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ON BAIRE-1/4 FUNCTIONS 

VASSILIKI FARMAKI 

ABSTRACT. We give descriptions of the spaces D(K) (i.e. the space of differ- 
ences of bounded semicontinuous functions on K) and especially of B114(K) 
(defined by Haydon, Odell and Rosenthal) as well as for the norms which are 
defined on them. For example, it is proved that a bounded function on a met- 
ric space K belongs to B114(K) if and only if the wthboscillation, oscwf, of f is 
bounded and in this case IIf 1 1/4 = II If I + oscwf jI oo. Also, we classify B1/4 (K) 
into a decreasing family (S (K))i?<5<, of Banach spaces whose intersection 
is equal to D(K) and S1(K) = B114(K). These spaces are characterized by 
spreading models of order ( equivalent to the summing basis of co, and for 
every function f in S (K) it is valid that osc,tf is bounded. Finally, using 
the notion of null-coefficient of order ( sequence, we characterize the Baire-1 
functions not belonging to Se(K). 

INTRODUCTION 

In recent years the study of the first Baire class, B1(K), of bounded functions 
on a metric space K led to the definition of interesting subclasses ([H-O-R], [K-L], 
[Fl]). The study of these subclasses revealed significant properties of their elements 
([C-M-R], [R2], [Fl], [F2]) and provided applications, such as the co-dichotomy 
theorem of Rosenthal ([R1]). 

Here we study some subclasses of D(K), and especially B114(K), of B1 (K). By 
D(K) is denoted the class of all functions on K which are differences of bounded 
semicontinuous functions. A classical result of Baire yields that f E D(K) if and 
only if there exists a sequence (fn) of continuous functions on K satisfying 

(1l) sup E I fn (x) I < o and f = Efn 
xeK n n 

The class D(K) is a Banach algebra with respect to the 11 * lID-norm defined as 

If ID = inf {sup I fn (x) : (fn) C C(K) satisfying (1)} 
xKn 

The subclass B114(K) was first defined in [H-O-R] as follows: 

B114(K) = {f : K -* R: there exists (Fn) C D(K) such that IIFn - f II -- 0 

and sup IIFnlID < x}. 
n 
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This class is a Banach algebra with respect to the 11 111/4-norm, given by 

Ilf 11/4 = inf {sup IIFnH ||D : (Fn) C D(K) and II F-f I oo -?} . 

In the first section we describe the precise connection between the summing basis 
(Sn) of co and the normed space (D(K), 11 |ID); so it is proved in Proposition 1.1 
that f E D(K) if and only if there is a sequence (fn) of continuous functions on K 
so that fn -* f pointwise and there is C > 0 such that 

k k 

(2) Ai fn| < C 0 isi 

for every k, n1,... , nk E N and scalars A1,... , Ak 

If this occurs then 

lifD = inf C > 0: there exists (fn) C C(K) satisfying (2) }. 
Since for every sequence of continuous functions defined on a compact metric 

space K and converging pointwise to a discontinuous function, there exists a sub- 
sequence (fn) and , > 0 such that 

k k 

(3) Aisi < Aifni 

for k,nl,... ,nk E N and scalars A1,... ,Ak ([H-O-R], [RI]), it follows that the 
functions in D(K) \ 0(K) (K compact) are characterized as pointwise limits of se- 
quences of continuous functions equivalent to the summing basis of c0 (Remark 1.2). 

In the case of B1/4(K), where K is a compact metric space, the functions are 
characterized as pointwise limits of sequences of continuous functions on K with a 
property weaker than (2), namely one for which the inequality (2) is valid only for 
(nl,... ,nk) in the Schreier family Fi (Theorem 2.1). Moreover, if we set 

= inf C > 0: there exists (fn) C C(K) such that f- f 
pointwise and | =1 Aifn| < C | = s| for every 

00 

(n1,... ,nk) E Fi and scalars A1,... ,Ak 

then 1 is a norm on Bl/4(K) equivalent to the norm 1 1/4. This answers in the 
affirmative a question raised by Haydon, Odell and Rosenthal in [H-O-R]. From 
this result and (3) we have the characterization of functions in B1/4(K) \ 0(K) 
(K compact) as pointwise limits of sequences of continuous functions generating 
spreading models equivalent to the summing basis of co. 

More generally, we define analogously the spaces S (K) and the norms 11 11j on 
them, employing the higher order Schreier family Fe, for 1 < ( < wi, as defined 
by Alspach and Argyros ([A-A]). According to Proposition 3.4, (Ss(K), 11 1j). 
are Banach spaces, which, for separable metric spaces K, constitute a decreasing 
hierarchy whose intersection is equal to D(K) (Theorem 3.8) and of course Si (K) = 
B1/4(K). We further provide alternative descriptions of the spaces Ss(K), 1 < ' < 
wi, and characterize the Baire-1 functions not belonging to Ss (K) (Theorem 3.11), 
employing the notion of a null-coefficient of order ( sequence, defined in [F2]. 

Because of Mazur's theorem, Ss(K) is actually a Banach space invariant. That 
is, if X is a separable Banach space, x** E X** \ X, and K = Ba(X*, w*), then if 
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f = x**K, f E Se(K) if and only if there exists a sequence (xn) in X such that 
(xn) generates a spreading model of order ( equivalent to (Sn) and converges in the 
w*-topology to f. Moreover, then 

If Il = inf{C > 0: there exists (Xn) C X and such that Xn f 
and i =t1 AiXn <O il q=1 Aisill for every 

(ni,... ,nk) E YF and scalars Ai,l. ,Ak}I 

A nice relation between the space (B114(K), II 111/4) and the transfinite oscil- 
lations of a function is given in Theorem 2.9. Rosenthal in [RI] defined for every 
function f the ath_oscillation, oscaf, of f for every ordinal a (cf. Definition 2.5).In 
[R2] the author proved the following structural result for D(K): Let f be a real 
bounded function on an infinite metric space K. Then f E D(K) if and only if 
there exist an ordinal a such that osc,f is bounded and oscaf = osc,f for all 
/3> a. Letting r be the least such a, then 

if liD = 1 If lI + oscTfloo for all f E D(K). 

