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ON BAIRE-1/4 FUNCTIONS

VASSILIKI FARMAKI

ABSTRACT. We give descriptions of the spaces D(K) (i.e. the space of differ-
ences of bounded semicontinuous functions on K) and especially of B /4(K)
(defined by Haydon, Odell and Rosenthal) as well as for the norms which are
defined on them. For example, it is proved that a bounded function on a met-
ric space K belongs to B; /4(K ) if and only if the whh_oscillation, osc,, f, of f is
bounded and in this case || f|l1/4 = ||| f|+05cw flloo. Also, we classify By /4(K)
into a decreasing family (S¢(K))1<¢<w, of Banach spaces whose intersection
is equal to D(K) and S1(K) = By/4(K). These spaces are characterized by
spreading models of order £ equivalent to the summing basis of cg, and for
every function f in S¢(K) it is valid that osc ¢ f is bounded. Finally, using
the notion of null-coefficient of order £ sequence, we characterize the Baire-1
functions not belonging to S¢(K).

INTRODUCTION

In recent years the study of the first Baire class, B;(K), of bounded functions
on a metric space K led to the definition of interesting subclasses ([H-O-R], [K-L],
[F1]). The study of these subclasses revealed significant properties of their elements
([C-M-R], [R2], [F1], [F2]) and provided applications, such as the co-dichotomy
theorem of Rosenthal ([R1]).

Here we study some subclasses of D(K), and especially By/4(K), of B1(K). By
D(K) is denoted the class of all functions on K which are differences of bounded
semicontinuous functions. A classical result of Baire yields that f € D(K) if and
only if there exists a sequence (f,,) of continuous functions on K satisfying

(1) Sggz |[fa(z)] <00 and f = an.

The class D(K) is a Banach algebra with respect to the || - || p-norm defined as

Ifllp = inf {sggz |fn(2)] : (fn) C C(K) satisfying (1)} :

The subclass By ,4(K) was first defined in [H-O-R] as follows:

Bi/4(K) = {f : K — R : there exists (F,) C D(K) such that ||F,, — f[lec — 0
and sup || F|p < oo}
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4024 VASSILIKI FARMAKI

This class is a Banach algebra with respect to the || - [|;/4-norm, given by

1£11a = inf {sup IFull : (Fa) € D(K) and |Fy - flleo — o} .

In the first section we describe the precise connection between the summing basis
(sn) of ¢p and the normed space (D(K),| - ||p); so it is proved in Proposition 1.1
that f € D(K) if and only if there is a sequence (f,) of continuous functions on K
so that f, — f pointwise and there is C > 0 such that

k k
Z Aifrng Z Aisi

for every k,ni,...,n, € N and scalars Aq,..., Ag.
If this occurs then

Ifllp = inf{ C > 0: there exists (f,) C C(K) satisfying (2) }

2

<C

Since for every sequence of continuous functions defined on a compact metric
space K and converging pointwise to a discontinuous function, there exists a sub-
sequence (fy,) and p > 0 such that

k k
Z AiSi Z )\zf n;
i=1 i=1
for k,ni,...,n, € N and scalars Aq,...,\ ([H-O-R], [R1]), it follows that the
functions in D(K)\ C(K) (K compact) are characterized as pointwise limits of se-
quences of continuous functions equivalent to the summing basis of ¢y (Remark 1.2).

In the case of B;/4(K), where K is a compact metric space, the functions are
characterized as pointwise limits of sequences of continuous functions on K with a
property weaker than (2), namely one for which the inequality (2) is valid only for
(nq,... ,nk) in the Schreier family F; (Theorem 2.1). Moreover, if we set

3) © <

o0

||f||§ = inf{ C > 0: there exists (fy) QkC(K) such that {n = f
’Zi:l Azfnl ”oo S C ”Zi:l /\iSi

(n1,...,nk) € F1 and scalars'Aq, ..., Ag },

pointwise and for every

then |- ||} is a norm on By 4(K) equivalent to the norm ||- [|;/4. This answers in the
affirmative a question raised by Haydon, Odell and Rosenthal in [H-O-R]. From
this result and (3) we have the characterization of functions in B;,4(K) \ C(K)
(K compact) as pointwise limits of sequences of continuous functions generating
spreading models equivalent to the summing basis of ¢p.

More generally, we define analogously the spaces S¢(K) and the norms || - ||§ on
them, employing the higher order Schreier family F¢, for 1 < § < w, as defined
by Alspach and Argyros ([A-A]). According to Proposition 3.4, (S¢(K),||[I5)
are Banach spaces, which, for separable metric spaces K, constitute a decreasing
hierarchy whose intersection is equal to D(K) (Theorem 3.8) and of course Sy (K) =
By ,4(K). We further provide alternative descriptions of the spaces S¢(K), 1 <& <
w1, and characterize the Baire-1 functions not belonging to S¢(K) (Theorem 3.11),
employing the notion of a null-coefficient of order £ sequence, defined in [F2].

