and such that s =
n+1
⋃

i=1

si .

(ii) A infinite subset I of N has canonical representation RF(I) = (sn)
n∈N

with respect to F if there exists unique sequence (sn)
n∈N in F with I =

∞
⋃

n=1

sn and

such that s1 < s2 < . . . ,

Proposition 2.4 (Canonical representation with respect to Aξ ) Let ξ be a

countable ordinal number. Every non-empty subset of N has canonical representation

with respect to the family Aξ.

Proof Let I be an infinite subset of N. We will prove, by induction on ξ, that I

has canonical representation with respect to each family Aξ, ξ < ω1. Of course I has

canonical representation with respect to the family A1 = {{n} : n ∈ N}. Let ξ > 1

and let (ξn) be the corresponding sequence defined in Proposition 1.7. Assume that

the assertion holds for every ζ < ξ. Set m1 = minI and I1 = I \ {m1}. According

to the induction hypothesis, I1 has canonical representation (s1
n)

n∈N with respect to

Aξm1
, since 1 ≤ ξm1

< ξ. Of course, s1 = {m1} ∪ s1
1 ∈ Aξ . Set m2 = min(I \ s1)
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and I2 = I \ (s1 ∪ {m2}). According to the induction hypothesis, I2 has canonical

representation (s2
n)

n∈N with respect to Aξm2
, since 1 ≤ ξm2

< ξ. Set s2 = {m2}∪s2
1.

Of course s2 ∈ Aξ and s1 < s2. Set m3 = min(I\(s1∪s2)) and I3 = I\(s1∪s2∪{m3})

and proceed analogously. In this way, we can construct a sequence (sn)∞n=1 in Aξ

such that s1 < s2 < . . . and I =
∞
⋃

n=1

sn This representation of I with respect to

Aξ is unique, since Aξ is a thin family (Proposition 2.2). Hence, I has canonical

representation with respect to the family Aξ.

Now, let ξ < ω1 and s = {m1, . . . , mκ}, be a non-empty, finite subset of N

with m1 < . . . < mκ. Set mκ+i = mκ + i for every i = 1, 2, . . . . The infinite set

I = (mn)∞n=1 has canonical representation (sn)∞n=1 with respect to Aξ. Using this

fact, it is easy to prove that s has canonical representation with respect to Aξ.

Corollary 2.5 Let ξ be a countable ordinal number. For every non-empty, finite

set s of N exactly one of the following possibilities occurs:

either (i) s is a proper initial segment of some element of Aξ;

or (ii) there exists an element of Aξ which is an initial segment of s.

Proof Let s ∈ [N]<ω, s 6= ∅. According to Proposition 2.4, the case tAξ
(s) = 0

gives equivalently (i), while the complementary case, tAξ
(s) ≥ 1, gives equivalently

(ii).

In the following we will estimate the strong Cantor-Bendixson index of the fam-

ilies Aξ. This index (in Definition 2.6 below) is analogous to the well-known Cantor-

Bendixson index ([B],[C1]) and has been defined in [A-M-T]. Our notation is different

from the one used by these authors.

We will prove in Proposition 2.9 below, that the corresponding hereditary family

of the thin Schreier family Aξ, for ξ < ω1 has strong Cantor-Bendixson index equal

to ξ + 1, moreover for every M ∈ [N] the restricted family (Aξ ∩ [M ]<ω)⋆ has also

index equal to ξ + 1.

This is the reason we have called (Aξ)ξ<ω1
complete system.

Definition 2.6 ([A-M-T]) Let F be a hereditary and pointwise closed family

of finite subsets on N. For M ∈ [N] we define the strong Cantor-Bendixson

derivatives (F)ξ
M of F on M for every ξ < ω1 as follows:

(F)1M = {F ∈ F [M ] : F is a cluster point of F [F ∪ L] for each L ∈ [M ]};

(where, F [M ] = F ∩ [M ]<ω).

If (F)ξ
M has been defined, then (F)ξ+1

M =
(

(F)ξ
M

)1

M
.
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If ξ is a limit ordinal and (F)β
M have been defined for each β < ξ, then

(F)ξ
M =

⋂

β<ξ

(F)β
M .

The strong Cantor-Bendixson index of F on M is defined to be the

smallest countable ordinal ξ such that (F)ξ
M = ∅. We denote this index by sM (F).

Remark 2.7 (i) The strong Cantor-Bendixson index sM (F) of a hereditary and

pointwise closed family F of finite subsets of N on some M ∈ [N] is a countable

successor ordinal and is less than or equal to the “usual” Cantor-Bendixson index

O(F) of F (see [K]).

(ii) If F1,F2 ⊆ [N]<ω are hereditary and pointwise closed families with F1 ⊆ F2,

then sM (F1) ≤ sM (F2) for every M ∈ [N] .

(iii) sM (F) = sM (F ∩ [M ]<ω) for every M ∈ [N].

(iv) For every M ∈ [N] and s ∈ [M ]<ω, according to a remark in [J ], we have :

s ∈ (F)1M if and only if the set {m ∈ M : s ∪ {m} 6∈ F} is finite .

(v) Using the previous remark (iv), it can be proved by induction that for every

L ∈ [M ] and ξ < ω1 if A ∈ (F)ξ
M , then F ∩L ∈ (F)ξ

L. Hence, sL(F) ≥ sM (F).

(see also [A-M-T]).

(vi) If L is almost contained in M (i.e. the relative complement L \ M of L in M is

a finite set), then sL(F) ≥ sM (F) .

In the following we will calculate the strong Cantor-Bendixson index of the thin

Schreier families Aξ .

Lemma 2.8 Let ξ be a countable ordinal, L ∈ [N] and L a family of finite

subsets of N such that L⋆ and L(n)⋆ are pointwise closed for every n ∈ L.

(i) If F ∈
(

L(n)⋆

)ξ

L
for some n ∈ L, then {n} ∪ F ∈ (L⋆)ξ

L.

(ii) If F 6= ∅ and F ∈ (L⋆)ξ
L , then there exist l ∈ N with l ≤ minF and I ∈ [L]

such that F \ {l} ∈ (L(l)⋆)ξ
I .

