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Ordinal indices and Ramsey dichotomies measuring
co~content and semibounded completeness

by
Vassiliki Farmaki (Athens)

Abstract. We study the cp-content of a seminormalized basic sequence (xn) in &
Banach space, by the use of ordinal indices (faking values up to w;) that determine

dichotomies at every ordinal stage, based on the Ramsey-type principle for every countable
ordinal, obtained earlier by the author. We introduce two such indices, the ¢o-index £éx”’)
and the semibounded completeness index Eéx"), and we examine their relationship. The

countable ordinal values that these indices can take are always of the form wS. These
results extend, to the countable ordinal level, an earlier result by Odell, which was stated
only for the limiting case of the first uncountable ordinal.

Introduction. In this paper we study the precise cp-content of an ar-
bitrary (seminormalized and basic) sequence (x,) in a Banach space, mea-

sured by the cp-index §éx°") defined for any such sequence. As this index is
a countable ordinal of the form w® or equal to the first uncountable ordi-
nal wy, on the one hand we give dichotomy conditions, separating the basic
classes £§) = w; and ¢ < wy, and on the other hand, we characterize
the spectrum of the states precisely quantified by the countable ordinals.

The main tools, combinatorial in nature, consist of the Ramsey-type
principle for every countable ordinal, proved in [F'1], and of the Ptak-type
theorem for every countable ordinal, proved also in [F1]. In the statements
of these theorems we make use of the complete thin Schreier system of
families (Ag)e<w,, introduced in [F1]. Closely connected with this system is
the generalized Schreier system (Fa)a<w,, defined in [A-A], which is often
used in the present paper.

In order to state our main results, we need the following definitions:

(1) (xn) has co-spreading model of order «, for some 1 < o < wy, if there
exist A, B > 0 such that
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Amax M| < ” %ZF)“"“ < Bax|\i|  for all e Fa and (A)ier C R.
(i1} (xn) is null coefficient of order «, for some 1 < a < w, if every
sequence (An) of real numbers with sup{|| > ,cpAiXill + F € Fa} < 00
converges to zero; ((xn) is null coefficient if F, can be replaced by the
family [N]<“ of all finite subsets of N).
That these two properties of a sequence () are naturally exclusive for
every ordinal a, is the content of the following theorem (Theorem 2.15).

THEOREM A. Let (xn) be a basic bounded sequence in a Banach space,
with 0 < infy, | xn||. Then either

(1) [Case {_—,‘éx“) = w1]| (xn) hos a subsequence equivalent to the co-basis;
or
(2) [Case Eéx“) < wi] (xn) is null coefficient.

In case (2} there exists a countable ordinal ¢ {in fact ééx“) = wt) such
that for each countable ordinal o, either

(2i) [Case a < (] (xn) has a subsequence with co-spreading model of
order «; or
(2i1) [Case ¢ < ] (xn) s null coefficient of order .

Next (in Section 3) we introduce and study the semibounded complete-

ness index féx") of a sequence (xn) (Definition 3.1) and its relation to

the cg-index. The index féx’"‘) is countable if and only if (x,) is semi-
boundedly complete, i.e., when every sequence (A,) of real numbers with
sup,, || Yo dixil| < oo converges to zero. In this case £X) = o< for some
countable ordinal ¢ (Proposition 3.3); we thus define a sequence (x,) to be

semiboundedly complete of order «, for some 1 < o < wy, if §§X“) < w® and
equivalently if for every M € [N| there exists a strictly increasing function
@ : N — M with the property: for every € > 0 there exists ng = ngle) € N
such that

{p(n) :n = no and [Apm)l 2 €} € (A, )" \ Ae,,

for every (An) € R with sup, || >0y Aixa]| < 1, where (€,) is a strictly
increasing sequence of ordinals with sup,, &, = w®.

The co-index is always less than or equal to the semibounded complete-
ness index (Proposition 3.6), but they differ in general. We give an exam-

ple of a normalized, weakly null, basic sequence (x,) with ééx"”') = w and

féx“) = w; (Example 3.14). For normalized co-unconditional sequences (Def-
inition 3.8) we prove (in Theorem 3.10) that the ¢o-index is indeed equal to
the semibounded completeness index. Thus, a normalized cg-unconditional
sequence is semiboundedly complete of order «, for some 1 < o < wy, if and
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only if it is null coefficient of order «; and equivalently, if it does not contain
a subsequence with cg-spreading model of order a.

Since every normalized, weakly null sequence in a Banach space has a cp-
unconditional subsequence (according to a result of Elton [E]), we have the
following dichotomy (Theorem 3.15), which constitutes a countable ordinal
analogue of Odell’s limiting (for oo = w;) theorem.

THEOREM B. Let (x») be a normalized weakly null sequence in a Banach
space and o be a countable ordinal. Then either

(i) (xn) has a subsequence with co-spreading model of order a; or
(i) every subsequence of (xn) has a subsequence semiboundedly complete
of order o.

NoOTATION. We denote by N = {1,2,...} the set of all natural numbers
and by R the set of real numbers. For an infinite subset M of N we denote
by [M]<“ the set of all finite subsets of M, by [M]* for k € N the set of
all k-element subsets of M and by [M] the set of all infinite subsets of M
(considering them as strictly increasing sequences).

If H F are non-empty finite subsets of N then we write H < F if
max H < min F, while H < F if max H < min F. By |H| we denote the
cardinality of H.

Identifying every subset of N with its characteristic function, we topolo-
gize the set of all subsets of N by the topology of pointwise convergence.

For a family F of finite subsets of N and M = (m;) € {N] we write:

FIM) = Fn M
F(M) = {{mn,,---,mn,) € M| : {n1,...,m) € F},
= {H € [N]<¥: H C F for some F € F}.
F* ={H ¢ [N]<¥: H is an initial segment of some F € F}.

F is hereditary it 7, =F. :
F is thin if there do not exist H,F € F Such that H is a proper initial
segment of F.

1. The basic combinatorial tools. In this section we recall some
known combinatorial results which play a major role in our proofs.

DEFINITION 1.1 (The generalized Schreier system; [A-A]). Set
Fo = {{n} :n € N}
if F,, has been defined then

fa+12{OHi:n§Hl<'-'<Hn andHl,...,HnEfa};
i==1
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and if o is a limit ordinal, fix a strictly increasing sequence (o, )nen of
ordinal numbers with sup,, a, = o and set

Fo={H:HeF,, and n <minH}.
We finally set F,, = {H : H is a finite subset of N}.

REMARK 1.2. (i) If A € F, for some 1. < a < wy, and B C A, then
B € F,. In other words the families F, are hereditary.

(it) It is easy to prove by induction that whenever {n;,...,ng} € Fu
and m; > n; for every i =1,... k, then (mq,...,mg) € F,.

(iti) For every f < a < w; there exists ng = no(f, o) € N such that if
FeFgandng < F, then F' € F,.