Because of Mazur’s theorem, S¢(K) is actually a Banach space invariant. That
is, if X is a separable Banach space, z** € X**\ X, and K = Ba(X*,w*), then if
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f ="K, f € S¢(K) if and only if there exists a sequence (z,) in X such that
(x) generates a spreading model of order £ equivalent to (s,) and converges in the
w*-topology to f. Moreover, then

|f|$ = inf{C > 0 : there exists (z,) C X and such that z,, 2L f
and || 1) Mitn,lloe < CI| i, Aisill for every
(n4,...,nk) € Fe and scalars A1, ..., Ag}.

A nice relation between the space (Bi/4(K),|| - |l1/4) and the transfinite oscil-
lations of a function is given in Theorem 2.9. Rosenthal in [R1] defined for every
function f the at-oscillation, osc, f, of f for every ordinal o (cf. Definition 2.5).In
[R2] the author proved the following structural result for D(K): Let f be a real
bounded function on an infinite metric space K. Then f € D(K) if and only if
there exist an ordinal o such that osc,f is bounded and osc.f = oscgf for all
B > «a. Letting 7 be the least such «, then

Ifllo = I[1£] + 0s¢r flloo for all f € D(K).

We prove an analogous structural result for the case of By,4(K). Precisely, we
have the following theorem: Let f be a real bounded function on a metric space K.
Then f € By/4(K) if and only if osc,, f is bounded. In this case

lfll1/a = | |f| + 0Sco, flloo for f € By 4(K).

According to the principal result in [F2], osc,c f is bounded for every function
f in S¢(K) and every ordinal €. It is an open problem whether the functions in
Se¢ (K) are characterized by this property.

1. DIFFERENCES OF BOUNDED SEMICONTINUOUS FUNCTIONS

Let K be a metric space. We denote by C(K) the class of continuous functions
on K and by B;(K) the space of bounded first Baire class functions on K (i.e. the
pointwise limits of uniformly bounded sequences of continuous functions).

An important subclass of B;(K) is the class of differences of bounded semicon-
tinuous functions on K, denoted by D(K). It is easy to see that

D(K) = { f € Bi(K) : f =u— v, where u,v > 0 are bounded and
lower semicontinuous functions }

The class D(K) is a Banach algebra with respect to the norm || - ||p, defined as
follows:

Ifllp = inf{ v+ v||loo : f =u — v for u,v > 0, bounded and lower
semicontinuous functions }

This infimum is attained according to [R1]. A result of Baire gives that

D(K) = { f € By(K) : there exists (f,) in C(K) such that f = 3, fn
pointwise and |3, |falll, < o }

and it follows that

Ifllo =inf{

> 1 fal

:(fn) CC(K) and f = an pointwise}
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for every f € D(K) (see [R2]). It is easy to see that ||f|lcc < ||fllp for every
f € D(K) but the two norms are not equivalent in general.

In the following proposition we give the fundamental connection between the
summing basis (s,) of ¢p and the functions in D(K), as well as between (s,,) and
the norm || - || p-

1.1. Proposition. Let K be a metric space. Then
D(K) = {f € By (K): there ezists (f,) in C(K) and C > 0 so that f, — f
pointwise and ||3i—; Aifill , < C X iy Aisil| for all

n € N and scalars \1,...,\, },
where (sy,) is the summing basis of co. Also, for every f € D(K),

Ifllo =Iflls = inf{ C > 0: there exists (f,) C C(K) such that f, — f
pointwise and ||30 Nifill o < C Iy Xisill

for alln € N and scalars \,..., }

Proof. If f € D(K) then there exists a sequence (g,)3>, in C(K) such that f =
Yoo gnand C =Y, [gnlllec < 0. Set fr = Y1, g; for every n € N. Of course,
fn. — f pointwise and

> N
i=1

Hence, ||f|ls < ||f||p for every f € D(K).
On the other hand, if there exist (f,,) in C(K) and C > 0 such that f,, — f point-
wise and || Y1) Aifilloo < C|| Yo7, Assi|| for every n € N and scalars Aq, ..., A,

then if we set go = 0 and g, = fn— fn—1 for every n € N, we have that ) >~ | g, = f.
Also, for z € K and n € N,

Z |9 (z)
i=1

n

S it + g

=1

<

(e o)

<C-

n
Z |9:l
i=1

n
E Aisi
i=1

n
E AiS;
i=1

oo oo

D oUfi = fial(@) = Y&l fi = fim1)(@)
i=1 =1

= Do(ei—er)fi| (@) <C,
i=1
where ¢; € {—1,1} so that &;(f; — fi—1)(z) > Oforeveryi=1,... ,nand g,4; = 0.
Hence, we have that || f||p < ||f||s for every f € D(K). O