We prove an analogous structural result for the case of B114(K). Precisely, we 
have the following theorem: Let f be a real bounded function on a metric space K. 
Then f e B114(K) if and only if osc,f is bounded. In this case 

lIf 111/4 = 1i If I + 6S-flloo for f E B114(K). 

According to the principal result in [F2], osc,ef is bounded for every function 
f in S (K) and every ordinal (. It is an open problem whether the functions in 
Se (K) are characterized by this property. 

1. DIFFERENCES OF BOUNDED SEMICONTINUOUS FUNCTIONS 

Let K be a metric space. We denote by C(K) the class of continuous functions 
on K and by B1 (K) the space of bounded first Baire class functions on K (i.e. the 
pointwise limits of uniformly bounded sequences of continuous functions). 

An important subclass of B1 (K) is the class of differences of bounded semicon- 
tinuous functions on K, denoted by D(K). It is easy to see that 

D(K)= {f E B1(K) : f = u - v, where u, v > 0 are bounded and 
lower semicontinuous functions 

The class D(K) is a Banach algebra with respect to the norm 11 IID, defined as 
follows: 

llf ID = inf { iiu + vl|| : f = u - v for u, v > 0, bounded and lower 
semicontinuous functions 

This infimum is attained according to [R1]. A result of Baire gives that 

D(K)= {f E Bi(K): there exists (fn) in C(K) such that f = f 
pointwise and I1ZE IfnIIo < X } 

and it follows that 

lifiiD = inf ZIfn I (fn) c C(K) and f =fn Pointwise} 
n 0n 
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for every f E D(K) (see [R2]). It is easy to see that IlflIloo < IIfID for every 
f E D(K) but the two norms are not equivalent in general. 

In the following proposition we give the fundamental connection between the 
summing basis (sn) of co and the functions in D(K), as well as between (sn) and 
the norm | * | ID- 

1.1. Proposition. Let K be a metric space. Then 

D(K)= {f E Bi(K): there exists (fn) in C(K) and C > 0 so that fn -*f 
pointwise and liEn L Aifi lII, < C lEi1n Aisi lI for all 

n EN and scalars A1,... ,An 

where (sn) is the summing basis of co. Also, for every f E D(K), 

If lID = llflls = inf { > 0: there exists (fn) C C(K) such that fn f 
pointwise and IiZn=l Aifi II, 0 I i=l AisiII 

for all n E N and scalars A1,. ., )An} 

Proof. If f E D(K) then there exists a sequence (gn)?n?=1 in C(K) such that f = 

En=K gn and C = || En Ign I ll00 < 00. Set fn = En 1 gi for every n E N. Of course, 
fn-* f pointwise and 

in in in in in 

E Aifi = j(Ai + * + An)gi < SIgi I Aisi < c0 5EAisis 
i=1 00) i1l 00 00 i 1li= 

Hence, lIf lIs < lIf lID for every f E D(K). 
On the other hand, if there exist (fn) in C(K) and C > 0 such that fn -* f point- 

wise and 11 En 1 Aifi I0Ic0 < COl En=1 Aisi II for every n E N and scalars A1,... , An 
then if we set go = 0 and gn = fn-fn-l for every n E N, we have that n=1 gn = f- 
Also, for x E K and n E N, 

n n n 

EIgi (x) = ifi - fi-ll(x) = E i(fi - fi-OW 
i=l i=l i=l 

n 

= 1(>i - Ei+,)fi (X) < C, 
i=l 

where ei e {-1, 1} so that Ei(fi -fi- 1)(x) > 0 for every i = 1,.. ,n and En+1 = 0. 
Hence, we have that lIf lID < lIf lIs for every f E D(K). C] 

1.2. Remark. It is known ([H-O-R], [RI]) that, for a compact metric space K, every 
bounded sequence (fn) in C(K) converging pointwise to a discontinuous function 
f has a basic subsequence (9n) which dominates the summing basis (Sn) of c0, 
i.e. there exists ,t > 0 such that p Zil AisiII ? II Z,n= AigII00 for every n E N, 
A1, ... , A n E R. Hence, for a compact metric space K, 

D(K) \ C(K) = { f : K -* R: there exists (fn) C C(K) such that fn -* f 

pointwise and (fn) is equivalent to (Sn) } 
This result has been proved in [Ri] also. Using Mazur's theorem we have that 
every uniformly bounded sequence (fn) converging pointwise to a function f in 
D(K) \ C(K) has a convex block subsequence equivalent to (Sn). 
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2. BAIRE-1/4 FUNCTIONS 

As we mentioned before, the supremum norm is not equivalent, in general, to the 
11 lID-norm in D(K). The closure of D(K) in (B1(K), 11 Ilo) has been denoted by 
B112(K) in [H-O-R]. In the same paper the authors defined the subclass B114(K) 
of B1 (K) as follows: 

B114(K) = { f E B31(K) : there exists (Fn) C D(K) such that I IF - f11I0 0 

and sup, IIFn IID < 00 

The space B114(K) is complete with respect to the norm 

If 111/4 = inf {sup IIFnID :(Fn) C D(K) and lIFn-fllKo- -} 
n 

In the following theorem we will give a characterization of B1/4(K) and we will 

define the 11 II'-norm on it, in analogy to D(K) (Proposition 1.1). We will prove 
that this norm is equivalent to the 11/14-norm answering affirmatively the question 
raised by Haydon, Odell and Rosenthal in [H-O-R]. The techniques of this proof 
have been employed before in [Fl]. The additional work here is to establish the 

relation between the norms. For completeness we give the proof in detail. We will 

use the Schreier family F1 which is: 

1= {(nj,...,nk):k<ni< ...<nkEN}. 