Proof (i) We use induction on ξ. Let F ∈
(

L(n)⋆

)1

L
. Since

{m ∈ M : F∪{m} ∈ L(n)⋆} ⊆ {m ∈ M : F ∪{m}∪{n} ∈ L⋆} , we have, according to

Remark 2.7 (iv), that F ∪ {n} ∈ (L⋆)1L . Let 1 < ξ. Suppose that the assertion holds

for all ordinals ζ with ζ < ξ. If F ∈ (L(n)⋆)ζ+1
L , then, according to the induction

hypothesis, {m ∈ M : F ∪ {m} ∈ (L(n)⋆)ζ
M} ⊆ {m ∈ M : F ∪ {m} ∪ {n} ∈ (L⋆)ζ

M} .

Hence {n} ∪ F ∈ (L⋆)ζ+1
L (Remark 2.7 (iv)).

The case where ξ is a limit ordinal is trivial.
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(ii) We use induction on ξ. Let F 6= ∅ and F ∈ (L⋆)1L. According to Remark 2.7

(iv), the set LF = {m ∈ L : F ∪ {m} ∈ L⋆ with minF ≤ m} is almost equal to L.

For each m ∈ LF there exists sm ∈ L such that F ∪ {m} ⊆ sm. Of course

1 ≤ minsm ≤ minF for every m ∈ LF . Set

l = min{n ∈ N : the set {m ∈ LF : min sm = n} is infinite}; and

I = {m ∈ LF : min sm = l} ∪ F .

Then, {l} ≤ F , I ∈ [L] and F \ {l} ∈ (L(l)⋆)1I , as required.

Suppose now that the assertion holds for all ordinals β with β < ξ. Firstly we

examine the case ξ = ζ + 1. Let F 6= ∅ and F ∈ (L⋆)ζ+1
L . According to Remark

2.7 (iv), the set LF = {m ∈ L : F ∪ {m} ∈ (L⋆)ζ
L and minF ≤ m} is almost

equal to L. Let m1 = minLF . By the induction hypothesis there exist l1 ∈ N

with l1 ≤ minF and I1 ∈ [LF ] such that F ∪ {m1} \ {l1} ∈
(

L(l1)⋆

)ζ

I1∪F
, since

F ∪ {m1} ∈ (L⋆)ζ
LF∪F (Remark 2.7 (v)). Choose m2 ∈ I1 and m2 > m1. Since

F ∪ {m2} ∈ (L⋆)ζ
I1∪F ,there exist l2 ∈ N with l2 ≤ minF and I2 ∈ [I1] such that

F ∪ {m2} \ {l2} ∈
(

L(l2)⋆

)ζ

I2∪F
. We continue analogously choosing m3 ∈ I2 with

m3 > m2 and so on. Hence, we construct an increasing sequence (mi)
∞
i=1 in LF ,

a sequence (li)
∞
i=1 in N, with 1 ≤ li ≤ minF for every i ∈ N, and a decreasing

sequence (Ii)
∞
i=1 in [LF ] such that F ∪{mi} \ {li} ∈ (L(li)⋆)ζ

Ii∪F for every i ∈ N. Let

l ∈ N with 1 ≤ l ≤ minF such that the set L1 = {i ∈ N : li = l} is infinite. Set

I = {mi : i ∈ L1} ∪ F . Then, F \ {l} ∈ (L(l)⋆)ζ+1
I , as required.

In the case where ξ is a limit ordinal we fix a strictly increasing sequence (ζi)
∞
i=1 of

ordinals with ζi < ξ for every i ∈ N and supi ζi = ξ. Let F ∈ (L⋆)ξ
L and F 6= ∅. Then

F ∈ (L⋆)ζi

L for every i ∈ N. According to the induction hypothesis, there exist

l1 ∈ N with l1 ≤ minF and I1 ∈ [L∩ (minF, +∞)] such that F \{l1} ∈ (L(l1)⋆)ζ1

I1∪F .

Since F ∈ (L⋆)ζ2

I2∪F there exists l2 ∈ N with l2 ≤ minF and I2 ∈ [I1] such that

I2 6= I1 and F \ {l2} ∈ (L(l2)⋆)ζ2

I2∪F . In this way, we construct a sequence (li)
∞
i=1

with 1 ≤ li ≤ minF and a strictly decreasing sequence (Ii)
∞
i=1 in [L] such that

F \ {li} ∈ (L(li)⋆)ζi

Ii∪F , for every i ∈ N .

Let l ∈ N with 1 ≤ l ≤ minF such that the set L1 = {i ∈ N : li = l} is infinite.

Set I = {minIi : i ∈ L1} ∪ F . Then F \ {l} ∈ (L(l)⋆)ζi

I for every i ∈ L1.Since

supi∈L1
ζi = ξ, we have that F \ {l} ∈

(

(L(l)⋆

)ξ

I
.

This completes the proof.

Proposition 2.9 (Cantor-Bendixson index of Aξ) Let M be an infinite

subset of N. Then

sL((Aξ ∩ [M ]<ω)⋆) = ξ + 1 for every ξ < ω1 and L ∈ [M ].

Proof It is easily proved, by induction on ξ, that the family (Aξ ∩ [M ]<ω)⋆ is

pointwise closed for every ξ < ω1 and M ∈ [N]. Also, the family ((Aξ ∩ [M ]<ω)(m))⋆
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is pointwise closed for every ξ < ω1, M ∈ [N] and m ∈ M , since, according to

Proposition 1.7, (Aξ ∩ [M ]<ω)(m) = Aξm
∩ [M \ {1, . . . , m}]<ω, where ξm = ζ if

ξ = ζ + 1 is a successor ordinal and (ξm)m∈M is a strictly increasing to ξ sequence,

if ξ is a limit ordinal.