Now, we recall the definition of the complete thin Schreier system
(A¢), .., , defined in [F1]. -

DEFINITION 1.3 (The complete thin Schreier system; [F'1]). For every
non-zero limit ordinal o we fix a strictly increasing sequence (a,) of suc-
cessor ordinals smaller than a with sup,, &, = «. We define the system
(Ag)e<w, recursively as follows:

(1) [Case £ = 1]
A; = {{n}:n €N}
(2) [Case £ =+ 1]
Ae = Aep1 = {s CN:s={n}Us;, wheren €N, {n} < s; and 5; € A¢};
(3) [Case £ = w”*!, B a countable ordinal]

T
Ag“—-“AwsHﬂ{sgstwUsiwithn:minsl, 51 < ... < 8np,
=1

and s1,..., 8, GEAwe};

(4) [Case £ = w™, a a non-zero countable limit ordinal
Ae = Ape = {s CN:s € Ayen with n = min s}
(where (@, ) is the sequence of ordinals converging to o, fixed above);
(5) [Case ¢ limit, w® < £ < w**™! for some 0 < a < wy] Let &€ =
pw® + >0 pw® be the canonical representation of £, where m > 0,

P, P1,--.,Pm = 1 are natural numbers so that either p > 1, or p = 1 and
m>1and a>a; >...> ay, > 0 are countable ordinals. Then

e
Agw{SgN:SMSOUUSiWithSm<...<S1<Sg,
i=1

so=s8]U...Us) with ¥ <... <352, 87 € Ays, 1L << p,

Simsiu...US;i With3§<...<8§)i, sg'-E.Awa,;, 1<i<m, 1§jgp@-}.




Ordinal indices and Ramsey dichotomies 157

We set B, = A« for each 1 < a < ws.

REMARK 1.4. (i) Each family A¢ for 1 < £ < w; is thin (does not
contain proper initial segments of its elements).

(ii) ([F1]) Each finite subset F' of N has a canonical representation with
respect to the family Ae. This means that for every 1 < { < w; there exist
unique n € N, sets s1,...,8, € A¢ and 5,41, a proper initial segment of
some element of Ag, with s; < ... < 8p < 8ny1 , such that F' = U:f‘:f 8.
The number n is called the type t:(F") of F' with respect to Ag.

(iii) ([F1]) For every 0 < a < wy and M € [N] there exists L € [M] such

that Fo(L) € (Bya)x C Fa-

Now we give the definition of the strong Cantor-Bendixson index of a
hereditary and pointwise closed family of finite subsets of N. This index
is analogous to the well-known Cantor-Bendixson index ([B], [C]) and has
been defined in [A-M-T] and with a different notation in [F1}.

DEFINITION 1.5 ([C], [B], [A-M-T]). Let F be a hereditary and pointwise
closed family of finite subsets on N. For M € [N]| we define the strong
Cantor-Bendizson derivative (F )ﬁd of F on M for every £ < wy as follows:

(F)i; = {F € FIM] : F is a cluster point of F[F U L] for each L € [M]}
(where FIM] = F N [M]=¥),

(P = (P P = ()(F)5 i€ is alimit ordinal.
B<g
The strong Cantor-Bendizson index of F on M is defined to be the smallest
countable ordinal ¢ such that (F )fw = . We denote this index by sar{F).

REMARK 1.6. (i) sp(F) is a countable successor ordinal.
(i) If Fy C Fo, then sar(F1) < sp(Fa) for every M € [N].
(iii) If L is almost contained in M (i.e. L — M is finite), then sp(F) >
SM(j:)

(iv) For every M € [N] and F' € [M]<¥, according to a remark in [Ju],
we have: F' € (F), if and only if the set {m € M : FU {m} & F} is finite.
(v) ([A-M-T]) spy(Fo) =w*+ 1 for every 1 < o <wy and M € [N].

(vi) ([F1]) sp((Ae)s) =€+ 1 for every 1 <€ < w; and M € [NL.

(vit) ([A-M-T], [Ju], [F1]) If F is a hereditary and pointwise closed family
of finite subsets of N and M € [N] is such that spr(F) > w®, then there exists
L € [M] such that F,(L) C F.

We recall the generalization (proved in [F1]) of the classical Ramsey
theorem to every countable ordinal.
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THEOREM 1.7 (£-Ramsey type theorem; [F1]). Let F be an arbitrary
family of finite subsets of N, M an infinite subset of N, and £ a couniable
ordinal number. Then there exists an infinite subset L of M such that

either A¢NV[L|*Y CF or A:N[LI<Y CIN]<¥\F.

Using the strong Cantor-Bendixson index, we have developed in [F1] a
refined form of the above theorem in case F is in addition hereditary.

THEOREM 1.8 (Refined £-Ramsey type theorem; [F1]). Let F be a hered-
wtary family of finite subsets of N and M an infinite subset of N. We have
the following cases:

Case 1: If the family FN{M]<¥ is not pointwise closed, then there exists
L € [M] such that [L]<¥ C F.
| Case 2: If the family F N [M]|<¥ is pointwise closed, then there exists
L € [M] such that [L]=% C ([N]<%\ F).. Moreover setting
& = sup{s(F): L € [M]},
which is a countable ordinal, the following hold:
2(i) For every countable ordinal & with £ +1 < &%, there exists L € [M]
such that _
(AN IL]< C 7.
2(ii) For every countable ordinal & with £§; < £+1 there exists L € [M]
such that
FOIL™ (A" \ Ag

and equivalently,
A NL=Y C[N]SV\ F.
2(iii) If &7, = £+ 1, then both alternatives may materialize.

Now we recall the £&-Ptak type theorem for some 1 € £ < w;, which has
been proved in [F1], using the notion of the weight of a finite subset F of
N with respect to a set of the family A.. The classical Ptdk theorem is the
limiting wi-case.

DEFINITION 1.9. For every finite subset F' of N, every countable ordinal
¢, and every s € A we define recursively the é-weight we(F';s) of F with
respect to s to be a real (in fact, rational) number in [0, 1], as follows:

(1) [Case £ = 1] Since Ay = {{n} : n € N}, for every n € N we set

) (1 inelkF,
wy(F;{n}) = {O otherwise.
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(2) [Case € = { + 1] Let s € Acqa- Then s = {n} U s;, where n € N,
{n} < sy and s; € A¢. We set

wess(F3 ) = we (Fi 1) - (F3 {n}).

(3) [Case § = WPt for 0 < B < wi] Let s € Ay p+1. Then s = $1U. . .Usy,
with n = mins;, $1 < ... < 8, and s1,...,8n € A,e. We set

1 T
wes1 (F8) = - waﬁ(F; 8i)-
=1

(4) [Case £ = w® for @ a non-zero countable limit ordinal] Let s € Aye.
Then s € Ays- with n = min s, where (¢,) is the fixed sequence of ordinals
“converging” to « (Definition 1.3). So,

Wea (F; 8) = Wyan (F;8), n =mins.

(5) [Case £ limit, w™ < & < w**! for some 0 < cp < wi] In this
case, £ has a unique representation § = pow™® + S piw™, where m € N,
ag > @y > ... > am > 0 are ordinal numbers and pg,p1,...,pm = 1 are
natural numbers, so that either pg > 1, or pp = 1 and m > 1.