2.1. Theorem. Let K be a compact metric space. Then 

B1/4(K)= {f E B1(K) : there exists (fn) in C(K) and C > 0 so that fn - ' f 

pointwise and Ek Aifni < C |Ek> Aisi for 
00 

every (nl,... ,nk) E F1 and scalars Ai1,-. , Ak 

Also, defining for f E B114(K) 

If Ii = inf { > 0: there exists (fn) in C(K) such that fn -? f pointwise 

and Ek A < C I:k 1 Aisi for every 
00 

(ni,... ,nk) E TF and scalars A1,. , Ak 

1 is a norm on B114(K) equivalent to the norm 11 111/4. Moreover, 

Ilf II< ?lf 111/4 < 411fII' for every f e B114(K). 

Proof. Let f E B114(K). According to the definition of (B114(K), 1Lw/), for 

every 6 > 0 there exists a sequence (Fm) in D(K) so that IIFm - f 11)0 -* 0 and 

supm IIFmIID < If 111/4 + 8. Let M = If 111/4 + 6 and (Em) a decreasing sequence of 

positive numbers such that cm < 7 and 1m+1 ei < Em for every m E N. We 

can assume that IIFm+i FmII 0o < Cm+1 for every m E N. Hence, for every m E N 
there exists a sequence (g9m)?n=1 C C(K) converging pointwise to Fm+l - Fm and 

9IgmIIoo < cm+l for all n E N. 
Since F1 E D(K), by Proposition 1.1, there exists a sequence (fnl) in C(K) 

converging pointwise to F1 and satisfying 

k k 

00 i= 
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for all k E N and scalars Al,... , Ak. The sequence (f + gl) converges pointwise to 
F2. Using Mazur's theorem and the fact that F2 E D(K), we can find convex block 
subsequences (fnl,2), (gl,2) of (f 1), (gl) respectively such that if fn2 = fnl,2 + g1 2 for 
every n E N then fn2 - F2 pointwise and 

k k 

S i fi2 < M Aisi 
i1 00 i= 

for every k E N and scalars A1,... , Ak. Now, since fn2 + g2 converges to F3, there 
exist convex block subsequences (fn2,3), (g2,3) of (fn2), (g2) respectively, such that if 
fn4 = fn2,3 + g2,3 for every n E N then fn -* F3 pointwise and 

k k 

Ai fi3 < M Aisi 

for every k E N and scalars A1, . A. , Ak. Let (fl,2,3)) (g9,2,3) be the convex block 
subsequences of (fnl,2 ) and (g9,2 ) respectively, such that f n23 - 2,3 + ,2,3 for 
every n E N. Hence fn = fl,2'3 + 9g123 + g2n3 for every n E N. We continue in the 
obvious way to construct fn.k and g,.. k for every m, k, n E N with m < k, 
so that (gM. k) , (fnm,. k) to be convex block subsequences of (gm.'), (f- 
respectively for every m, 1, k E N with m < 1 < k and 
(*) frnm..m k = fm-lm,...,k + mlm,...,k 

for every n, k, m E N with 1 < m < k. Also, for every m E N, we construct the 
sequence (fnm)?n?1 converging pointwise to Fm and 

k k 

(**) ||5 Aifim| < M Aisi 

for every k E N and scalars A1, ... , Ak. Finally, we set 

hnm = fnm,.., n and dm = m. In 

for every m, n E N with m < n. 
Then, for every m E N, (hnm)?m, (dnm)?nm are convex block subsequences of 

(fnm)o?= , (gnm)??1 respectively, hence (hnm)?m converges pointwise to Fm, JjdTjjO 
< Em+, for every m,n E N with m < n and (dnm)'m converges pointwise to 
Fm+l - Fm. Also, according to (*), we have that 

hn =hm-+d =hl +d +...?dm-1 

for every n, m, l E N with 1 < m < n. 
We set hn = hn for every n E N. Thus hn = hm + dm + + dn-1 for every 

m, n E N with m < n. It is easy to prove that (hn) converges pointwise to f. If 
(n1,... , nk) E F1 and A1, A2,... , Ak are scalars then 

k k k 

Ai hni < ih + 5 Ai (dx. + * * + dnj1) 

00 i1 00 i100 

First, since (hn)?=k is a convex block subsequence of (fnk)?n?=1, we have from (**) 
that 

k k 5 n,'~< 5Aisi 
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Secondly, 

Ai (d k. +. + dni )|| <ek.Z lAil 
00i= 

k k 

< 2kEk Z iASi < 6 AiSi 

Hence 
k k 

ZAihni| < (IlfHi /4+ 26) ZAisi 

This gives 

IIfII1 < llflll/4 + 26 for every 6 > 0 
and finally 

IlfIll < IlfH11/4 for every f E B1/4(K). 
On the other hand, let (fn) be a sequence in C(K) converging pointwise to f 

and C > 0 such that 
k k 

| Aifn < C Aisi 
i1 00 i= 

for every (ni,... , nk) E Y1 and scalars A1,... , A,k According to a characteriza- 
tion of functions in B1/4(K) given by Haydon, Odell and Rosenthal in [H-O-R], a 
function f belongs to B1/4(K) if fore > 0 there exists a sequence (gn)?<'=o in C(K) 
with go = 0, converging pointwise to f and such that for every subsequence (gni) 
Of (9n) and x E K to have 

E S 9nj (X)-gnj (X) I < M, 

j GB((n ) ,x) 

where 
B((ni), x) = {j E N: Ignj1 (X)-gnj (X) > }. 