1.2. Remark. It is known ([H-O-R], [R1]) that, for a compact metric space K, every
bounded sequence (f,) in C(K) converging pointwise to a discontinuous function
f has a basic subsequence (g,) which dominates the summing basis (s,) of ¢y,
i.e. there exists u > 0 such that u|| >0 Aisi|| < | 0, Aigilloo for every n € N,
A1,-.-,An € R. Hence, for a compact metric space K,

D(K)\ O(K) = { f:K — R : there exists (f,) C C(K) such that f, — f
pointwise and (f,) is equivalent to (s,) }
This result has been proved in [R1] also. Using Mazur’s theorem we have that

every uniformly bounded sequence (f,) converging pointwise to a function f in
D(K)\ C(K) has a convex block subsequence equivalent to (sp).
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2. BAIRE-1/4 FUNCTIONS

As we mentioned before, the supremum norm is not equivalent, in general, to the
I - | p-norm in D(K). The closure of D(K) in (B1(K), || - ||cc) has been denoted by
By/2(K) in [H-O-R]. In the same paper the authors defined the subclass B /4(K)
of B;(K) as follows:

Bys(K) = { f € By(K) : there exists (F,,) C D(K) such that ||F}, — f]lec — 0
and sup,, ||Fr|lp < o0

The space B;,4(K) is complete with respect to the norm

I£l1/a = nt {sup Il : () € D(K) and [, = Sl 0}

In the following theorem we will give a characterization of B /4(K) and we will
define the || - ||1-norm on it, in analogy to D(K) (Proposition 1.1). We will prove
that this norm is equivalent to the ||-||; /4-norm answering affirmatively the question
raised by Haydon, Odell and Rosenthal in [H-O-R]. The techniques of this proof
have been employed before in [F1]. The additional work here is to establish the
relation between the norms. For completeness we give the proof in detail. We will
use the Schreier family F; which is:

F1 ={(n1,... ,nk):k<n1 <~-<nk€N}.
2.1. Theorem. Let K be a compact metric space. Then

By,4(K)= {f € By(K) : there ezists (f,) in C(K) and C > 0 so that f, — f
pointwise and ”Zle Xifa|l <C ”Zle Aisil| for

every (ny,...,ng) € F1 and scalars Ay,... , A
Also, defining for f € By 4(K)

I£1: = inf{ C > 0: there exists (f,) in C(K) such that f, — f pointwise
and HZ?=1 /\i.fn,-” <C ”Zf=1 \isi|| for every
(n1,...,nk) € F1 and scalars Ay, ..., Ak },

|- I% és a norm on By,4(K) equivalent to the norm || - ||1/4. Moreover,

£l < Wfllja < 4ISNS for every f € Byya(K).

Proof. Let f € By/4(K). According to the definition of (By,4(K),|| - ||l1/4), for
every § > 0 there exists a sequence (F,,) in D(K) so that ||Fy, — fllec — 0 and
sup,, |[Fmllp < ||fll1/a+ 6. Let M = ||f||1/4 + 6 and (ey,) a decreasing sequence of
positive numbers such that €, < 5= and Y50 416 < €& for every m € N. We
can assume that ||F,+1 — Fnllco < €m41 for every m € N. Hence, for every m € N
there exists a sequence (g/*)5%; C C(K) converging pointwise to Fy,4+1 — F,,, and
197 ||oo < €m+1 for all n € N.

Since Fy € D(K), by Proposition 1.1, there exists a sequence (fl) in C(K)
converging pointwise to Fj and satisfying

k
Z Aif}
i=1

k
E )\isi
=1

<M
o0
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for all k € N and scalars Ay, ..., A\;. The sequence (f} +g2) converges pointwise to
F,. Using Mazur’s theorem and the fact that F» € D(K), we can find convex block
subsequences (f1'2), (g1'?) of (f1), (g}) respectively such that if f2 = f1-2 4 g1.2 for
every n € N then f2 — F; pointwise and

k k
i f? Aisi
i=1 im1

for every k € N and scalars A1, ..., \s. Now, since f2 + g2 converges to F3, there
exist convex block subsequences (f2:3), (g2%) of (f2), (g2) respectively, such that if
I3 = f23 + ¢23 for every n € N then f3 — F; pointwise and

k k
Z)\iff' Z Ais;
i=1 i=1

for every k € N and scalars Aq,...,\,. Let (f}23),(gL??) be the convex block
subsequences of (f}2) and (g12) respectively, such that f>3 = f1.23 4 g1.23 for
every n € N. Hence f3 = f1?3 + g1.23 4 ¢23 for every n € N. We continue in the
obvious way to construct f7* and g™ +* for every m,k,n € N with m < k,
so that (g %), (fm-+*) to be convex block subsequences of (g, (f7 )
respectively for every m,l,k € N with m <1 < k and

<M

<M

(*) :ln,...,k — f:ln—l,m,...,k +gzt—1,m,...,k

for every n,k,m € N with 1 < m < k. Also, for every m € N, we construct the
sequence (f)52; converging pointwise to F,, and

k k
DN > isi
i=1 i=1
for every k € N and scalars Ay,..., ;. Finally, we set

h;n — f;rln,...,n and d:zn — gzz,n

for every m,n € N with m < n.