Let s € A¢. Then s = s Us1U...Usy with s,, < ... < 81 < 89, Where
sy =4 U...Usl with st <...<sh and s5 € Ay forevery 0 <i<m
and 1 < j < p;. We set

Mmoo Pi
we(Fy8) = H H Wyes (F; 8% ).
i=0 j=1

REMARK 1.10 ([A-O], [F1]). For every countable ordinal @ and s €
Ay = B, we define recursively the functions ¢f, : N — [0, 00} as follows:

e ‘P?k}(’”«) =1ifn==Fk, and go?k}(n) = () otherwise, for every {k} € Bo.

o Tl = k1Y% WP for every s =s1U...Usp € Bgia.
o ¥ = % k = min s, for every s € By, where o is a non-zero countable
limit ordinal.

 Ttiseasytoseethat Y, .y 9%(n) = 1and that s = {n € N: @} (n) # 0}.
Moreover wya(F;8) =3 p @5 (n) for every F' € [N]<%.

THEOREM 1.11 (&-Pték type theorem; [F1]). Let F be a hereditary and
pointwise closed family of finite subsets of N, M € [N], £ a non-zero count-
able ordinal and 0 < & < 1. If for every s € A¢ N [M]<¥ there exists F' € F
such that we(F;s) > €, then:

(i) there exists L € [M] such that sp(F) 2 £+ 1,
(i) €5, <€ +1, and
(iii) for every ordinal ¢ with ¢ < & there exists L € [M] such that

Ag M [L]<w C F.
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THEOREM 1.12 (Ptak’s theorem; [P]). Let F be a hereditary family of
finite subsets of N and 0 < ¢ < 1. If for every non-negative funclion ¢
on N with finite support and ), .y @(n) = 1 there exists F' € F such that
Soner () > €, then there ezists L € [N] such that [L]<¥ C F.

2. The cy-behavior of a sequence. In this section we study the precise
“co-content” of an arbitrary (seminormalized, basic) sequence in a Banach
space, with the help of the cg-index defined for any such sequence; this is a
countable ordinal of the form & = w®, or the first uncountable ordinal wy
(Proposition 2.5). This index is a measure of the cp-content of the sequence
in the following sense:

(i) If £, = wy, then there is a subsequence equivalent to the unit vector
basis of ¢y (Remark 2.2).
(ii) If &y < w, then there exists a countable ordinal ¢ such that:

(iia) on the one hand, for all & < ( there is a subsequence with ¢o-
spreading model of order o (Proposition 2.10), while

(iib) on the other hand (if ¢ < a) the sequence is far from any higher
order cg-behavior, in the sense that it is a null coefficient se-
quence of order ¢ (Proposition 2.13).

This is the content of the main theorem (Theorem 2.15).

DEFINITION 2.1. Let (xy) be a bounded sequence in a Banach space X.
For every £ > 0 we set

o) = {F e [N]<¥ . ;} S hixi
e F

< emax || for all (\)ier C R},

All the families O&(_x”) for £ > 0 are hereditary.
We then define the cp-index f{(,x") of (xn) as follows: If the families cixm)
for all £ > 0 are pointwise closed, we set

g((}x“) = sup{sp (CX")) . M e [N] and ¢ > 0},
which is a countable ordinal; otherwise
65 = wi.

REMARK 2.2. (i} éx") = wy if and only if there exist ¢ > 0 and Me [N]

such that [M]<% ¢ CX™) (Theorem 1.8).
(ii) For a basic sequence (x,) in a Banach space X with 0 < inf,, {[xx||
there exists A > 0 such that

T
A max |)\¢|§“Z)\¢sz forallneNand A1,..., \p € R,
=1

1<i<n
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(iii) A basic sequence (xn) with 0 <infy {|X=| < sup, l[X»|l < co has a
subsequence equivalent to the unit vector basis of ¢p if'and only if {éx"”) =y

DEFINITION 2.3. A sequence (xn) in a Banach space X is called

(1) null coefficient (of order w;) if every sequence (A,) of real numbers
with sup{|| ¥, r Mixsll : F € [N]<¥} < co converges to zero; and

(i) null coefficient of order o, for some countable ordinal a, if every
sequence (\,) of real numbers with sup{||> ;cpdixill : F € Fa} < o0
converges to zero. :

PROPOSITION 2.4. Let (xn) be a bounded sequence in a Banach space X .
The following are equivalent:

(i) &) < wis
(ii) (xn) 18 null coefficient.

Proof. (i)=-(ii). Let 5{()"”) < wy. Assume that (x,) is not null coeflicient.
Then there exist (iu,) C R and € > 0 such that || 3, p pax:ll < 1 for every
F € IN]<“ and the set M = {n € N: u, > ¢} is infinite.

Let F' € [M]<¥ and (\)ier € R. There exists f € X* with |f] <1
such that || >,cr Mixsll = f(Oier Aixi)- Since

H > x| = > i) < > 1l 1 )l
i€F i€k icF

- Z |\ileif(x:)  (for suitable (g:)icr € {—1,1})

iEF
1 1
< - g f(xe) < - i H i€4X4
< 2D Wiluieif () < - (max i) D HaiX
e F teF
<gmax|/\~|
~ g ier

we see that [M]<¥ C Cg}‘;). This is a contradiction (see Remark 2.2(i));
hence, (x,) is null coeflicient.
(ii)=>(i). Let (x») be null coefficient. If f(()x'”) = wj, then there exist

e>0and M ¢ [N] such that [M]<¢ C C&¥™). Thus || ¥;cpxall < € for
every F' € [M]<¥. Setting A\, = 1 for every n € M and X\, = 0 forn € N\ M

we have
sup { “ z_; Ai X

A contradiction; hence ééxn) < wy.

Fe [N]“"} < 0.

PROPOSITION 2.5. Let () be a bounded sequence in a Banach space‘X .
Then either E(()x“) =w; or !;“(()X“) = w¢ for some countable ordinal (.
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Proof. Let {éx“) < wi. Then there exists a unique countable ordinal
¢ such that w® < cfé"“) < w¢tl Arguing by contradiétion suppose that

wt < ﬁéx"')‘ Then there exist M € [N] and £ > 0 such that w® < s M(Céx")),
According to Remark 1.6(vii) there exists a subsequence (yn) of (x»n) such

that F¢ C ) This gives By C éy”), and consequently Az ¢ © cé?%ﬂ) for
every k € N. Hence (see Remark 1.6(vi)), sx( éy”)) > kw® for every k € N.
If yp = Xm, for every n € N and M = {m,, : n € N}, then
sy (CXn)y > kw  for every k € N,

Indeed, by induction on £ it can be proved that if (n1,...,m) € (Céxﬂ))§,

then (Mn,,...,Mn,) € (C’éy“))ﬁw.

So, we have &(an) > kwt for every k € N. But this is impossible, since
gn) < W+ hence g = W,

The previous proposition and the refined {&-Ramsey type theorem (The-
orem 1.8) give the following equivalences:

PROPOSITION 2.6. Let (xn) be a bounded sequence in a Banach space X
with féx") = w¢ for some countable ordinal (. For an arbitrary countable
ordinal o we have:

(1) @ < ¢ if and only if there exist L € [N] and £ > 0 with
Ba ML C O

(ii) ¢ < a if and only if for everye > 0 and M € [N] there exists L € [M]

such that
Cox) N [L]< € (Ba)* \ Ba.