In this case, it is easy to see that IIfH11/4 < 4M. 
For c > 0, let m be an integer such that m > C/e. Set gn = f2m+n for every 

n E N. Then, for every strictly increasing sequence (ni) in N and x E K we claim 
that #B((ni), x) < m. Indeed, if ij,... , jm E B((ni), x), then 

m m 

m e < gni (x) - gnj3 (x) = 5 6j (f2m+nj+i -f2m+nji ) (x) < C, 
i=l ~~~~~~~~i=l1 

where E1,... Em E {-1, 1}), so that Ej(f2m+nj.i1 
- f2m+nji)(x) 

> 0, a contradic- 
tion. Hence #B((ni), x) < m and thus 

E I1gnj+ (x) -gnj (x) <C. 
jc=B((nj),x) 

Hence f C Bl/4(K) and IIf H11/4 ? 4 H1fH D 

2.2. Remark. It is easy to prove (see [Fl]) that a sequence (xn) in a Banach space 
X has a subsequence generating a spreading model equivalent to the summing basis 
(Sn) if and only if it has a subsequence (Yn) with the following property: 
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there exist ,t, C > 0 such that 

k k k 

At ZAi Si ? Ai Yn| < C Ai si 

for every (n1,... ,nk) E F1 and scalars A1,... ,Ak. 

Hence, it follows from the previous theorem and Remark 1.2, for a compact metric 
space K that 

B1/4(K)\C(K)= {f E B1(K): there exists (fn) C C(K) such that fn -* f 
pointwise and (fn) generates spreading 

model equivalent to (Sn) }. 

This result has been proved in [Fl] also. Furthermore, it has been proved in [H-O-R] 
that every uniformly bounded sequence (fn) in C(K) converging pointwise to a 
function in Bi/4 (K) \ C(K) has a convex block subsequence generating a spreading 
model equivalent to (Sn). 

In the following proposition we will give another description of B1/4(K) and we 
will prove the equality of the norm 1 with a norm on Bl/4(K) analogous to the 

11 HID-norm on D(K). 

2.3. Proposition. For every compact metric space K, a function f: K - R be- 
longs to B1/4(K) if and only if there exists (fn) in C(K) such that f = Zn=1 fn 
pointwise and for no = fo = 0, 

suP{ k fni+ + * + fni I (ni,.. n,k) E YF} <00. 

00 

Also, for every f E B1/4(K) we have 

lff =f =inf{sup{ Z| Ifni1+1 + + fni I (niJ... nk) E Tl 

(fn) C C(K) with f =Z } fn 
n=1 

Proof. If f E Bl/4(K) then for every c > 0, from the previous theorem, there exists 
(gn) ?=O C C0(K), go = 0, such thatgn g-- f pointwise and 

k k 

Aigni < (Ilf l l + e) ZAisi 
i1 00i= 

for every (n1,... n,rk) E Fi and scalars A1, .. ., Ak. Set fn = gn -gn-1 for every 
n E N. Then f = ?n=1 fn pointwise. Also, for (n1,... ,nk) E Yi and x E K we 
have 

k k 

I fni-1+1 + + fn, I(X) = ?Ei(fnj_j+1 + ***+ fn,)(x) 
k k 

= -i(gni - gni1) (X) = Z(--i- e-i+l)gni (X) _< If1 +, 



ON BAIRE-1/4 FUNCTIONS 4031 

where ei E {-1, 1} so that Ei(fn,_ +i + * + fn?)(x) > 0 for all i = 1,... ,k and 
Ek+1 = 0. This gives that Ifflf < Ilf II for every f E Bl/4(K). 

On the other hand, let (9n) C C(K) and C > 0 be such that f = n=1 n 
pointwise and 

k 

Igni1+1 + *+ gni <C (no=go=O) 

00 

for every (nl,... n nk) E Y1. Set fn = gn 1 gi for every n E N. Of course fn f 
pointwise. Also, for (nl,... , nk) E F1, x E K and scalars A1, ... , Ak we have 

k k 

Ai fn, (x) = | Ai (g9 + + gn) (X) 
i=l i=l 

k 

| (Ai + + Ak) * (9nig1+1 + + nig ) (x) 
i=1 

k k ni 

< E E> Aj. 5 gj (x) 
i=1 j=i j=ni _ l+l 

k k ni k 

< AVi E g (x)?<C. Aisi 

Hence f E B1/4(K) and Ilf II < Ilf I'. This completes the proof. D 

2.4. Corollary. For every compact metric space K, a function f K -, R belongs 
to B1/4(K) if and only if there exists (fn) in C(K) such that fn -) f pointwise and 
for no = fo = 0, 

sup{ Ifni -(fni-1I (ni nk) E 1} <X 

Also, for every f E B1/4(K) we have 

= inf { sup { k=I : (nl, **hk) e 
00 

where (fn) C C(K) and fn -) f pointwise 

In the following theorem we will give a characterization of the functions in 
B1/4(K) and also an identity for IlfH11/4, where f is in B1/4(K), using the transfi- 
nite oscillations of f, which have been defined by H. Rosenthal in [RI]. We recall 
this definition. 