Then, for every m € N, (A7), ., (d™)52,, are convex block subsequences of
(F ey, (g7 ) e, respectively, hence (A)S2 . converges pointwise to Fi,, [d7 o
< €m41 for every m,n € N with m < n and (d*)2,, converges pointwise to
Fr41 — Fr. Also, according to (), we have that

Ry =hp Tt dp Tt =R +dh 4+ dT
for every n,m,l € N with | <m < n.

We set h, = h? for every n € N. Thus h, = A +d™ +--- + d*"! for every
m,n € N with m < n. It is easy to prove that (h,) converges pointwise to f. If

()

<M

(n1,...,ng) € F1 and Mg, Ag, ..., Mg are scalars then
k k k
D Xkl < I OXREN DA (dE o+ dmTY)
=1 foe) =1 foe) =1 0o

First, since (h¥)2, is a convex block subsequence of ()32 ,, we have from (%)

that
k
>
i=1

k
SOMRE| <M
=1

2’s)
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Secondly,
k ‘ k
SoNi(ak 4o +de ) < e > Al
=1 oo i=1
k k
< 2ker > nisif| <8>S0 AisiH ,
i=1 i=1
Hence
nil| < (Ifllja +26) -
This gives
IFlls < N1 £ll1/a + 26 for every 6 >0
and finally

17113 < [1£ll/4 for every f € Byja(K).

On the other hand, let (f,) be a sequence in C(K) converging pointwise to f
and C > 0 such that
k
> it
i=1 00

for every (ni,...,ng) € F1 and scalars Aq,...,Ag. According to a characteriza-
tion of functions in Bj/4(K) given by Haydon, Odell and Rosenthal in [H-O-R], a
function f belongs to By ,4(K) if for € > 0 there exists a sequence (gn)5Z, in C(K)
with go = 0, converging pointwise to f and such that for every subsequence (gn,)
of (gn) and = € K to have

<C

Z |g'nj+1 (IIJ) — 9n; (IE)l < M?
j€B((ni)x)
where
B((nl)ax) = {.7 EN: Ignj+1 (IIJ) — 9n, (IE)l 2> 6} .
In this case, it is easy to see that || f||1/s < 4M.
For € > 0, let m be an integer such that m > C/e. Set g, = fomin for every

n € N. Then, for every strictly increasing sequence (n;) in N and z € K we claim
that #B((n;),z) < m. Indeed, if j1,... ,jm € B((n;),x), then

m-e< Z |gnh+1 gn] .'E)l - ZEJ f2m+nh+1 f2m+nh)(x) < C

=1

where €1,... ,ém € {—1,1}), so that &;(fom+n;, 1, — fom+n,,) () > 0, a contradic-
tion. Hence #B((n;),xz) < m and thus

Z |gnj+1 (IIJ) — Gn; (.'1))' < C.
jeB((n,—),z)
Hence f € By4(K) and || f|l1/a < 4[| O
2.2. Remark. 1t is easy to prove (see [F1]) that a sequence (z,) in a Banach space

X has a subsequence generating a spreading model equivalent to the summing basis
(sn) if and only if it has a subsequence (y,) with the following property:
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there exist u, C' > 0 such that

k k k
“ Z)\isi < ZA’I:yni <C Z/\isi
i=1 i=1 i=1
for every (ni,...,nx) € F1 and scalars Ay, ..., Ag.

Hence, it follows from the previous theorem and Remark 1.2, for a compact metric
space K that

By4(K)\C(K) = { f € Bi(K) : there exists (f,) C C(K) such that f, — f
pointwise and (f,,) generates spreading

model equivalent to (s,) }

This result has been proved in [F1] also. Furthermore, it has been proved in [H-O-R]
that every uniformly bounded sequence (f,) in C(K) converging pointwise to a
function in By /4(K)\ C(K) has a convex block subsequence generating a spreading
model equivalent to (sy).

In the following proposition we will give another description of By /4(K) and we
will prove the equality of the norm || - ||} with a norm on B, /4(K) analogous to the
| - | p-norm on D(K).