We will prove, by induction on ξ, that sL((Aξ ∩ [M ]<ω)⋆) = ξ + 1 for every

ξ < ω1, M ∈ [N] and L ∈ [M ]. Since (A1 ∩ [M ]<ω)⋆ = {{m} : m ∈ M} ∪ {∅}, we

have ((A1∩ [M ]<ω)⋆)1L = {∅} and consequently that sL((A1∩ [M ]<ω)⋆) = 2 for every

M ∈ [N] and L ∈ [M ].

Suppose that ξ > 1 and that the assertion holds for every ordinal ζ with ζ < ξ.

Let M ∈ [N] and L ∈ [M ]. For every m ∈ M , using Proposition 1.7, Remark 2.7(vi)

and the induction hypothesis we get that sL((Aξ ∩ [M ]<ω)(m)⋆) = ξm + 1 for every

m ∈ M and consequently that ∅ ∈ ((Aξ ∩ [M ]<ω)(m)⋆)ξm

L for every m ∈ M . In case

ξ = ζ + 1 be a successor ordinal, ξm = ζ for every m ∈ M and, according to Lemma

2.8 (i), {l} ∈ ((Aξ∩[M ]<ω)⋆)ζ
L for every l ∈ L. Hence, ∅ ∈ ((Aξ∩[M ]<ω)⋆)ξ

L (Remark

2.7(iv)). On the other hand, in case ξ be a limit ordinal, according to Lemma 2.8 (i),

∅ ∈ ((Aξ ∩ [M ]<ω)⋆)ξl

L for every l ∈ L. Since ξl < ξ and supl∈Lξl = ξ, we have also

that ∅ ∈ ((Aξ ∩ [M ]<ω)⋆)ξ
L.

In fact, {∅} = ((Aξ ∩ [M ]<ω)⋆)ξ
L. Indeed, let F ∈ ((Aξ ∩ [M ]<ω)⋆)ξ

L and F 6= ∅.

Then, according to Lemma 2.8 (ii), there exist n ∈ N with n ≤ minF and I ∈ [L] such

that F \ {n} ∈ ((Aξ ∩ [M ]<ω)(n)⋆)ξ
I . This gives that sI((Aξ ∩ [M ]<ω)(n)⋆) ≥ ξ + 1 >

ξn + 1. A contradiction, according to Proposition 1.7 and the induction hypothesis.

Hence, {∅} = ((Aξ ∩ [M ]<ω)⋆)ξ
L and consequently sL((Aξ ∩ [M ]<ω)⋆) = ξ + 1 for

every ξ < ω1.

3. Strengthened Nash-Williams partition theorems

We now turn our attention to the strengthened forms of the Nash-Williams

theorem. These, contained in Theorems 3.7(= Theorem B), 3.10(= Theorem B′),

3.11(= Theorem C) and 3.14, are consequences of the extended Ramsey Theorem

1.5 (= Theorem A), and of the tools contained in Section 2 (canonical representation

2.4, Cantor-Bendixson index 2.9)

Theorem 3.7(= Theorem B) can be considered as the extended Ramsey Theorem

1.5(= Theorem A), strengthened for the case that we restrict ourselves, not to arbi-

trary, but only to hereditary families, F of finite subsets of N. As already remarked

above it constitutes in reality a strengthened Nash-Willimas type partition theorem,

if we keep in mind the Gowers reformulation of Nash-Williams theorem (mentioned

in the introduction above).
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Proposition 3.1, a consequence of Theorem A, using also the canonical represen-

tation (Proposition 2.4), has consequences (Corollaries 3.4, 3.5) regarding generalized

Schreier families (defined is 3.3).

Proposition 3.1 Let F be a family of finite subsets of N which is a tree

(F = F⋆), M an infinite subset of N and ξ a countable ordinal number. Then there

exists L ∈ [M ] such that

either Aξ ∩ [L]<ω ⊆ F or F ∩ [L]<ω ⊆ (Aξ)⋆ \ Aξ .

Proof According to the Ramsey partition theorem for the countable ordinal ξ

there exists L ∈ [M ] such that either Aξ ∩ [L]<ω ⊆ F or Aξ ∩ [L]<ω ⊆ [N]<ω \ F .

Since F is a tree, we have Aξ∩[L]<ω ⊆ [N]<ω\F if and only if F∩[L]<ω ⊆ (Aξ)⋆\Aξ .

Indeed, let Aξ ∩ [L]<ω ⊆ [N]<ω \ F and F ∈ F ∩ [L]<ω. According to Corollary 2.5,

either there exist s ∈ Aξ such that F is a proper initial segment of s which gives that

F ∈ (Aξ)⋆ \ Aξ, as required, or there exists t ∈ Aξ such that t is an initial segment

of F . The second case is impossible. Indeed, since F is a tree and F ∈ F ∩ [L]<ω, we

have t ∈ Aξ∩[L]<ω∩F . This contrary to our assumption that Aξ∩[L]<ω ⊆ [N]<ω\F .

Hence, F ∩ [L]<ω ⊆ (Aξ)⋆ \ Aξ.

It is obvious that if F ∩ [L]<ω ⊆ (Aξ)⋆ \ Aξ, then Aξ ∩ [L]<ω ⊆ [N]<ω \ F .

Corollary 3.2 Let ξ1, ξ2 be countable ordinal numbers with ξ1 < ξ2. For every

M ∈ [N] there exists L ∈ [M ] such that (Aξ1
)⋆ ∩ [L]<ω ⊆ (Aξ2

)⋆ \ Aξ2
.

Proof Of course (Aξ1
)⋆ is a tree. According to Proposition 3.1, for every M ∈ [N]

there exists L ∈ [M ] such that

either Aξ2
∩ [L]<ω ⊆ (Aξ1

)⋆ or (Aξ1
)⋆ ∩ [L]<ω ⊆ (Aξ2

)⋆ \ Aξ2
.

The first alternative is impossible, since if Aξ2
∩ [L]<ω ⊆ (Aξ1

)⋆ , then

ξ2 + 1 = sL((Aξ2
∩ [L]<ω)⋆) ≤ sL((Aξ1

)⋆) = ξ1 + 1 (Proposition 2.9).

A contradiction; hence (Aξ1
)⋆ ∩ [L]<ω ⊆ (Aξ2

)⋆ \ Aξ2
.