2.5. Definition. [RI] Let K be a metric space. One defines the upper semicontin- 
uous envelope Ug of an extended real valued function 
g: K [-oo, + oo] as follows: 

Ug = inffh: K [-o, ox] : h is continuous and h > g}. 
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It is easy to see that for x E K 

Ug(x) = limg(y) = max {L E [-oo, +oo]: 3xn - x, g(x,) -* L} 
y-x 

= inf {supg(y): U is a neighbourhood of x}. 
yEU 

In [R1] the author associates with each bounded function f: K R a transfinite 
increasing family (osc,f)i<, of upper semicontinuous functions which are called 
ath_ oscillations of f. They have been defined by induction as follows: 

oscof = 0. 

If osc,f has been defined, then for every x E K 

os-c +i f (x) = limyX ( f (y) - f(x) I + oscaf(y)) 

and consequently 

oscC+f = Uosca+1f. 

If a is a limit ordinal and osc3 f has been defined for all 3 < a then 

o5s=c, f sup osc, f 
O<a 

and consequently 

osca f =U 6sc f. 

According to [R2], a bounded function f : K -* R is in D(K) if and only if 
osca f is a bounded function for every ordinal a. In this case there exists an ordinal 
a so that oscaf is bounded and oscjf = osc,f for all 3 > a. Moreover, letting r 
be the least such a, 

lIf lID = || If I + oscrf II. 
We will prove an analogous structural result for B114(K). Precisely, we will prove 
that a bounded function f is in B114(K) if and only if osc,f is bounded and when 
this occurs then 

Ilf 111/4 = IIf I + 6oscf 1K. 
Before the proof of this theorem we will give three lemmas. In the first lemma 

we list some elementary relations which are used in the sequel. 

2.6. Lemma. Let f, g be bounded functions on a metric space K and al an ordinal 
number. 

(1) Iff?gthenUf<Ug. 
(2) U(f+g) <Uf+Ug. 
(3) U(f -Ug) =U(Uf -Ug) <U(f -g). 
(4) Uf = f if and only if f is upper semicontinuous. 
(5) osca f is an upper semicontinuous [0, +oo] -valued function on K. 
(6) oscatf = ItloscJf for every t E R. 
(7) osca (f + g) < osca f + oscC,g. 
(8) osc, (f + g) = oscc f if g is a continuous function on K. 
(9) If osc,f is bounded then U(oscaf ? f) < s-c?+lf ? f . 
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Proof. The assertions (1)-(8) are easily proved. We will prove (9). 
Let x E K. We may choose (y7,) a sequence in K tending to x such that 

Ul(osca f + f ) (x) = lim oscQ f (Yf) + f (Yn) 
nf-*oo 

Since the functions f and osc,f are bounded, we may assume without loss of 
generality that the limits 

lim Osc,f (yn), lim If(Yn) - f(x)j, lim f(Yn) 
n-*oo noo 

all exist. We then have that 

6sC+lf (x) lim (If (Yn) -f (x) I + osca f (Yn)) 

= lim If(Yn)-f(x)/ + lim oscKf(Yn) n---oo n-oo 

> lim (osca f (Yn) + f (Yn)) -f (x) 

= U(oscaf + f)(x) - f (x). 

Thus it is proved that U(osccf + f) < 6sc+lf + f. If instead of f we use -f, we 
have that U(oscQf - f) < 6s+if - f, since 6sc, f = 6-sc(-f). O 

2.7. Lemma. Let f: K -> R be a bounded function. For every n E N we have 
that 

U(Oscn+2f - OsCn+lf) < U(osCn+lf - osCnf). 

Proof. Using (3) of the previous lemma, we have that 

U(OsCn+2f - Oscn+lf) = U(6SCn+2f - OScn+lf) 

< U(6SCn+2f-6sCn+1f), for every n E N. 

Hence it is sufficient to prove that 

U(6sCn+2f - 6sCn+1f) < U(osCn+lf - osCnf) for every n E N. 

By (1) and (4) of the previous lemma, the proof of this lemma will be complete as 
soon as we prove that 

osCn+2f - 6sn+1f <? U(osCn+lf - osCnf) for every n E N. 

Case n = 0. We have for x E K, 

osc2f (X) -6SCf (X) = lim (oscif(y) + If(Y)-f (X) -limlf(Y) - f(X)l 

< lim oscif (y) = U(osc1f)(x) = oscif (x) 
y-x 

(since osc1 f is upper semicontinuous). 
In general for n > 0, n E N, we have for x E K, 

oscn+2f (X) - SCn+lff (X) 

-lim (osCn+if(y) + jf(Y) - f(x)j) - lim (osCnf(y) + If( Y) -f(x)j) 

K lim (OSCn+ 1 f (y) - OSCn f (y)) = U (OSCn+ 1 f - OSCnf) (X) 
y-*x 

This completes the proof. 
The following lemma was proved by A. Louveau ([F-L]). For completeness we 

give the proof. O 
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2.8. Lemma. [F-L] Let (gn)?0 1 be a sequence of bounded, upper semicontinuous 
functions on a metric space K with go = 0. If the sequence (U(gn+l - gn))n=0 is 
decreasing, then U(gn+l - gn) < -i g?n+1 for every n E N. 

Proof. For n = 0, it reduces to Ug, < gl, which is trivial since g9 is upper semicon- 

tinuous. Suppose we know it for n. For the induction step, it suffices, since gn+2 iS 

usc, to prove: 

gn+2 - gn+1 < i.e., gn+2 < g+2 + gn+1 

But since 1= n2 + n+1 I it suffices to show 

n+ 1 .n n+ n 

n gn+2 < gn+1i 
i.e., 

gn+2 
? 

n+1 = gn+1 + 
++2 

1 +1 

n + 2 n ~~~~+ ~g~I n n+ + g+I* But this follows immediately from the induction step. 