Proof. (i} f o < (¢, then w® + 1 < féxn), since féx”) is a limit or-
dinal (Proposition 2.5). Hence, there exists ¢ > 0 such that w® +1 <
sup{syr(C¥*)) : M € [N]}. From Theorem 1.8, there exists L € [N] such
that B, N [L]<v ¢ ¢, |

On the other hand, if B, N [LI<¥ C CX)  then (Remark 1.6(vi))
SL(C’FFX“)) > w®+ 1 > w®*; hence féx") > w®.

(i) Let e > 0 and M € [N]. If { < v, then

sup{sL(C’éX“)) L eM]} < 6{(}X“) < w* <w*+ 1.

From Theorem 1.8, there exists L € [M] so that o n [L]<% C (Ba)* \ Ba.
On the other hand, if for every e > 0 and M € [N] there exists L € [M]

such that O N [L]<¥ C (Ba)* \ Ba, then sy (Xn)y < w4 1 for every.

M € [N] and € > 0 (Theorem 1.8). Hence, f{() ) < w® + 1 and consequently
(La
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So far we have distinguished the cases §éxn) = wq and g—“éx") < wy (in
Remark 2.2(i) and Proposition 2.4) and proved that in case féx’”) < wy

there is { < w; such that gé"") = ¢ (Proposition 2.5). In this last case
the set of all countable ordinals is naturally separated by ¢ into two classes,
those strictly less than ¢, and those greater than or equal to ¢. To examine
the behavior resulting from this dichotomy (in Propositions 2.10 and 2.13
below), we need (a) the notion of the co-spreading model of order o for some
1 < o < w; (Definition 2.7 below) and (b) the notion of the null coefficient
sequence of order & (Definition 2.3).

Firstly we recall the notion of the cy-spreading model of order o of a
sequence (xn) for a countable number ¢, a notion that extends the usual
notion of spreading model equivalent to the unit vector basis of ¢y (case
a = 1; [B-§}).

DEFINITION 2.7. Let (x,) be a basic sequence in a Banach space X and
o be a countable ordinal number. We say that (x») has co-spreading model
of order o if there exist A, B > 0 such that

Amax il < |2 Ao
ieF

for every F € F, and (Ai)ier € R.

REMARK 2.8. If a basic sequence (xn) has co-spreading model of order
a for some countable ordinal «, then every subsequence of (xn) has co-
spreading model of order ¢ for every ¢ with 1 < ¢ < o (see Remark 1.2(ii)).

< Bmax|Ai
1R

PROPOSITION 2.9. Let (xn) be a bounded sequence in o Banach space X
and o be a countable ordinal number. The following are equivalent:

(1) there exists € > 0 such that
H Z Ai X
i€F

(i) sup{3 ;cp |f(xi)| : F € Fo} < o0 for every f € X*;
(iii) there exists B > 0 such that

H ZX@
iEF

(iv) a sequence () C R converges to zero if and only if for every e > 0
there exists ng = no(e) € N such that

” Z AiXi
iEF

Proof. (i)=(iv). This is easily proved, using the fact that {n} € 7, for
every n € N. ‘

< em@aj;d)\il for every F € Fy and (A)ier C R;
k2

< B for every F € Fu;

< g for every F € F, with ng < F.
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(iv)=>(iii). Assume that (iii) does not hold. Then there exists F; € F,

such that
|
iR

Set ny == max Fi. Then there exists C7 > 0 such that

ny
[
=1

I || Yierxill 2 for every F € Fo with ny < F, then for every F' € F,
we have || ).z xill < C1 + 2, contradicting our assumption. Hence, there
exists Fy € F,, such that F] < F, and

H Z Xi
tely
~ Inductively, we can define a sequence (Fr)ken in Fo with F < Fiq and
“ z Xi
16 Fy
We define a sequence (\,) in R as follows: A, = 1/k if n € F}, for some
ke Nand A, =0ifn € N\ Jycn Fi- Of course, (A,) converges to zero and

H Z AiXill = %}” Z Xi
1€ F igFy

Since k < F), for every k € N, we have a contradiction to (iv).

(iii)=>(ii). Let f € X* and F € F,. Since the family F, is hereditary,
condition (iii) implies that

So16w) = £( X 1) < 2BIf)
. iEF i€F

where (€;)ier C {—1,1} with |f(x:)| = €:f(x;) for every i € F.

(ii)=-(i). If (ii) holds, then from the Baire category theorem we have the
existence of some k € N such that

SUP{ZU(MN L F Efa} <k forevery f e X* with|[f]| <1.

> 1.

< C; max M| forevery Ay,..., A, €R.
1<i<n,

> 2.

>k forevery k€ N.

>1 forevery k € N.

eF
Let F' € F, and (\;)i;er € R. Then there exists f € X* with ||f|] < 1 such
that
H > il =) Mf(xa).
ik ieF
Thus,

“ Z AiXi
e R

This finishes the proof of the proposition.

< 1y . 3| < |
< (max [A:)) ;mxm < kmax ||
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PROPOSITION 2.10. Let (xn) be a bounded sequence in a Banach space
X and o be a countable ordinal number. The following are equivalent:

i) we < &5,
(i) there exist a subsequence (Yn) of (Xn) and € >0 such thal

i€ F

(iii) there exist a subsequence (yn) of (xn) and € > 0 such that By C

(yn).
£ H

(iv) there evist a subsequence (yn) of (Xn), I € [N] and € > 0 such that
| Y icm ivill < & for every H € Ba N <% and (€:)icw € {—1,1}.

Proof. (i)=(ii). fw® < gé"” , then there exist M € [N] and € > 0 such
that w® <s M(C’éx’"‘)). From Remark 1.6(vii) there exists L € [M] such that
Fall) € C&. S

(it)=(iii). Since B, C Fo (see Remark 1.4(iii)), we have By cl),

(ii))=(iv). Set I = N.

(iv)=>(i). Let H € B, N [I]<* and (A;)ica & R. There exists f € X*
with || f]| < 1 such that [| ¥,cp Mwill = D sem Aif (ys). Hence,

|32 | < (max ey Y1700
e H e H

< Erg}éa};cl)\,;\ for every F € Fo and (Ai)ier CR;

- (?éaﬁ{l/w)z;{szf(y%) (for suitable (g;)ier € {~1,1})

E Eili
icH

We have thus proved that B, N [I]<¥ C ¥} According to Remark 1.6(it),
(vi), we have :

< (max | A} < emax |-
ieH e H

ST (C’éyﬂ})z w® 4+ 1> w*.

This implies that sps (Céxn))> w®, where M = {my, : n € I}, and conse-
quently w® < E{(]X“). |
This finishes the proof.

COROLLARY 2.11. A basic sequence (Xn) in a Banach space with 0 <
inf,, [ xnl < sup, |lxa] < 00 has a subsequence with co-spreading model of

order a., for some countable ordinal o, if and only if w* < géx”“).