In the following, using Proposition 3.1, we indicate the close connection that

exists between the generalized Schreier families (Fα)α<ω1
and the ωα- thin Schreier

families Aωα = Bα for α < ω1. Firstly we will give the appropriate definitions.

Definition 3.3 (i) (Generalized Schreier families [S], [A-O],[A-A])

F0 = {{n} : n ∈ N} ∪ {∅} ;

Fα+1 = {F ⊆ N : F =
k
⋃

i=1

Fi , {k} ≤ F1 < . . . < Fk, and Fi ∈ Fα} ∪ {∅} ;

If α is a limit ordinal choose and fix (αn)
n∈N strictly increasing to α and set
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Fα = {F ⊆ N : F ∈ Fαk
with k ≤ minF} ∪ {∅} .

(ii) For a family F of finite subsets of N and L = (ln)∞n=1 ∈ [N] we set

F(L) = {(ln1
, . . . , lnk

) ∈ [L]<ω : (n1, . . . , nk) ∈ F} .

Corollary 3.4 Let α be a countable ordinal. For every M ∈ [N] there exists

L ∈ [M ] such that Fα(L) ⊆ (Bα)⋆ ⊆ Fα .

Proof The family Fα is hereditary, hence, according to Proposition 3.1, for every

M ∈ [N] there exists I ∈ [M ] such that

either Aωα+1 ∩ [I]<ω ⊆ Fα or Fα ∩ [I]<ω ⊆ (Aωα+1)⋆ \ Aωα+1 .

The first alternative is impossible. Indeed, if Aωα+1 ∩ [I]<ω ⊆ Fα, then

ωα + 2 = sI((Aωα+1 ∩ [I]<ω)⋆) ≤ sI(Fα) = ωα + 1 (Proposition 2.9).

A contradiction; hence Fα ∩ [I]<ω ⊆ (Aωα+1)⋆ \ Aωα+1.

Let I = (in)∞n=1. We set L = (in)∞n=3 = (ln)∞n=1. We will prove that

Fα(L) ⊆ (Bα)⋆. Indeed, let (ln1
, . . . , lnk

) ∈ Fα(L), with (n1, . . . , nk) ∈ Fα. Then

(n1+1, n1+2, . . . , nk+2) ∈ Fα and consequently (in1+1, in1+2, . . . , ink+2) ∈ Fα∩[I]<ω

(for the properties of Fα see [A-M-T]). This gives that (in1+1, ln1
, . . . lnk

) ∈ (Aωα+1)⋆

and consequently that (ln1
, . . . , lnk

) ∈ (Aωα)⋆ , as required. Hence, Fα(L) ⊆ (Bα)⋆.

It is obvious that (Bα)⋆ ⊆ Fα.

R. Judd in [J] had provided, using Schreier games, that for every hereditary

family F of finite subsets of N, α < ω1 and M ∈ [N], either there exists L ∈ [M ] such

that Fα(L) ⊆ F or there exists L ∈ [M ] and N ∈ [N] such that F ∩ [N ]<ω(L) ⊆ Fα.

As a corollary of Proposition 3.1 we will prove a stronger version of this result.

Corollary 3.5 For every family F of finite subsets of N which is a tree, every

countable ordinal α and M ∈ [N] there exists L ∈ [M ] such that

either Fα(L) ⊆ F or F ∩ [L]<ω ⊆ Fα .

Proof According to Proposition 3.1 there exists N ∈ [M ] such that

either Bα ∩ [N ]<ω ⊆ F or F ∩ [N ]<ω ⊆ (Bα)⋆ ;

If Bα ∩ [N ]<ω ⊆ F , then, according to Corollary 3.4 and Proposition 2.4, there

exists L ∈ [N ] such that Fα(L) ⊆ (Bα)⋆ ∩ [L]<ω ⊆
(

Bα ∩ [N ]<ω
)⋆

⊆ F .

Hence, either Fα(L) ⊆ F , or F ∩ [L]<ω ⊆ (Bα)⋆ ⊆ Fα .

Since we will study the hereditary families of finite subsets of N which in addition

are closed in the pointwise topology we will give an elementary characterization of

them.

Proposition 3.6 Let F be a non empty, family of finite subsets of N.
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(i) Let F be a tree. Then F is pointwise closed if and only if there does not exist

an infinite sequence (si)
∞
i=1 of elements of F with s1 ≺ s2 ≺ . . . .

(ii) Let F be hereditary. Then F is pointwise closed if and only if there does

not exist M ∈ [N] such that [M ]<ω ⊆ F .

Proof (i) Let F be a tree. If (si)
∞
i=1 is a sequence in F with s1 ≺ s2 ≺ . . ., then

(si)
∞
i=1 converges pointwise to an infinite subset s of N. Since s 6∈ F , F is not closed.

We assume that there does not exist an infinite sequence (si)
∞
i=1 of elements of F

with s1 ≺ s2 ≺ . . .. Let (tn)∞n=1 ⊆ F converges pointwise to some subset t of N. If t

is finite, then t is an initial segment of some tn0
for some n0 ∈ N. Since F is a tree,

t ∈ F . If t = (n1, n2, . . .) with n1 < n2 < . . ., then we set si = (n1, n2, . . . , ni) for

every i ∈ N. Of course s1 ≺ s2 ≺ . . .. Let si
n = tn ∩ [0, ni] for every i ∈ N and n ∈ N.

It is easy to see that the sequence (si
n)∞n=1 in F converges pointwise to si. According

to the previous case, si ∈ F , for every i ∈ N. A contradiction to our assumption, so

t is finite and t ∈ F . Hence, F is pointwise closed.

(ii) It is easily proved, using (i).

Now, using Propositions 3.1, 3.6 and the concept of the strong Cantor-Bendixson

index (Proposition 2.9) we state and prove the stronger form of the Nash-Williams

partition theorem for hereditary families of finite subsets of N.

Theorem 3.7 (=Theorem B, Stronger form of Nash-Williams partition

theorem for hereditary families) Let F be a hereditary family of finite subsets

of N and M an infinite subset of N. We have the following cases:

[Case 1] The family F ∩ [M ]<ω is not pointwise closed.