2.3. Proposition. For every compact metric space K, a function f: K — R be-
longs to By,4(K) if and only if there exists (fn) in C(K) such that f =Y o0 | fn
pointwise and for ng = fo =0,

sup {

Also, for every f € By,4(K) we have

k
Z |fni—1+1 +oet fml
=1

s (nyy ... ,nE) 6.7-'1} < 0.

oo

k
”f”.i = ”f”lD =inf{sup{ Zlfni—1+l +"'+fni| : (nlv--- ank) 6.7:1} :
i=1

() € COE) with F=3" fu |

Proof. If f € By/4(K) then for every € > 0, from the previous theorem, there exists
(9n)529 C C(K), go = 0, such that g, — f pointwise and

k k
Z Aign; Z s
i=1 P

for every (nq,...,ng) € F; and scalars Ay,..., ;. Set f, = gn — gn_1 for every
n €N. Then f =Y ., f» pointwise. Also, for (ny,...,n;) € F; and z € K we
have

< (IF15 +¢)

o0

k k
Z |fni_1+1 +oo+ fnll(x) = Zsi(fni—1+1 +-t fnl)(x)
=1

=1
k

> (€ = €i41)9n,

=1

(z) = (z) <Ifls +e,

k
Z €i(gni - gni—l)
=1
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where ¢; € {—1,1} so that &;(fn, ;41 + -+ fo,)(@) > 0forall: =1,... ,k and
ek+1 = 0. This gives that ||f]|5 < || f||} for every f € By 4(K).

On the other hand, let (g,) € C(K) and C > 0 be such that f = >>7 g,
pointwise and

D g st1t -+ gnil| < C (no=g0=0)

i=1

o0

for every (ni,...,ni) € F1. Set fr =Y i g; for every n € N. Of course f, — f
pointwise. Also, for (ni,...,nx) € F1, ¢ € K and scalars Aq, ... , A\ we have

k
Z /\z‘fm
i=1

"M”

(z) Ai(g1+ -+ gn,) | (%)

=1

k
= Z()"+"'+)‘k)'(gni—1+1+"'+gni) (IIJ)
=1
k k g
= Z Z)‘J Z 9| (x)
=1 |j=1 Jj=ni_1+1
k i
< IDxsl (D] D ¢l|@<cC-
=1 =1 |j=n;—1+1
Hence f € Bys(K) and || f||X < ||f||b- This completes the proof. a

2.4. Corollary. For every compact metric space K, a function f : K — R belongs
to By/4(K) if and only if there exists (fn) in C(K) such that f, — f pointwise and
forng = fo =0,

k
sup {
i=1

Z |fnz - fni—1|
Also, for every f € By/4(K) we have

:(nl,... ,nk)€f1} < 0.

14113 = in { sup {| Sy 1o = Fuical|_ 2 (ay-mi) € 1} -
where (f,) C C(K) and f, — f pointwise }

In the following theorem we will give a characterization of the functions in
B1,4(K) and also an identity for || f||1/4, where f is in B;/4(K), using the transfi-
nite oscillations of f, which have been defined by H. Rosenthal in [R1]. We recall
this definition.

2.5. Definition. [R1] Let K be a metric space. One defines the upper semicontin-
uous envelope Ug of an extended real valued function
g: K — [—00,400] as follows:

Ug = inf{h: K — [—00,00] : h is continuous and h > g}.
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It is easy to see that for z € K
Ug(z) = 3}i_mmg(y) =max {L € [—o0, +0o0] : Iz, — z,9(z,) — L}

I

inf {sup g(y) : U is a neighbourhood of z}
yeU
In [R1] the author associates with each bounded function f : K — R a transfinite
increasing family (oscaf)1<o of upper semicontinuous functions which are called
oM oscillations of f. They have been defined by induction as follows:

oscof = 0.

If osc, f has been defined, then for every x € K

a1 (@) = Bmy—a (1) = £(2)] +0scaf(¥))

and consequently

05Cq+1f = U 05Co11 f.

If o is a limit ordinal and oscgf has been defined for all 3 < o then
0sCq f = sup oscg f
B<a

and consequently
08Co f = U 05y f.

According to [R2], a bounded function f : K — R is in D(K) if and only if
osc, f is a bounded function for every ordinal . In this case there exists an ordinal
o so that osco f is bounded and osc, f = oscgf for all § > a. Moreover, letting 7
be the least such «,

I/llp = lllf] + oscr fllo -

We will prove an analogous structural result for B;,4(K). Precisely, we will prove
that a bounded function f is in By /4(K) if and only if osc, f is bounded and when
this occurs then

[1£1l1/a = I1FT + 08Cu flloo -

Before the proof of this theorem we will give three lemmas. In the first lemma
we list some elementary relations which are used in the sequel.

2.6. Lemma. Let f,g be bounded functions on a metric space K and o an ordinal
number.

(1) If f < g thenUf <Ug.

(2) U(f+g) SUf+Ug.

(3) U(f —Ug) =UUF —Ug) <U(f —9).

(4) Uf = f if and only if f is upper semicontinuous.

(5) oscof is an upper semicontinuous [0, +o00]-valued function on K.

(6) oscatf = |tloscof for everyt € R.

(7) osco(f + g) < oscof + 0sCuyg.