Proof. This follows from Remark 2.2(ii) and the previous proposition.

REMARK 2.12. (i) A basic sequence (x») in a Banach space with 0<
inf,, lxn|| and sup,, [lxall < oo has a subsequence with co-spreading model
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of the greatest possible order if and only if either fé,xn) = Wi Or 5(%"”) = ol
for some countable ordinal c. .

(ii) If a basic sequence has for every countable ordinal o a subsequence
with co-spreading model of order «, then it has a subsequence equivalent to
the unit vector basis of c.

Until now we characterized the countable ordinals o with w® < ﬁéxn) as
those for which (x,,) has a subsequence with co-spreading model of order «.

Additionally, we know that for each countable ordinal with féx’"") < w%, no
subsequence has cy-spreading model of order «. In this last case we prove
(in Proposition 2.13 below) that the sequence is null coefficient of order .

PROPOSITION 2.13. Let (x,) be a bounded sequence in ¢ Bonach space
X and o be a countable ordinal number. The following are equivalent:

(i) &) < we;

(ii) the sequence (x,) is null coefficient of order a;

(iii) for every subsequence (yn) of (xn) and M € [N] there exists I € [M]
such that for each H € B, N [I]<% there exists (8i)ierr € {~1,1} such that
min H < [| 37, p eayill;

(iv) for every subsequence (Yn) of (xn) and M € |N] there exist a se-
quence (Hm)men in B N [M]<Y with H, < Hy < ... and (ep) in {-1,1}

such that
| > ]| = =
i€ Hopy

Proof. (i)=-(ii). Let f(gx") < w* If (Xn) is not null coefficient of order a,
then there exist (A,) C R and & > 0 such that 1 2 ier diXal| < 1 for every
FeF,andtheset M ={neN:x, > £} is infinite.

Let M = (myp)nen and y, = Xm, for every n € N. For every F € F,
and f € X* we have

S 1@ S 1 Al £ om0

=y e P
1 1 2
< — . ) - . , —
=g § :Amzf(Xm«b) + = § :)\mlf(sz) < Ellflla
1CFy 1e Fy

where

Flm{ieF:‘f(Xmi) mf(sz)}Efaa

By ={i € F 2 |{(xma)| = —f(xm:} € Fa

According to Propositions 2.9 and 2.10 we have w® < {;'(()X”). A contradiction;
hence (xn) is null coefficient of order a.

(if)=(i). Let (xn) be null coefficient of order . If w® < f{gx"“), then
according to Proposition 2.10, there exist a subsequence (¥n) of (xn) with
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Yn == Xm,, for every n € Nand ¢ >0 such that
H Z Yi
ieF

Let M = {my : n € N}. From a result of Androulakis and Odell ([An-QJ)
there exists L € [M] such that

F\{minF} € Fo(L) for every F € Fo N[L]~*.

We consider the sequence (\,) in R with A, =1ifn € Land A, =0 if
n € N\ L. Then

o {[| A
= {2

< sup {{xn|| + sup {H > xi
gk

<g forevery F € Fy.

:Fefa}

‘ . F e Fqanil] <“’} (since F,, is hereditary)

: F e fa(L)} (see Remark 1.2(ii))

< sup |[xn | + sup {H > ‘ ke f“}
el

< sup|lxnll +&

Since (An) does not converge to zero, the sequence (x») is not null coefficient.
A contradiction, hence f((}x") < w?.

(i)=(iii). Let féx”') < w®. If (yn) is a subsequence of (x,) and M € [N},
then for every k € N we set

L :{H e MY : k< H ZEz’yi
ieH

for some (¢;);eg C {—1, 1}}

According to Proposition 2.10 we have
LpNBoNI<¥ #£0 forevery k€ Nand I € [M].

Using the w*-Ramsey theorem (Theorem 1.7) we can construct a decreasing
sequence (Iy)gpen in [M] such that

Ba N [Ix]<Y C L forevery k€ N.

Set I = (i¥)ren if Iy = (88 )nen for every k € N. Every set H in By N [}
belongs to L, where k = min H. Hence for each H € B, N[I]=* there exists
(e:)ierr C {—1,1} such that min H < || 30;c 5 &atill-
(iii)=>(iv). For every I € [N] there exists a sequence (Hp)men in By N
[I]<¥ such that Hy < Hy < ... (Remark 1.4(ii)). |
(iv)=>(i). This is obvious, by Proposition 2.10. This finishes the proof.
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REMARK 2.14. (i) If a bounded sequence (x,) is null coeflicient of or-
der o for some countable ordinal «, then every subsequence of (xn) is null
coefficient of order & for every (8 Wlth a <8 <w.

(ii) If a sequence (Xn) is null coeflicient, then there exists a countable

ordinal ¢ (in fact w® = &; (xn) ) such that (xy) is null coefficient of order « for
every a with ( < a < w;.

(iii} If the cp-index §éx” of a sequence (x,) is countable, then 5(()"“) = ws
where ( is the least ordinal o which makes the sequence (x,,) null coefficient
of order «.

Gathering all the previous results we can finally state the principal the-
orem of this section.

THEOREM 2.15. Let (xn) be a basic bounded sequence in a Banach space
with 0 < inf, ||xn|. Then either

(1) [Case §éxn> = wi] (Xn) has a subsequence equivalent to the unit
vector basis of cg; or

(2) [Case {féx") < wy| (xn) ts null coefficient.

In case (2) there exists a countable ordinal { (in fact 5(()"“) = w®) such
that for each countable ordinal o, either

(21) [Case o < (] (xn) has a subsequence with co-spreading model of
order ¢ or .
(2ii) [Case ¢ < a] {xn) 18 null coefficient of order a.

Proof. This follows from Propositions 2.4, 2.5, 2.10 and 2.13.

3. Semiboundedly complete sequences. An important notion con-
cerning basic sequences is that of semibounded completeness. A sequence
(xn) is semiboundedly complete if every sequence () of real numbers with
sup,, || Yoiy Aixill < oo converges to zero. According to a result of Odell
([O]) every normalized weakly null sequence contains a subsequence which
is either equivalent to the unit vector basis of ¢y or semiboundedly com-
plete. This happens since every normalized weakly null sequence has a cg-
unconditional subsequence (see Definition 3.8 below; [E]) and since every
co-unconditional sequence is semiboundedly complete if and only if it does
not contain a subsequence equivalent to the unit vector basis of ¢g.

In this section we introduce (Definition 3.1) and characterize (Theorem
3.4) the semibounded completeness index {féx”) of a sequence (x,). The in-

dex &, (X~) ig countable if and only if (xr) is semiboundedly complete (Remark

3.2(i}) and in this case féxn) = w¢ for some countable ordinal { (Proposi-
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tion 3.3). We call a sequence semiboundedly complete of order o, for some
countable ordinal ¢, if xféx”) < w®.

The cg-index is always less than or equal to the semibounded complete-
ness index (Proposition 3.6), but these differ in general. In Example 3.14
we give an example of a normalized, weakly null, basic sequence (xn) with
¥ = w and @Sx”) = W1,

For normalized co-unconditional sequences we prove (Theorem 3.10) that
the two indices are equal. Thus a normalized co-unconditional sequence is
semiboundedly complete of order ¢, for some 0 < o < w1, if and only if
it does not contain a subsequence with co-spreading model of order a or,
equivalently, if it is null coefficient of order c.