Then, there exists L ∈ [M ] such that [L]<ω ⊆ F .

[Case 2] The family F ∩ [M ]<ω is pointwise closed. Then, setting

ξFM = sup{sL(F) : L ∈ [M ]} ,

which is a countable ordinal, the following subcases obtain:

2(i) If ξFM > ξ + 1, then there exists L ∈ [M ] such that

Aξ ∩ [L]<ω ⊆ F ;

2(ii) if ξFM < ξ + 1 , then for every I ∈ [M ] there exists L ∈ [I]

Aξ ∩ [L]<ω ⊆ [N]<ω \ F ; ( equivalently such thatF ∩ [L]<ω ⊆ (Aξ)⋆ \ Aξ) ; and,
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2(iii) if ξFM = ξ + 1, then there exists L ∈ [M ] such that

either Aξ ∩ [L]<ω ⊆ F or Aξ ∩ [L]<ω ⊆ [N]<ω \ F .

Both alternatives in 2(iii) may materialize.

Proof [Case 1] If the family F∩ [M ]<ω is not pointwise closed, then there exists

L ∈ [M ] such that [L]<ω ⊆ F , according to Proposition 3.6.

[Case 2] Let F ∩ [M ]<ω be pointwise closed. Then ξFM is a countable ordinal. Indeed,

since the Cantor-Bendixson index O(F) of F (see [K]) is a countable ordinal (as the

family of derived sets of F is countable) and since sI(F) ≤ O(F) for every I ∈ [N] ,

we have ξFM ≤ O(F) < ω1.

2(i) Let ξ + 1 < ξFM . Then, there exists I ∈ [M ] such that ξ + 1 < sI(F).

According to Theorem 1.5 and Proposition 3.1, there exists L ∈ [I] such that

either Aξ ∩ [L]<ω ⊆ F or F ∩ [L]<ω ⊆ (Aξ)⋆ \ Aξ ⊆ (Aξ)⋆ .

The second alternative is impossible. Indeed, if F ∩ [L]<ω ⊆ (Aξ)⋆, then, using

Proposition 2.9 and Remark 2.7, we have

sI(F) ≤ sL(F) = sL(F ∩ [L]<ω) ≤ sL((Aξ)⋆) = ξ + 1 .

This is a contradiction; hence Aξ ∩ [L]<ω ⊆ F .

2(ii) Let ξFM < ξ + 1 and I ∈ [M ]. According to the Ramsey partition type

theorem for the countable ordinal ξ (Theorem 1.5), there exists L ∈ [I] such that

either Aξ ∩ [L]<ω ⊆ F or Aξ ∩ [L]<ω ⊆ [N]<ω \ F .

The first alternative is impossible. Indeed, if Aξ∩ [L]<ω ⊆ F , then, using Proposition

2.9 and Remark 2.7, we obtain ξ + 1 = sL((Aξ ∩ [L]<ω)⋆) ≤ sL(F) ≤ ξFM .

This is a contradiction; hence, Aξ ∩ [L]<ω ⊆ [N]<ω \ F and equivalently,

F ∩ [L]<ω ⊆ (Aξ)⋆ \ Aξ, according to Proposition 3.1.

2(iii) That both alternatives in the case ξFM = ξ + 1 may materialize can be seen

by considering two simple examples:

(1) F = {s ∈ [N]<ω : s 6= ∅ and |s| = 2min s + 1},

where |s| denotes the cardinality of s.

(It is easy to see that F(n) = [N ∩ (n, +∞)]2n = A2n ∩ [N ∩ (n, +∞)]<ω for every

n ∈ N. The family F⋆ is pointwise closed and according to Lemma 2.8, sI(F⋆) = ω+1

for every I ∈ [N]. Hence ξF⋆

M = ω + 1 for every M ∈ [N]. It is now easy to verify that

Aω ∩ [L]<ω ⊆ F⋆ for every L ∈ [M ]) ; and,

(2) F = {s ∈ [M ]<ω : s 6= ∅ and |s| = min s
2

} ,

where M stands for all non zero, even natural numbers.

(Since F(m) = Am
2
−1 ∩ [M ∩ (m, +∞)]<ω for every m ∈ M , from Lemma 2.8 we get

that sI(F⋆) = ω + 1 for every I ∈ [M ]. Thus ξF⋆

M = ω + 1 . It is now easy to verify
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that F⋆ ∩ [L]<ω ⊆ (Aω)⋆ \Aω for every L ∈ [M ] and, according to Proposition 2.1,

that Aω ∩ [L]<ω ⊆ [N]<ω \ F⋆ for every L ∈ [M ].)

As a corollary of Theorem 3.7 we have the following result of Argyros, Merk-

ourakis and Tsarpalias ([A-M-T]).

Corollary 3.8 Let F be a hereditary and pointwise closed family of finite subsets

of N, If there exists M ∈ [N] such that sM (F) ≥ ωα, then there exists L ∈ [M ] such

that Fα(L) ⊆ F .

Proof If sM (F) > ωα +1, then, according to Theorem 3.7, there exists N ∈ [M ]

such that Bα ∩ [N ]<ω ⊆ F and according to Corollary 3.4 and Proposition 2.4 there

exists L ∈ [N ] such that Fα(L) ⊆ (Bα)⋆ ∩ [L]<ω ⊆ (Bα ∩ [N ]<ω)⋆ ⊆ F .

Now, if sM (F) = ωα + 1, then we set L = {{m} ∪ s : s ∈ F , m ∈ M and {m} <

s} . It is easy to see that sM (L) > ωα + 1. So applying the previous case to the

family L we can find N = (ni)
∞
i=1 ∈ [M ] such that Fα(N) ⊆ L. Setting L = (ni)

∞
i=3

we have that Fα(L) ⊆ F , as required.

The version of Theorem B for trees is given below.

Definition 3.9 Let F be a family of finite subsets of N. We set

(i) Fh = {s ∈ F : every non- empty subset of s belongs to F} ∪ {∅}, and

Of course, Fh is the largest subfamily of F which is hereditary.