(8) osco(f + g) = osco.f if g is a continuous function on K.

(9) If osco. f is bounded then U(oscof £ f) < 0SCqq1f £ f.
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Proof. The assertions (1)-(8) are easily proved. We will prove (9).
Let x € K. We may choose (y,) a sequence in K tending to z such that
U(oseo f + f)(z) = nlingo 08Co f (Yn) + f(yn)-

Since the functions f and osc,f are bounded, we may assume without loss of
generality that the limits

Jim osca f(yn), lim [f(yn) — f(2)], lim f(yn)
all exist. We then have that
arrf(@) > lim (If(yn) = f(@)|+ oscaflyn))
= [l [f(yn) = f()| + lim oscaf(yn)

> lim (0scaf(yn) + f(3n) — £(@)
= U(oscaf + f)(z) — f(2).

Thus it is proved that U(oscy f + f) < 0SCot1 f + f. If instead of f we use —f, we
have that U(osco f — f) < 05Cq+1f — f, since 0s¢, f = 05Ca(—f). O

2.7. Lemma. Let f : K — R be a bounded function. For every n € N we have
that

U(oscpiof — oscpi1 f) < U(oscp1f — oscp f).
Proof. Using (3) of the previous lemma, we have that

U(oscriaf —oscni1f) = U(0SCriaf — oscny1f)
< U(0sCpi2f —0sCpi1f), for everyn € N.

Hence it is sufficient to prove that
U(0scriaf — 08Cri1f) <U(oscpi1f —osc,f) for everyn € N.

By (1) and (4) of the previous lemma, the proof of this lemma will be complete as
soon as we prove that

0SCryof — 08Chi1f <U(oscpi1f —osc,f) for everyn € N.

Case n = 0. We have for z € K,
&eaf(a) ~Serf(e) = Tm (oserf () +1f(w) - F@)]) ~ Tm |£(v) - f(2)]
< Eosclf(y) = U(oscy f)(z) = oscy f(z)

(since osc; f is upper semicontinuous).
In general for n > 0, n € N, we have for z € K,

08Cn+2f(z) — 05Cnt1f(2)
=-E (oscnt1f(y) + | f(y) — f(2)]) — z}L—mm(oscnf(y) +1f(y) — f(=)])
< E(Oscn-f-l fy) — oscn f(y)) = U(oscr i f — oscn f)(z).

This completes the proof.
The following lemma was proved by A. Louveau ([F-L]). For completeness we
give the proof. O
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2.8. Lemma. [F-L] Let (gn)3%, be a sequence of bounded, upper semicontinuous
functions on a metric space K with go = 0. If the sequence (U(gn+1 — 9n))o%g 18
decreasing, then U(gnt1 — gn) < 737 - gnt1 for every n € N.

Proof. For n =0, it reduces to Ug; < g1, which is trivial since g; is upper semicon-
tinuous. Suppose we know it for n. For the induction step, it suffices, since g,t2 is
usc, to prove:

In+2 . gn+2
- < .e. < == .
gn+2 gn+1_n+2’ Le., gn+2_n+2 + gn+1

But since 1 = 15 + 243, it suffices to show

n+1 < e < n+2 _ n 1
n+29n+2 S Ontly €., Oni2 S n—+19n+1 = On+1 _n+1gn+1-

But this follows immediately from the induction step. O
2.9. Theorem. Let K be a metric space. Then
By ,4(K) = { f: K — R bounded :osc,f is bounded } and

1£llsya = |||+ S f||_ for all £ € Biya(K).

Proof. Suppose f € By/4(K). It follows from the definition of B;,4(K) that for
every € > 0 one has a sequence (g,,) in D(K) with ||gr, — f|lcc — 0 and sup,, ||gn||p <
Ifll1/4 + €. Set €n = ||gn — fllco- Then by induction on k,

osci f < osckgn + 2ke,, for every k,n € N.
Hence

< |gn| + €n + 0sCign + 2ken
< |gn| + 0scrgn + (2k + 1)e,
< lgnllp + (2k + 1)e,, for every k,n € N.

|f| + osck f

Letting first n — oo and then k — 400, we get

|[f] + 08¢ f < supllgnllp < [ fll1ja + e
n

Since € is arbitrary, we have that
1]+ 08¢u flloo < 1Ifll1/4

and of course that osc, f and, consequently, osc,, f are bounded functions.
On the other hand, let f : K — R be a bounded function with osc, f also
bounded. Set

An —U(oscnf — ) An—U(oscnf + f)
gn = - ’
2 2
where A, = || |f| + osc, f||,, for every n € N. Then g, € D(K) and
lgallo < [|An = U(osenf — f) = 3(osenf + f)]|, <
< An < |If| + 08¢, flloo for every n € N.