As a corollary, we deduce that for a given countable ordinal « every
normalized weakly null sequence has a subsequence either semiboundedly
complete of order o or with co-spreading model of order a, thus obtain-
ing a countable ordinal analogue of Odell’s limiting (for o = w;) theorem
(Theorem 3.15).

DEFINITION 3.1. Let (xn) be a sequence in & Banach space X. For every
g > 0 we set

’Dg_xn) = { F € [NJ<¥ : there exists (M) € R with s?;p <1

™
Z AiXi
ge= ]

and |\;] > ¢ for every i € F}

The families DX, for all & > 0, are hereditary.
We then define the semibounded completeness index &SX”} of (xn) as

follows: if there exists € > 0 such that the family ’Déx*‘) is not pointwise

closed, then we set

otherwise
£0) _ supfap(DU) - M € [N] and ¢ > 0},

which is a countable ordinal.
We say that the sequence {xn) is:

(1) semiboundedly complete (of order wy) if all the sequences (M) CR
with sup,, || i Aixill < 1 converge to zero;
(2) semiboundedly complete of order ¢, for some countable ordinal ¢, if

REMARK 3.2. (i) For a sequence (x») with inf, xn]l > 0, using a com-
pactness argument, it is easy to prove that fgx”’) = w; if and only if there
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exist M € [N], e > 0 and (\,) € R such that sup, || > oy Aixill < 1 and
[An| = € for every n € M. Hence (x,) is semiboundedly complete if and
only if féx”’) < wy.

(i) w < §§X") for every bounded sequence (xn), since for every k € N
and F € [N]* setting a,, = 1/(Ak) if n € F and a, = 0if n € N\ F, where
A = sup,, [|xnll, we get sup, || 3231, caxall < 1.

(iii) For the summing basis (sy) of cg we have fés“‘) = w; and 5((]3") = w.

(iv) If (yn) is & subsequence of (xn), then §£y”) < géx"). So, if (xn) is
semiboundedly complete of order ¢ and ¢ < & < ws, then (y,) is semibound-
edly complete of order .

PROPOSITION 3.3. Let (xn) be a sequence in a Banach space X. Then
either Eéx“) =Wy Or féxn) = w$ for some ordinal ¢ with 1 < { < wy.

Proof. Let £§x“) < wy. Then there exists an ordinal ¢ with 1 < { < wy
such that wé < §£X”) < wS*t. Arguing by contradiction suppose that w¢ <
§£X”). Then there exist M € [N] and £ > 0 such that w$ < .SM(DéX”))‘

According to Remark 1.6(vii) there exists L = (I,) € [M] such that
fc(L) C 'Dg(;xn).

Let ¥ € N and Fy,...,F, € Fr with Fy < ... < Fi. For each m €
{1,...,k} there exist (A™) C R such that sup, ||>.i_; A7xill < 1 and
[AT}| > € for every i € Fn,. For each m € {1,...,k} set op, = maxF,
and p,, = min Fy,; also set 8 = A7 if n € N with [,, <n < [;, and
b7 =0ifneNwithn <[, orn>Il; . Then

i
‘ Z bani
i=1

Set A, = (b} + ...+ bE)/(2k) for every n € N . Then

i i AiXi
i=1

Setting, for every k € N,

sup <2 foreveryme {1,...,k}.
T

k
<1 and Ayl = é% for every 1 € U I,

sup
s me==1

k
FE={FeN<:F=|]F with F, e % and Fy < ... < Fy },

gz=l

we have thus proved that FC"’(L) C ’Dg’;&)k) for every k € N.

From a result of Androulakis and Odell ([An-O]) there exists [y € [L]
such that F'\ {min F} € F¢(L) for every F € Fr N [L1]~*. This shows that

FeN[L1]<¥ € FE(L). Hence, FF N [L]<¥ C ng(L) for every k € N. Thus,
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we have
Ape N[L1]¥ C .7:? N[Ly]<* C Dg&)k) for every k € N.

This gives (see Remark 1.6(v))

b +1 < s, (D)) for every ke N.

But this is impossible, since ééxn) < w't!, Hence, §£X”) = wf.

Recapitulating the previous results, we have already proved that a se-
quence (X») in a Banach space with 0 < inf, [|xn|l < sup, |Ixall < oo is
semiboundedly complete if and only if the index &Ex"“) is countable and in
this case féx"’) = w$ for some countable ordinal ¢. The ordinal ¢ indicates the
least possible order of the semibounded completeness of (x,) (see Remark
3.2(iv)).

In the following we will establish a characterization of the sequences semi-
boundedly complete of order { in terms of the complete thin Schreier system
(Definition 1.3). The sense of this characterization is that the semibounded
completeness of order ¢ of the sequence (xn) is precisely equivalent to the
wS-uniform convergence to zero of all the sequences (A,) of real numbers

with sup,, || >0, Aaxall < 1.

THEOREM 3.4. Let (xn) be a basic sequence in a Banach space, { @
countable ordinal and (£,) o strictly increasing sequence of ordinals with
sup,, &, = w®. The following are equivalent:

(1) (xn) is semiboundedly complete of order (;
(ii) for every M € [N] there ezists a strictly increasing function ¢ : N —
M with the property: for every € > 0 there exists ng = no(e) € N such that

{p(n) :n > ng and |Ag(m)| = €} € (Ag,,))" \ Ae,,
for every (An) © R with sup, || 27 dixall < 1.

Proof. (i)=-(ii). Let &éx”‘) < wt. For every M € [N] and ¢ > 0 there

exists I € [M] such that sup{sy (D) : N € [I]} < wt.
Let M € [N]. Using Theorem 1.8 we can construct a strictly increasing
sequence (k) in [N] and a decreasing sequence (I,,) in {M] such that

Df}‘;’;) (L)Y C (Ae, )\ Ag,, for every n € N.

If I, = (3% )men for every n € N, then define ¢ : N — M by ¢(n) = i,
for every n € N. For € > 0 set ng = ng{e) = ky for some A € Nwith 1/A <e.
Then for every sequence (\,) in R with sup, || > iy AiXall < 1 we get

fp(n) : 1> ng and [yl = &} € (e, )* \ e
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(ii}=(i). Suppose that &éx“) > w®. Then there exist ¢ > 0 and M € [N]
such that s M(DS;X“)) > wS > &, + 1 for every n € N. By (ii), there exist
L € [M] and ng € N such that

D) AL € (Ae,, )\ Ag, -

Since sz (DY) > &ny + 1 (Remark 1.6(ii)), according to Theorem 1.8,
there exists I € [L] such that Ag, 0 [[]<¥ . C P& [L]<¥, which is a

contradiction, hence féx“} < WS,

Choosing appropriate sequences (£,) strictly increasing to w® we' can
obtain interesting descriptions of being semiboundedly complete of order .