Theorem 3.10 (= Theorem B′, Stronger form of Nash-Williams par-

tition theorem for trees) Let F be a tree of finite subsets of N and M an infinite

subset of N. We have the following cases:

[Case 1] The family Fh ∩ [M ]<ω is not pointwise closed.

Then, there exists L ∈ [M ] such that [L]<ω ⊆ F .

[Case 2] The family Fh ∩ [M ]<ω is pointwise closed. Then setting

ζFM = sup{sL(Fh) : L ∈ [M ]} = ξFh

M ,

which is a countable ordinal, the following subcases obtain:

2(i) If ζFM > ξ + 1, then there exists L ∈ [M ] such that

Aξ ∩ [L]<ω ⊆ F ;

2(ii) if ζFM < ξ , then for every I ∈ [M ] there exists L ∈ [I] such that

Aξ ∩ [L]<ω ⊆ [N]<ω \ F ; ( equivalently F ∩ [L]<ω ⊆ (Aξ)⋆ \ Aξ) ; and,
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2(iii) if ζFM = ξ + 1 or ζFM = ξ, then there exists L ∈ [M ] such that

either Aξ ∩ [L]<ω ⊆ F or Aξ ∩ [L]<ω ⊆ [N]<ω \ F .

Proof [Case 1] If the hereditary family Fh ∩ [M ]<ω is not pointwise closed, then

there exists L ∈ [M ] such that [L]<ω ⊆ Fh ⊆ F , according to Proposition 3.6.

[Case 2] Let Fh ∩ [M ]<ω be pointwise closed. Then ζFM is a countable ordinal,

according to Theorem 3.7.

2(i) Let ξ +1 < ζFM . Then ξ +1 < ξFh

M . According to Theorem 3.7 (subcase 2(i))

there exists L ∈ [M ] such that Aξ ∩ [L]<ω ⊆ Fh ⊆ F .

2(ii) Let ζFM < ξ and I ∈ [M ]. Then, according to Theorem 3.7 (subcase 2(ii))

there exists M1 ∈ [I] such that

(⋆) AζF
M

∩ [M1]<ω ⊆ [N]<ω \ Fh .

Using the Ramsey partition theorem for the countable ordinal ξ (Theorem 1.5),

there exists an infinite subset L of M1 such that

either Aξ ∩ [L]<ω ⊆ F , or Aξ ∩ [L]<ω ⊆ [N]<ω \ F .

We claim that the first alternative does not hold. Indeed, let Aξ ∩ [L]<ω ⊆ F . Then

(Aξ ∩ [L]<ω)⋆ ⊆ F⋆ = F . Using the canonical representation of every infinite subset

of N with respect to Aξ (Proposition 2.4), it is easy to check that

(Aξ)⋆ ∩ [L]<ω = (Aξ ∩ [L]<ω)⋆ . Hence, (Aξ)⋆ ∩ [L]<ω ⊆ F .

Since ξ > ζFM and according to Corollary 3.2, there exists L1 ∈ [L] such that

(AζF
M

)⋆ ∩ [L1]<ω ⊆ (Aξ)⋆ ∩ [L]<ω ⊆ F and consequently (AζF
M

)⋆ ∩ [L1]<ω ⊆ Fh.

This is a contradiction to (⋆); hence, Aξ ∩ [L]<ω ⊆ [N]<ω \ F and equivalently

F ∩ [L]<ω ⊆ (Aξ)⋆ \ Aξ , according to Proposition 3.1

2(iii) In the cases ζFM = ξ + 1 or ζFM = ξ we use Theorem 1.5.

Corollary 3.11 (=Theorem C, Stronger form of Nash-Williams theo-

rem in Gowers reformulation) Let F be a tree of finite subsets of N. Then there

exists an infinite subset L of N, such that

either (i) [L]<ω ⊆ F ;

or (ii) there is a countable ordinal ξ0, such that for every infinite subsets I of

L, there exists an initial segment s of I which belongs to [N]<ω \ F , and which is

that unique initial segment of I that belongs to Aξ0
.

Proof We apply Theorem 3.10 (=Theorem B′ in F).

If [Case 1] of Theorem 3.10 holds, then there exists L ∈ [N] such that [L]<ω ⊆ F .

If [Case 2] of Theorem 3.10 holds, then there is a countable ordinal ξ0 = ζF
N

+ 1

and L ∈ [N] such that Aξ0
∩ [L]<ω ⊆ [N]<ω \ F . According to Proposition 2.4 every
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infinite subset I of L, has unique canonical representation with respect to Aξ0
, hence

for every I ∈ [L] there exists a unique initial segment sξ0,I of I that belongs to Aξ0

and consequently to [N]<ω \ F .

Remark 3.12 Theorem C is indeed a stronger form of the classical Nash-

Williams partition theorem, because it implies the Gowers reformulation of the Nash-

Williams partition theorem (as given in the introduction of this paper). To see that

indeed Theorem C implies Gowers reformulation, let F be any family of finite subsets

of N. We set

Ft = {s ∈ F : every non empty initial segment of s belongs to F} ∪ {∅}.

The family Ft is a tree contained in F . We apply Theorem C on Ft. It follows

that there exists an infinite subset L of N such that.

either (i)[L]<ω ⊆ Ft (and consequently [L]<ω ⊆ F)

or (ii) for every infinite subset I of N there exists an initial segment u of I

which belongs to [N]<ω \ Ft = (F \ Ft) ∪ ([N]<ω \ F . Thus either u ∈ [N]<ω \ F (in

which case we set s = u), or u ∈ F \Ft (in which case, by the definition of Ft, there

is a non empty initial segment s of u so that s ∈ [N]<ω \F). Hence, in any of the two

cases in (ii), for every infinite subset I of N, there is an initial segment s of I which

belongs to [N]<ω \ F , proving the Gowers reformulation of Nash-Williams theorem.