2.9. Theorem. Let K be a metric space. Then 

B14(K) = { f: K -, R bounded: osc,f is bounded } and 

IfII1/4 = IfI +6ScWf for all f E B1/4(K). 
00 

Proof. Suppose f E B1/4(K). It follows from the definition of B1/4(K) that for 

every 6 > 0 one has a sequence (9n) in D(K) with ||gn-fIo -* 0 and supn Ig9nHD < 

lf111/4 + E Set cn = gn - f lloo. Then by induction on k, 

osCkf < osCkgn + 2kcn for every k, n E N. 

Hence 

f+ osckf < gnl + Efn + OSckgn + 2kEn 
< lgnI + OSc,gn + (2k + 1)fn 

< ll9gnlD + (2k + 1)En for every k, n E N. 

Letting first n -x oc and then k -* +00, we get 

If I + 6Scwf < sup ll9gnlD < IlfHl1/4 +6. 
n 

Since c is arbitrary, we have that 

11 if I + 6oSCf 00 ?< Ilfl1/4 

and of course that &sewf and, consequently, osc,f are bounded functions. 

On the other hand, let f: K -* R be a bounded function with osce,f also 

bounded. Set 

An- U(OsCnf - f) An - U(Ossnf + f) 

2 2 
where An = 11 If I + oscnf 100 for every n E N. Then gn E D(K) and 

llgnllD < IlAn - 1U(Oscnf -f) - 1(Oscnf + f)| < 

< An < III f I + sewfIIoo for every nE N. 

The first inequality holds for every n E N, since from (1), (2) and (4) of Lemma 2.6 

we have 

U(oscnf - f) + U(oscnf + f) > 2U(oscnf) = 20scnf > 0 and 
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An- 'U(oscnf - f) - 'U(oscnf + f) 

> An-U(Oscnf + If ) > An - HIU(Oscnf + If 1) loo 

= A- joscCnf + If I Iloo = 0. 

If we could prove that llgn 
- fIloo- 0, then we would have that f E B1/4(K) 

and Ilf 11/4 < 1? If f + 6SCwfH 1*. Now, according to (9) of Lemma 2.6, 

gn-f = U(oscnf + f)- 1U(Oscnf-f)-f 

< 2 (6SCn+lf + f)- 2 (oscnf-f)-f 
= 2 (SfCn+ 1 f-OSCn f ) < 2 (OSCn+ 1 f - OSCf) for every n E N. 

On the other direction, 

gn-f = 
U(OSCnf+ f)- 1U(Oscnf-f)-f 

> 2 (OSCnf + f( )- 2(6SCn+lf-f) -f 

= -2 (6SCn+f- oscn f) > -'(oscn+f - oscnf) for every n E N. 

Hence 

Ign-f 
- <K -(osCn+f -osCnf) for every n E N. 

According to Lemma 2.7, the sequence (U(OsCn+lf - osCnf))?n0 is decreasing. 
Hence, using Lemma 2.8, we have that 

Ign-f 
f < ? 

(OSCn+ 1 - OSCnc) < U(OSCn+lf -OSCnf) 22 
1 1 1 

< + oscn+lf < + oscCwf < + iioscCwf io. 
ri+ 1 ri+ 1 + 

Thus llgn - fII < n1 *Iosc,f IIco and, finally, lgn -fIloo 0. This finishes the 
proof of the theorem. D 

2.10. Remark. Using the invariants (fe)1<a which have been introduced by Kechris 
and Louveau in [K-L] and which are similar to the ath oscillations of the function 
f, we proved with Louveau ([F-L]) that a bounded function f is in B1/4(K) if and 
only if fw is bounded and in this case 

1 
IlfgwIloo < Ilfi11/4 < 4IIfwII + 511f Io 

But the previous theorem shows that the transfinite oscillations appear to be 
more appropriate than the f,.'s. 

After proving this theorem, I learned that H. Rosenthal ([R2]) had an analogous 
result. Precisely, he proved in [R2] that f belongs to B1/4(K) (case f: K -* C) if 
and only if osc,f is bounded and when this occurs and f is real valued, 

1 
-(If Iloo + IoSCf Iloo) < IlfH11/4 < IlfIIoo + 3 Iloscwf Hoc. 
2 

3. A CLASSIFICATION OF B1/4(K) 

We will define a classification of B1/4(K), where K is a separable metric space, 
into a decreasing hierarchy (S (K))1 <?<, of Banach spaces whose intersection is 
equal to D(K). The functions in Se(K) have a property stronger than the one 
of the functions in B114(K) which is described in Proposition 2.3. Precisely, the 
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families Fe, which have been defined by D. Alspach and S. Argyros in [A-A], are 
used instead of the Schreier family F1. We quote the definition of the F 's. 

3.1. Definition ([A-A]). For every limit ordinal (, let (Fn) be a sequence of ordinal 
numbers strictly increasing to (. Then Fo = {{In}: n E N}. 

Suppose that Ff is defined, then 

F+, = {F C N: F C F1 U U Fn with {n} < F1 <. < Fn and Fi E YF 
foralli = 1,..., nr}. 