COROLLARY 3.5. Let (xn,) be a sequence in a Banach space, and ¢ a
countable ordinal. '

(1) {f,gx“) < WSt if and only if for every M € [N] there exists a strictly
increasing function @ : N — M such that for every e > 0 there exists ng € N
s0 that the type with respect to B, (see Remark 1.4(ii)) of the set

{p(n) :n <ny and |)\{p(n)| > e}

is at most ng, for every (A,) C R with sup, || Yoeeq dixsll < 1.

(2) ééx”“) < Wb for some limit ordinal ¢ if and only if there ezists a
sequence ((,) of ordinals strictly increasing to ¢ with the following property:
for every M € [N| there exists a strictly increasing sequence ¢ : N — M
such that for every € > 0 there ezists ng € N so that the type with respect to
B, of the set

{o(n): n<ng and |Aymy| > €}
is at most ng, for every (A} € R with sup,, || > iy Mixsl| < L.

Proof. This is a consequence of Theorem 3.4: in case (1), set &, = nws
for every n € N, and in case (2), set &, = w’=T? for every n € N.

Now, we will study the relation of the semibounded completeness index
(SISX”) to the co-index 5 of a sequence (xn).

PROPOSITION 3.6. Let (xn) be a normalized basic sequence in a Banach
space X. Then §éx”“) < Eéx“).

Proof. Let 5,5"”) = w¢ for some 1 < ¢ < wy (Proposition 3.3). Arguing by

contradiction, we assume that w® < féxn). Then there exist a subsequence
(4n) of (xn) and € > 0 such that

H Z Ai¥i
1EF

< 51%3'135!)\1'1 for every F' € F¢ and (Ai)ier € R.
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Let E = [(yn)] be the closed subspace of X which is generated by the
sequence (yn), and (y) € E* the sequence of the biorthogonal functionals
of (yn). Clearly, ||y%|l < 2C for every n € N, where C' is the basic constant

of (Yn)-
Let s € Be C F;. We set Ay = ¢$(n) for every n € N, according to

Remark 1.10. Then
[Soat]> 2 ) () = 2 Ex =
168 €S8 i€Es 1=

Let f € B with ||f]] < 1 and || Y e, MUl = 2oies Mif (4F). Setting
fhn, = C~Lf(y%) for every n € N, we get |un| < 2 for every n € N and

= sup”Zf(yz

1
< & sup [P =1

(where the P, are the natural projections associated to the basis {yn))-
If F={ics:|wl>1/(2¢C)}, then F € Dg?ﬁ%em We will prove that
wye (F; 8) > 1/(4eC). Indeed,

%g “Z,\iy; GZAM chmC > i
St

ies\F
< 20’U)wq(F, S) + -2-“"”@”
Hence, ||w,c(F;s)| > 1/(4eC).
According to the wé-Ptsk type theorem (Theorem 1.11) there exists I €

[N} such that s L(’D(y”)) > wS, where § = 1/(2eC).
If yo = Xm, for every n € N, then for M = {my : n € L} we have

s M(’D(X”)) > w¢, and consequently S{X”) > w.
This is a contradiction; hence £ < wé =

= -——supllP**( i

é'(Xn) )

COROLLARY 3.7. Let (xn) be a normalized basic sequence in a Banach
space and ¢ an ordinal number with 1 < ¢ < wy. If (xn) is semiboundedly
complete of order ¢, then (xx) is null coefficient of order ¢.

In Remark 3.2(iit) we gave an example of a normalized basic sequence

(sn) with Sb n) = w; and 50 = w. According to Proposition 2.13, (sp)
is null coefficient of order o for every countable ordinal «, but it is not
semiboundedly complete of order a. As we prove in Theorem 3.10 below
these notions are equivalent in the case of a ¢o-unconditional sequence.

DEFINITION 3.8. A bounded basic sequence (x,) in a Banach space is
co-unconditional if for every § > 0 there exists a constant K (6) < oo so that
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for every n € N, every sequence (\)7; CRwith |N;| <l1lforalli=1,...,n
and every F' C {1 <¢<n :|X| > 8} we have 3.

HZAM SK(a)”iA% ,
ieF p

REMARK 3.9. Elton [E] proved that every normalized weakly null se-
quence in a Banach space has a ¢p-unconditional subsequence.

THEOREM 3.10. Let (xn) be o normalized cy-unconditional basic se-

guence 1 o Banach space X. Then féx") = lEX”).

Proof. We claim that if w¢ < §éx“) for some countable ordinal ¢, then
Wt < €5 Indeed, let wé < £ Then there exist M € [N] and & > 0 such

that W’ < s M(Dg"“) ). According to Remark 1.6(vii) there exists L € [M]
such that :
Fe(L) S DX

Set I = (l,) and y,, = .Xaﬂ for every n € N . If F' € F¢, then (I;)ser € TDS;X”),
so there exists a sequence (A,) C R with

z_lgl and |N\,|>e forall i€ F.

Thus for every f € X* we have

Y oifu)l < - Z el - 17 ()]

e ’LGF

- Ze:z)\ztf(yz (for suitable (e;);er C {—1,1})

?,EF
= (X em) < | e < %Hfﬂff(%);
e F ek

since |An| > 2 for every n € N, |A,| > ¢ for every i € F and the sequence
(Xn) is co-unconditional with constraint K(4) for § > 0.

According to Propositions 2.9 and 2.10 we get w® < 5((}""“), which finishes
the proof of our claim.

In case & (Xn) = 4, we have w$ < SESX”) for every countable ordinal (.

So according to our claim w¢ < ESX“) for every 1 < ¢ < w;, which gives
féX'n) (Xn ‘

Xn)

In case §""" < w; there exists a countable ordinal { such that £; Oen)

WS < X (Propositions 2.5 and 3.6). If w¢ < ¢ | then according to the
previous claim we have w® < & (X"), which is 1mp0581b1e. Hence, 5({)"’") = £ éx”).
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So far we have proved that a normalized co-unconditional basic sequence

(xn) in a Banach space X either has a subsequence equivalent to the unit

vector basis of ¢g (in which case §éx”') e £§X“) e wlj, or it is semibound-

edly complete (in case {éx”) = ééx“) < wy). In the latter case there exists a

countable ordinal ¢ such that §(()x”) = ééx”) = w¢. The ordinal { separates
the set of all the countable ordinals into two classes, the ordinals o with
a < ¢ and those with @ > {. We characterized the ordinals o with o < ¢
as those for which the sequence (x,) has a subsequence with cog-spreading
model of order @ {Proposition 2.10); on the other hand, we characterized
the ordinals o with ¢ < o as those which make the sequence (xr) null coefhi-
cient of order o (Proposition 2.13) and moreover semiboundedly complete of
order o (Theorem 3.4). In the following two propositions we will give more
characterizations of these two classes. :

PROPOSITION 3.11. Let (xn) be a normalized co-unconditional sequence
in o Banach space X with fl()x“) = w¢ for some countable ordinal {. For each
countable ordinal o the following are equivalent:

(i) e <§
(ii) there exists a subsequence (Yn) of (xn) with co-spreading model of
order «;

(iii) there exist a subsequence (yn) of (xn), I € [N] and € > 0 such that

e

Proof. (1)< (il). This is proved in Proposition 2.10.
(ii)=-(iii). This is obvious: set I = N.
(iii)=>(ii). According to Remark 1.4(iii) there exists L € [I] such that

FalL) € (Ba N ™).