Remark 3.13 Gowers notices in [G], that if the first alternative (i) of the ref-

ormation of Nash-Williams’s theorem does not hold, then [N]<ω \ F is large in an

obvious sense and Nash-Williams’s theorem asserts that if [N]<ω \F is a large subset

of [N]<ω, then there is an infinite subset L of N for which [N]<ω \ F has a stronger

largeness property (alternative (ii)). Theorem 3.10 (=Theorem B′) is stronger than

the Nash-Williams’s theorem in the part that in the second alternative (ii) the ini-

tial segments are located (uniformly for all infinite subsets) in the family Aξ and

consequently [N]<ω \ F has a much stronger largeness property than the given by

Nash-Williams’s theorem.

Finally we state our strengthening of the Nash-Williamsn [N-W] partition the-

orem in its original formulation the one concerning of pointwise closed families of

infinite subsets of N.

Firstly, we will give the necessary definitions.

Definition 3.14 Let M be an infinite subset of N, s a finite subset of N and ξ

a countable ordinal. We set

(i) [s, M ] = {s ∪ L : L ∈ [M ] and s < L}, [∅, M ] = [M ].

(ii) sξ,M is the unique initial segment of M which is an element of Aξ (according
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to Proposition 2.4); note that s0,M = ∅.

Theorem 3.15 (Stronger form of Nash-Williams’s theorem) Let U be a

pointwise closed family of infinite subsets of N and M an infinite subset of N. Then

either (i) there exists L ∈ [M ] such that [L] ⊆ U ;

or (ii) there exists a countable ordinal ζUM such that for every countable ordinal

ξ with ξ > ζUM and every M1 ∈ [M ] there exists L ∈ [M1] such that for every infinite

subset I of L the unique initial segment sξ,I of I that belongs to Aξ satisfies the

relation [sξ,I , N] ⊆ [N] \ U .

Proof Let F = {s ∈ [N]<ω: [s, N] ∩ U 6= ∅}. Of course F is a tree. We use

Theorem 3.10.

If [Case 1] of Theorem 3.10 holds, then there exists L ∈ [M ] such that [L]<ω ⊆ F .

Then, [s, N]∩U 6= ∅ for every s ∈ [L]<ω. This gives that [L] ⊆ U , since U is a pointwise

closed family.

If [Case 2] of Theorem 3.10 holds, then setting ζUM = ζFM we have ζUM < ω1 and

for every ξ > ζUM and every M1 ∈ [M ] there exists L ∈ [M1] such that Aξ ∩ [L]<ω ⊆

[N]<ω \ F . For every I ∈ [L] let sξ,I be the unique initial segment of I which is an

element of Aξ (Proposition 2.4). Then sξ,I ∈ [N]<ω \ F for every I ∈ [ L]. Hence,

[sξ,I , N] ⊆ [N] \ U for every I ∈ [L].

Immediate consequence of Theorem 3.15 is the classical Nash-Williams partition

theorem:

Corollary 3.15 (Nash-Williams [N-W]) Let U be a pointwise closed family

of infinite subsets of N and M an infinite subset of N. Then

either (i) there exists L ∈ [M ] such that [L] ⊆ U ;

or (ii) there exists L ∈ [M ] such that [L] ⊆ [N] \ U , equivalently, such that for

every infinite subset I of L there exists an initial segment s of I such that [s, N] ⊆ \U .

4. The derivation of Ellentuck’s theorem

We finally show that our Theorem 3.10(= Theorem B′) implies, using the simple

argument contained in Theorem 4.6, Ellentuck’s theorem (and hence, Galvin-Prikry’s

and Silver’s).

We recall the definition of the completely Ramsey families, given initially in

[G,P] and [S].
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Definition 4.1 A family U of infinite subsets of N is called completely Ramsey

if for every α ∈ [N]<ω and M ∈ [N] there exists L ∈ [M ] such that

either (i) [α, L] ⊆ U ;

or (ii) [α, L] ⊆ [N] \ U .

Theorem 4.2 Let U be a pointwise close family of infinite subsets of N, α a

finite subset of N with cardinality m and M an infinite subset of N. Then

either (i) there exists L ∈ [M ] such that [α, L] ⊆ U ;

or (ii) there exists a countable ordinal ζUα,M such that for every countable

ordinal ξ with ξ > ζUM and every M1 ∈ [M ] there exists L ∈ [M1] such that

[α ∪ sξ,I , N] ⊆ [N] \ F for every infinite subset I of L.

Proof Let F = {s ∈ [N]<ω: [α ∪ s, N] ∩ U 6= ∅}. Of course F is a tree. We use

Theorem 2.10.

Corollary 4.3 (Galvin-Prikry [G-P]) Every pointwise closed (resp. pointwise

open) family of infinite subsets of N is completely Ramsey.

Definition 4.4 Ellentuck’s topology on [N] is the topology which has base the

family of all sets [α, M ], where α ∈ [N]<ω and M ∈ [N]. Of course Ellentuck’s

topology is weaker than the topology of pointwise convergence.

We denote by Û and U⋄ the closure and the interior respectively of a subset U of N

in the Ellentuck’s topology. Then, it is easy to see that

(i) Û = {L ∈ [N] : [sn,L, L] ∩ U 6= ∅ for every n ∈ N; and

(ii) U⋄ = {L ∈ [N] : there exists n ∈ N such that [sn,L, L] ⊆ U} .

Lemma 4.5 Let L ⊆ {[s, I] : s ∈ [N]<ω and I ∈ [N]} with the following two

properties:

(i) For every (α, M) ∈ [N]<ω × [N] there exists I ∈ [M ] such that [α, I] ∈ L; and

(ii) if [s, I] ∈ L, then [s, L] ∈ L for every L ∈ [I].

Then for every (α, M) ∈ [N]<ω × [N] there exists L ∈ [α, M ] such that [α ∪ β, L] ∈ L

for every β ∈ [L]<ω.