If ( is a limit ordinal, Fe = {F C N: F E FEn and {n} < F}. 
Using the families Fe, for every ordinal (, we extended the notion of spreading 

model in [F2] as follows: 

3.2. Definition ([F2]). Let X be a Banach space, ( an ordinal number and (xn) a 
sequence in X. We say that (xn) generates spreading model of order ( equivalent 
to a basic sequence (en) if there exist ,u > 0 and C > 0 such that: 

k k k 

ft ZAieni < K Aini < C Aieni 
Ii=l i=l i=l 

for every (nl,... ,nk) EF and scalars Al,... ,Ak. 
Now we will define the spaces Se (K) for every ordinal (, which are characterized 

by spreading models of order ( equivalent to the summing basis (sn) of Co. 

3.3. Definition. Let K be a metric space and ( an ordinal number. We define the 
space 

Se(K)= { : K -R: there exists (fn) CC(K) and C> Osuch that fn- f 
pointwise and 1j Evk1 Aifn lloo < C ?011 1 AisilI for 

every (n1... , nk) E .F and scalars A1,..., Ak } 

and the norm 11 - on it as follows: 

I = inf { 0> 0: there exists (fn) C C(K) such that fn -- f pointwise and 

11 I=1 Aifn, II oo < C I II=1 Aisil|| for every (n1,... Xink) in 

Fe and scalars A1,... Ak } 

If K is a compact metric space, it is easy to prove (see Remark 1.2) that 

Se(K) \ C(K) = { f : K -- R: there exists (fn) in C(K) such that fn -E f 
pointwise and (fn) generates spreading model 

of order ( equivalent to (Sn) } 
Of course, S1(K) = B1/4(K) for a compact metric space K. Also, for every 

ordinal number (, Se (K) is a linear subspace of B1 (K). Although the family 
(Fs)1?_ is not increasing, it has the property: for every 1 < / < (, there exists 
no = no(/3, ) in N such that if A E Y,3 and {ino} < A then A E F~. Hence, it is 
easy to prove that the family (Se(K))1?< is decreasing and, also, lf I3 < lIf I1I for 
every 1 <? < and f in Se(K). 

3.4. Proposition. For every ordinal number (, (Se(K), ') is a Banach space. 
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Proof. Let ( be an ordinal number and (Fn) a Cauchy sequence in (S (K), I I * II) 
We can assume that IIFn+l -Fn j < 1 for every n E N. So, for every n E N 
we can find a sequence (on )??o1 c C(K) converging pointwise to Fn+i - Fn and 
satisfying 

k 1 k 
Ajo 

?n || <-E i 

i=l 00 i=l 

for every (m1,... ,ImMk) E T and scalars A1,... , Ak. Since IIf K< ? IIf I for every 
f E S (K), there exists F E B1(K) such that JFn - FIIOO - 0O. 

Let no E N. Set 4n = Fn+l-Fn for every n E N, and fn = Ono + * + on for 
every n > no. Then F -Fn = E?'n (Dn. Also, fn -* F - Fno pointwise. Indeed, 

no 
+-(n? + ?n )11|| = 11?>1+1 + * * + ?n l1c 

< 
i= 

for every no < < n E N. Hence, letting n -x oc, we have for every x E K and 
1 > no, 

n. (x) + * +, i(x) - 

I 
< limn fn(X) < limnfn(X) < no(X) + * + ?1 (x) + 

Letting I -- oo, this gives that fn -* F - Fno pointwise. 
On the other hand, for every (nfi,... , nk) E )F7 and scalars A1,... ,Ak we have 

that 
k k 

| Aifni ||= 5 (Ai? no + * jni) 
i1 00 i100 

ni k n2 k nk 

< EAis l |+ 5 Ai '$n| + ..+ S I AklcIjj11 
j=no i=l 00 j=nl+l i=2 00 j=nk-1+l 

ni k 2 k nk 
< S 2 5 j EAisi + E EAisi + + 2 AkSk 

j=nO i=1 j=ni+l i=2 j=nk-l+l 

00 k ~~~1 k 
< T .2 

EAis k 5Ajsi 
( 2i | S| 2no lESS| j=no / i=l I i=l 

Hence F - Fno E Ss (K), whence F E Se (K). Also, we have that 

JIF-F nol 1 2< for every no E N, 

which gives that (Fn) converges to F with respect to the 11 f-jjnorm. This completes 
the proof. O 

We will give more descriptions of the spaces S (K) in analogy to B1/4(K) (see 
Proposition 2.3 and Corollary 2.4). 

3.5. Proposition. For every metric space K and ordinal number ,, a function 
f K -* R belongs to S~(K) if and only if there exists (fn) in C(K) such that 
f = En=1 fn pointwise and for nO = fo = 0, 

sup { k Ifni l+l + * * + fni (nl,... *nk) E JT < oo. 
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Also, for every f E Se(K), 

lf II' = inf {sup {|k= 1 fni-1+1 + ' + fni ||I (nl,..* , nk) E 

for every (fn) in C(K) with f = En fn pointwise 

Proof. The proof is analogous to the proof of Proposition 2.3. El 

3.6. Corollary. For every metric space K and ordinal number (, a function f: 
K -* R belongs to Se(K) if and only if there exists (fn) in C(K) such that fn f 
pointwise and for no = fo = 0, 

SUP {| Ifni -fni-1||I (ni, * nk) E ZF}< oo. 

Also, for every f E Se(K), 

= inf {sup { |k= f-n_ ll: (nl . .., nk) E &} 

for every (fn) C C(K) with fn f pointwise}. 

From a result in [F2], we have the following connection between the functions in 
Se(K) and the transfinite oscillations. 

3.7. Theorem ([F2]). Let K be a metric space and ( an ordinal number. Then 

Se(K) C { f: K -R: osc, f is bounded} . 