The first inequality holds for every n € N, since from (1), (2) and (4) of Lemma 2.6
we have

U(oscrnf — f) +U(osenf + f) > 2U(oscy f) = 20sc, f > 0 and
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An — sU(0scn f — f) — 2U(oscn f + f)
> A —U(osenf + |f]) = A — [[U(oscr f + [ f]) oo
= An — [loscnf + [ f] loc = 0.
If we could prove that ||gn — f|looc — O, then we would have that f € By /4(K)
and || f|l1/4 < ||| f| 4 05Cu f|loo- Now, according to (9) of Lemma 2.6,
gn—f = %Z/{(oscnf+f) - %Z/{(oscnf -H-f
< L (@unf+1) - boseaf ) f
= % (0SCpt1f —oscnf) < %(oscnﬂf —osc, f) for everyn € N.

On the other direction,

gn—f = gU(oscnf + f) — sU(oscnf — f) — f
> L(oscnf+f)— 3(08Cny1f — )= f
= —1(05Cn41f — 0sCnf) = —1(0scni1f — osc f) for every n € N.
Hence

1
lgn — f] < E(oscn“f —osc, f) for every n € N.

According to Lemma 2.7, the sequence (U(0scpt1f — 0scnf))S2, is decreasing.
Hence, using Lemma 2.8, we have that

1 1
lgn — fl < S(oscpy1f —oscnf) < QU(OSCan — oscp f)

2
1
S ooyOstanf < —moseuf < 7 llosco fllco-
Thus ||gn — flleo < n+_1 - |loscy, flloo and, finally, ||gn — flloc — 0. This finishes the
proof of the theorem. O

2.10. Remark. Using the invariants (fo)1< which have been introduced by Kechris
and Louveau in [K-L] and which are similar to the a?- oscillations of the function
f, we proved with Louveau ([F-L]) that a bounded function f is in By /4(K) if and
only if f,, is bounded and in this case

1

But the previous theorem shows that the transfinite oscillations appear to be
more appropriate than the f,’s.

After proving this theorem, I learned that H. Rosenthal ([R2]) had an analogous
result. Precisely, he proved in [R2] that f belongs to By 4(K) (case f : K — C) if
and only if osc,, f is bounded and when this occurs and f is real valued,

1
5 (Ifllso + lloscw flloo) < I £ll1/a < 1lflloc + 3 flosc flioo-

3. A CLASSIFICATION OF Bj/4(K)

We will define a classification of By /4(K), where K is a separable metric space,
into a decreasing hierarchy (S¢(K))1<¢<w, of Banach spaces whose intersection is
equal to D(K). The functions in S¢(K) have a property stronger than the one
of the functions in Bj,4(K) which is described in Proposition 2.3. Precisely, the
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families F¢, which have been defined by D. Alspach and S. Argyros in [A-A], are
used instead of the Schreier family F;. We quote the definition of the F¢’s.

3.1. Definition ([A-A]). For every limit ordinal £, let (£,) be a sequence of ordinal
numbers strictly increasing to £. Then Fo = {{n} : n € N}.
Suppose that F¢ is defined, then

Fer1={FCN:FCFRU---UF, with {n} <F, <--- < F, and F; € F¢
foralli=1,...,n}.
If £ is a limit ordinal, Fe = {F CN: F € F¢, and {n} < F}.
Using the families F¢, for every ordinal £, we extended the notion of spreading
model in [F2] as follows:

3.2. Definition ([F2]). Let X be a Banach space, £ an ordinal number and (z,) a
sequence in X. We say that (z,) generates spreading model of order £ equivalent
to a basic sequence (e, ) if there exist y > 0 and C > 0 such that:

k k k
Z /\iem Z )\1;.’177“ E /\iem
=1 =1 i=1

for every (n1,...,nx) € F¢ and scalars Ay, ..., Ag.
Now we will define the spaces S¢(K) for every ordinal £, which are characterized
by spreading models of order £ equivalent to the summing basis (s,) of co.

M < <C

3.3. Definition. Let K be a metric space and £ an ordinal number. We define the
space

Se(K)= {f : K — R : there exists (f,) € C(K) and C > 0 such that f, — f
pointwise and || S, Aif, oo < C || Tisy Misill for

every (ni1,...,nk) € F¢ and scalars Aq,...,Ax

and the norm || - || on it as follows:

I £1I§ = inf { C > 0 : there exists (f,) € C(K) such that f, — f pointwise and
1251 Aifnclloo < I Aisil for every (na,... ,my) in
Fe and scalars Ag,..., A

If K is a compact metric space, it is easy to prove (see Remark 1.2) that
Se(K)\C(K) = {f : K — R : there exists (f,) in C(K) such that f, — f
pointwise and (f,) generates spreading model
of order £ equivalent to (s;) } .