Proof Let (α, M) ∈ [N]<ω×[N] and let m be the cardinality of α. We can assume

that α ≺ M . Set L0 = M . According to property (i) of L there exists L1 ∈ [M ]

such that [α, L1] ∈ L. Set L1 = I. Let L1 ⊆ . . . ⊆ Ln have been constructed and

let {s1, . . . , sr} = {s ∈ [Ln]<ω : s ⊆ sm+n,Ln
and s 6⊆ sm+n−1,Ln

}. According to

property (i) of L there exists I1
n+1 ∈ [Ln] such that [s1, I

1
n+1] ∈ L. Setting

L1
n+1 = I1

n+1 ∪ sm+n,Ln
we have that L1

n+1 ∈ [sm+n,Ln
, Ln] and that [s1, L

1
n+1] =
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[s1, I
1
n+1] ∈ L. Analogously, we can choose L2

n+1 ∈ [sm+n,Ln
, L1

n+1] such that

[s2, L
2
n+1] ∈ L and so on. Set Ln+1 = Lr

n+1.

Since Ln+1 ∈ [sm+n,Ln
, Ln] for every n ∈ N there exists L ∈ [M ] such that

sm+n,L = sm+n,Ln
for every n ∈ N. Hence, L has the desired property, according to

property (ii) of L.

Theorem 4.6 Let U be a family of infinite subsets of N, M an infinite subset

of N and α a finite subset of N. Then there exists L ∈ [M ] such that

either (i) [α, L] ⊆ Û ;

or (ii) [α, L] ⊆ [N] \ U .

Proof Let (α, M) ∈ [N]<ω × [N]. Set

LU = {[s, I] : either [s, I] ∩ U = ∅ or [s, I1] ∩ U 6= ∅ for every I1 ∈ [I]}.

It is easy, to check that LU satisfies the assumptions (i) and (ii) of Lemma 3.9, hence

there exists I ∈ [α, M ] such that [α∪β, I] ∈ LU for every β ∈ [I]<ω. We assume that

[α, I1] ∩ U 6= ∅ for every I1 ∈ [I].

Set F = {β ∈ [I]<ω : α < β and [α ∪ β, I1] ∩ U 6= ∅ for every I1 ∈ [I]}. The

family F is a tree. We use Theorem 3.10.

If [Case 1] of Theorem 3.10 holds, then there exists L ∈ [I] such that [L]<ω ⊆ F .

Then [α, L] ⊆ Û .

[Case 2] of Theorem 3.10 does not occur. Let Aξ ∩ [L]<ω ⊆ [N]<ω \ F for some

ξ < ω1. Then [α, L] ∩ U = ∅. Indeed, let L2 ∈ [α, L] ∩ U , L2 = α ∪ L1, L1 ∈ [L] and

α < L1. Then L2 ∈ [α ∪ sξ,L1
, I] ∩ U and consequently sξ,L1

∈ Aξ ∩ [L]<ω ∩ F . A

contradiction; hence [α, L] ∩ U = ∅. This is a contradiction to our assumption that

[α, I1] ∩ U 6= ∅ for every I1 ∈ [I].

Hence, either there exists L ∈ [M ] such that [α, L] ⊆ [N] \ U or there exists

L ∈ [M ] such that [α, L] ⊆ Û .

Corollary 4.7 Every family of infinite subsets of N which is closed (resp. is

open) in the Ellentuck’s topology, is completely Ramsey.

Corollary 4.8 Let U be a family of infinite subset of N which is a meager set

in the Ellentuck’s topology, M ∈ [N] and α ∈ [N]<ω. Then there exists L ∈ [M ] such

that [α, L] ⊆ [N] \ U .

Proof Let U =
∞
⋃

n=0

Un where (Ûn)⋄ = ∅ for every n = 0, 1, . . .. According to

Theorem 3.10, there exists L ∈ [M ] such that

either (i) [α, L] ⊆ Û ;
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or (ii) [α, L] ⊆ [N] \ U .

We will prove that the first alternative is impossible. Let L ∈ [M ]. Set

L = {[s, I] : s ∈ [N]<ω, I ∈ [N] and [s, I] ∩ Uκ = ∅ for every κ ∈ N with κ ≤ |s|}.

The family L satisfies the assumptions (i) and (ii) of Lemma 3.9, according to The-

orem 3.10. Hence there exists L1 ∈ [α, L] such that [α ∪ β, L1] ∩ Uκ = ∅ for every

β ∈ [L1]<ω and κ ∈ N with κ ≤ |α∪β|. Then L1 6∈ Û , since [α, L1]∩U = ∅. Indeed, if

L2 ∈ [α, L1] ∩ U , then L2 ∈ Uκ for some κ = 0, 1, . . . and choosing an initial segment

β of L2 such that |α ∪ β| ≥ κ we have L2 ∈ [α ∪ β, L2] ∩ Uκ = ∅. A contradiction;

hence I1 6∈ Û and consequently [α, L] 6⊆ Û .

Corollary 4.9 (Ellentuck [E]) A family U of infinite subsets of N is completely

Ramsey if and only if U has the Baire property in Ellentuck’s topology.

Proof Let U has the Baire property in Ellentuck’s topology. Then, setting

Cc = [N] \ C for every C ⊆ [N], we have U = B△C = (B ∩ Cc) ∪ (C ∩ Bc) where B is a

closed set and C a meager set in Ellentuck’s topology. According to Corollary 3.12,

there exists L1 ∈ [N] such that [α, L1] ⊆ Cc. According to Theorem 3.10, there exists

L ∈ [L1] such that

either (i) [α, L] ⊆ B ∩ Cc ⊆ U ;

or (ii) [α, L] ⊆ Bc ∩ Cc ⊆ [N] \ U

Hence U is completely Ramsey.

On the other hand, if U is completely Ramsey, then U has the Baire property in

Ellentuck’s topology, since U = U⋄∪(U \U⋄) and U \U⋄ is a meager set in Ellentuck’s

topology.

Remark 4.10 (i) (Galvin-Prikry [G-P]) Every family of finite subsets of N

which is a Borel set in the topology of pointwise convergence is completely Ramsey,

since every Borel set has the Baire property.

(ii) (Silver [S]) Every family of finite subsets of N which is an analytic set in

the topology of pointwise convergence is completely Ramsey, since every analytic set

has the Baire property.
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