Proof. It follows from the proof of Theorem 9 in [F2] that, for every function f in 
Se (K), the function u,e (f) is bounded (the functions u, (f), were introduced in 
[R1] and are similar to the ath_ oscillations of f). But, as it is proved in [Rl], 

oscOtf < uo (f) + uc, (-f) 

for every ordinal number a. Hence, osc,ef is bounded. 
This theorem yields immediately the following result. O 

3.8. Theorem. Let K be a separable metric space. The intersection of all the 
classes Se(K), 1 < ( < wi, is equal to D(K). 

Proof. It follows from the previous theorem and the fact that f belongs to D(K) 
if and only if oscjf is bounded for every countable ordinal a ([R1]). LI 

In [F2] we defined for every ordinal ( the notion of a null-coefficient of order ( 
((-n.c.) sequence in a Banach space and we proved that every bounded, Baire-1 
function f with osc,~ f unbounded has the property that every bounded sequence of 
continuous functions converging pointwise to f is null-coefficient of order (. We will 
prove in the sequel that this property characterizes the functions in B1 (K) \ Se (K). 

3.9. Definition ([F2]). A sequence (xn) in a Banach space is called null-coefficient 
of order ( (&-n.c), where ( is an ordinal number, if whenever the scalars (ca) satisfy: 

sup { Cn2i (n2i 
- 

Xn2i-1) l (ni, *. ,n2k) E .F} < cX 

the sequence (cn) converges to 0. 
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3.10. Proposition. Let , be an ordinal number, and (Xn) a weak- Cauchy and non- 
weakly convergent sequence in a Banach space. Then (xn) is not null-coefficient of 
order , if and only if it has a subsequence with spreading model of order ( equivalent 
to the summing basis of co. 

Proof. If (xn) is not null-coefficient of order ( then there exists a bounded sequence 
of scalars (Cn) such that (Cn) is not null-converging and 

k 

(*) ZCn2 (Xn2i -Xn2i-) | 1 

for every (ni,... ,n2k) EJ5. 

So we can find e > 0 and a subsequence (cn,) of (Cn) such that Cn, > e for every 
t e N (otherwise replace Cn by -cn). 

Consider xn, n E N, as elements of C(K), where K is the unit ball of the 
dual of X = [xn], the closed subspace generated by (xn), with respect to the 
weak*-topology. Since (xn) converges with respect to the w*-topology to a function 
x** E X** \ X (Remark 1.2) there exists a subsequence (xn,, ) of (xn,) and ,u > 0 
such that 

k k 

// EAisi| < A)ixn,i 

for every k E N and scalars A1,... Ak. Set y, = xn,. and cnt, 
= a. for every 

s E N. 
We will prove that the subsequence (y,) of (xn) has spreading model of order ( 

equivalent to the summing basis (sn) of co. Indeed, for every (s1,... , Sk) E Fe and 
x E K we have Ys0 = Yo = 0 and 

k k 

Ysi -Ysii I(x) < -S as.Iys - ys8_1 I(x) 
i=l i=l 

lk 

- -as s *e (ysi- ysi1) (x) (where Esi E {-1, 1}) 
i=l 

1 1 ~~~~k 
< -a811y 111+?- 5 E a., (Y,i - ysi81) (x) 

i=2 
i odd 

=Si1 

1 k 1 0 

+ 5 a si -8 ysi-1 ) (x) + - 5 ., a(y8 ysi-y1) (x) 
i=2 i=2 

i odd i even 

6s.=-1 
1 s 10 4S 

+ e asi (Ysi 
- 

si-1) (x) < 
e + e I(Cn)11oo 1(01XnilD11oo =c- 

?i 
eve 

In the last inequality we used (*) and the fact that every subset H of a set F 
belonging to Fe is in TF as well and that (nt,,1, , ntSk) kE T for every (s,... , sk) 
in FY. 
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Finally, for every (s1,... ., Sk) E Fe and scalars A1,.. , Ak we have 
k k k 

E Aiysi = E(Ai + + Ak) (Ysi -Ysil) C E isi 
i=l ~i= 1 i= 1 

which completes the proof. C 

3.11. Theorem. Let K be a metric space and ( an ordinal number. Then 

B1 (K) \ Se (K) = { f E Bi (K): every bounded sequence (fn) in C(K) converging 
pointwise to f is null-coefficient of order ( . 

Proof. Let f E Bi (K) \ Se (K) and a bounded sequence (fn) in C(K) converging 
pointwise to f. Then (fn) is null-coefficient of order (. Indeed, if (fn) is not (-n.c., 
then according to the proof of the previous proposition, we can find a subsequence 
(9n) of (fn) and C > 0 such that 

|E Ifni - fni- I < C 
i1l 00 

for all (n i... ,nk) E FY. Hence, it follows from Corollary 3.6 that f E Se(K), a 
contradiction. 

On the other hand, if f E Se(K) then there exists a sequence (fn) C C(K) 
converging pointwise to f and C > 0 such that 

k 

E Ifni - 0fni 0 I < C 

for every (nl,... ,nk) E Fe, according to Corollary 3.6. Thus, if cn = 1 for every 
n E N, we have 

k k 

Z|(fn2i -fn2i-1) ?< | fn2i -fn2i-1 I 

i1 ~~~~00 i=1 00 

2k 

< E Ifni - 0fni0i I < C 

for every (nl ... , n2k) E FY. Hence (fn) is not null-coefficient of order (. 
This completes the proof. D 

3.12. Corollary. Let K be a compact metric space. Then 

B1(K) \ B1/4(K)= {f E B1(K): every bounded sequence (fn) in C(K) 

converging pointwise to f is null-coefficient of order 1 
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