Set I = (In)nen and 2z, =y, for every n € N. The subsequence (z,) of
(xn) has co-spreading model of order c. Indeed, let F' € F,. Then there
exists H € Ba N [I]<¢ such that (l;)ier € H. Since the sequence (xn) is
co-unconditional there exists K = K(1) > 0 such that

DA

According to Proposition 2.9 the sequence (2) has co-spreading model of
order «.

<& for every H € BoN[I]°“.

< Ke.

PROPOSITION 3.12. Let (x») be a normalized co-unconditional sequence

in a Banach space with §,§X”) = wS for some countable ordinal (. For each
countable ordinal o the following are equivalent:
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(i) (<o
(ii) the sequence (xn) is semiboundedly complete of order o;
(iii) the sequence (xn) 15 null coefficient of order o
(iv) whenever a bounded sequence (An) of real numbers satisfies
sup{|| Y Nixal| - H € Ba} < 00, then (An) converges to zero;
(v) for every subsequence (yn) of (Xn) and M € [N] there exists L € [M]
such that

for every H € By N[LI<Y;

min H < H Z Yi
i€H

(vi) for every subsequence () of (xn) and M € [N] there exists a
sequence (Hp) in By N[M<* with Hy < Hy <... and

| 2w

1 Hm

Proof. (i)«>(ii). This follows from Definition 3.1.
(i)¢>(iii). Follows from Theorem 3.10 and Proposition 2.13.
(iii)=>(iv). Let (A) C R with

wup {[| 3 o
i€H
We assume that (\,) does not converge to zero. Then there exists £ > 0
such that the set
M ={neN:|\,| >e} is infinite.

According to Remark 1.6(iii) and a result of Androulakis and Odell ([An-O])
there exists L € [M] with L = ({,) such that

FulL) C (B OV [M]<9)y, F\{minF} € Fo(L) forall Fe FonI[L]<Y.

R R

:H@Ba}:A<oo and sup|i,| =B < oc.

Set p, .= A, for every n € Nand ptn, =0 for every n € N\ L. If F' € F,,

then
H E x|l = ﬂ E )\z’Xz'l
e F 1eFy

for some Fy € F, N [L]“’.

Hence,

< 2K(e/B)A,

” Zﬂixz'
icF

since the sequence (x») is co-unconditional with constraint K(8) for § > 0.
This contradicts (iii). Hence (A,) converges to zero.

(iv)=>(iii). This is obvious, since B, C Fq.
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()=>(v). Let { < . If (y,) is a subsequence of (x,) and M € [N], then
for every k € N we set
Ly, = {He M]<¥ - k < sz }
i€ H
According to Proposition 3.11 we have
LyNBa NI # 0 for every k € Nand I € [N].
Using the refined w®-Ramsey type theorem (Theorem 1.8), a decreasing
sequence (I) in [M] can be constructed such that
By N[I]<Y C Ly for every k € N.
Set L = (if) if Iy = (if)nen for every k € N. If H € B, n[I]<¥, then
H € L;, where k = min H; hence

min H < H Z%
icH

(v)=>(vi). For every L € [M] there exists (Remark 1.4(ii)) a sequence
(Hm) in By N{M]<Y with H; < Hz <...and L =],y Hm.
(vi)=>(i). This follows from Proposition 3.11.

for every H & B, N [I]<“,

Gathering the previous results we can state a theorem which completes
Theorem 2.15 in the case of a normalized cg-unconditional sequence.

THEOREM 3.13. Let (x.) be a normalized co-unconditional basic sequence
in a Banach space. Then either

(1) [Case féxn) = w1]| (xn) has a subsequence eguivalent to the unit vector
basis of cgy; or

(2) [Case {féx") <wy| (xn) ts semiboundedly complete (equivalently, null
coefficient).

In case (2) there exists a countable ordinal ¢ such that géxn) = g})x"} -
wS. Then, for each countable ordinal «, either

(2i) [Case o < (] (xn) has a subsequence with a co-spreading model of
order «; or

(2ii) [Case ¢ < a] (xn) is semiboundedly complete of order o (equiva-
lently, null coefficient of order o).

Proof. This follows from Theorems 2.15 and 3.10, Remark 3.2(i) and
Propositions 3.11 and 3.12.

At this point the following question naturally arises: Is it true that

Eéxn) == §§X") for every normalized weakly null basic sequence (x)? The
answer is negative, as follows from the example below.
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ExaMpLE 3.14 (James’ space; [J]). For a sequence {\y) of real numbers
we set 5.

(AR = sup{[(Ap, )\pz)z oot Appey — )‘pm)2 + (Ap, — )‘m)z] 12,
meNand gy <...<pm}.

The vector space
X ={(\) € RN : lim A, = 0 and [|(\,)]] < oo}

is a Banach space with respect to the norm || .
Forn € Nlet e, = (A% ) men with A7, = 0ifn #mand A7) = 1ifn=m
The sequence (e,) is a normalized, Weakly null, basic sequence in X. We

will prove that 5(8“) = w and é(e") = Wy

(i) ﬁgeﬂ') = w. Indeed, suppose 5( ®n) ~ w. Then, according to Proposi-
tion 2.10, there exists a subsequence (y,) of (e,) and € > 0 such that

Set Fy, = (n+2,n-+4,...,n+2n) for every n € N. Of course, F,, € F; for
every n € N . Setting p; = n + 1 for 1 <4 < 2n we have

ek,

<g forevery F' € Fi.

> (2n)/?  for every n € N.

This is a contradiction, hence 5(()8”) = W.
(ii) & (&) — ;. Indeed, || 337, es]] < 1 for every n € N. So, according to
Remark 3.2(1), we have éée“) = Wy,

From the previous example it is clear that we cannot hope for a theorem
analogous to Theorem 3.13 in the general case of a normalized weakly null
sequence (not necessarily co-unconditional). However, using Elton’s theorem
(Remark 3.9), we can prove the following dichotomy, which generalizes (to
every countable ordinal) the Odell theorem (case a = wy).

THEOREM 3.15. Let (xn) be a normalized weakly null sequence in a Ba-
nach space and o be a countable ordinal. Then either

(i) (xn) has a subsequence with co-spreading model of order o; or
(i) every subsequence of (x») has a subsequence semiboundedly complete
of order a.

Proof. Let o be a countable ordinal and (y, ) a subsequence of (). The
sequence (y,) has a subsequence (z,) which is co-unconditional and basic. If

552”) = w1, then (z,) has a subsequence equivalent to the unit vector basis
of ¢y, hence (xn) has a subsequence with co-spreading model of order a.

if féz“) < wy, then ééz“) = w¢ for some countable ordinal ¢. Hence, in case
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a < ¢ the sequence (xn) has a subsequence with cy-spreading model of order
a, and in case { < « the sequence ()x,) has a subséquence semiboundedly
complete of order «, according to Theorem 3.13. :

[P-R]
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