Of course, S1(K) = By/s(K) for a compact metric space K. Also, for every
ordinal number §, S¢(K) is a linear subspace of Bi(K). Although the family
(Fe)1<e is not increasing, it has the property: for every 1 < 8 < £, there exists
no = no(B,€) in N such that if A € Fg and {no} < A then A € F¢. Hence, it is
easy to prove that the family (S¢(K))1<¢ is decreasing and, also, ||f[|? < ||| for
every 1 <8 <€ and f in S¢(K).

3.4. Proposition. For every ordinal number &, (S¢(K), | - ||$) is a Banach space.
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Proof. Let £ be an ordinal number and (F,,) a Cauchy sequence in (S¢(K), || - [|15).
We can assume that ||Fny1 — Fy$ < 5= for every n € N. So, for every n € N
we can find a sequence (¢7,)3°_; C C(K) converging pointwise to F,,1; — F,, and
satisfying

1|l E
'é— Z}\ S;
for every (my,... ,mi) € F¢ and scalars AL, ... ,/\k. Since || flloo < ||f]I¢ for every

f € S¢(K), there exists F' € By(K) such that ||F,, — F|lc — 0.
Let ng € N. Set ®, = F,41 — F,, for every n € N, and f, = ¢[° +--- 4 ¢} for
every n > ng. Then F' —F,, = Ef;no ®,,. Also, f, — F — F,, pointwise. Indeed,

n
1 1
1= @0+t )l = llen 4+ onl e < 30 =5
i=l+1
for every ng <! < n € N. Hence, letting n — oo, we have for every z € K and
l 2 N,

Boy(@) + -+ + Bu(0) = 7 < Lt o (2) < W fo(0) < Bu(o) 4+ + Bu(a) + 37

Letting | — oo, this gives that f, — F — F},, pointwise.

On the other hand, for every (ni,... ,nx) € F¢ and scalars Aq,...,Ax we have
that
k
EAfn, =D (N + -+ Nigl)
=1 fo'e) =1 oo
ni k no Nk .
<D+ X ZA% SIS D P R -
Jj=ng ||i=1 o) Jj=ni1+1|[i=2 j_nk 1+1
n2
1
< Z > Z)\sz Z 5 szl 4ot Z o ks
J=no j=ni1+1 =2 j=ng_ 1_|_1

> q k 1
< (Z g) 20> sl = o ZAM :

Hence F' — Fy,, € S¢(K), whence F € S¢(K). Also, we have that

1
|F - ol < e for every ng € N,

which gives that (F},) converges to F with respect to the ||-||$-norm. This completes
the proof. O

We will give more descriptions of the spaces S¢(K) in analogy to By 4(K) (see
Proposition 2.3 and Corollary 2.4).

3.5. Proposition. For every metric space K and ordinal number £, a function
f : K — R belongs to S¢(K) if and only if there exists (f,) in C(K) such that
f =302, fn pointwise and for ng = fo =0,

sup {

k
E!fn,—_l-i-l + -t fol

i=1

(ny,. .. ,'mc)Efé} < o0

o]
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Also, for every f € S¢(K),
1705 = inf { sup {||Shoy Umecsrr o ol | (o i) € Fe s
o0
for every (fn) in C(K) with f =3, fn pointwise},
Proof. The proof is analogous to the proof of Proposition 2.3. 0O

3.6. Corollary. For every metric space K and ordinal number €, a function f :
K — R belongs to S¢(K) if and only if there exists (f) in C(K) such that f, — f
pointwise and for ng = fo =0,

k
sup { Z |f77v1, - fni"ll
=1

Also, for every f € S¢(K),

1106 = inf { sup {[|Es 1y = Fmcsl| 2 1y ) € Fe
for every (f,) C C(K) with fr, — f poz’nth’se}.

t(ng,. .. ,nk)e]-‘g} < 00.
)

From a result in [F2], we have the following connection between the functions in
S¢(K) and the transfinite oscillations.

3.7. Theorem ([F2]). Let K be a metric space and & an ordinal number. Then
Se(K) € { f: K —R:oscyf is bounded}.

Proof. Tt follows from the proof of Theorem 9 in [F2] that, for every function f in
Se(K), the function u,e(f) is bounded (the functions u,(f), were introduced in
[R1] and are similar to the a?- oscillations of f). But, as it is proved in [R1],

oscof < ua(f) + ua(—1)

for every ordinal number «. Hence, osc,c f is bounded.
This theorem yields immediately the following result. 0O

3.8. Theorem. Let K be a separable metric space. The intersection of all the
classes S¢(K), 1 < € < wi, is equal to D(K).

Proof. 1t follows from the previous theorem and the fact that f belongs to D(K)
if and only if osc, f is bounded for every countable ordinal o ([R1]). O

In [F2] we defined for every ordinal £ the notion of a null-coefficient of order §
(¢-n.c.) sequence in a Banach space and we proved that every bounded, Baire-1
function f with osc,¢ f unbounded has the property that every bounded sequence of
continuous functions converging pointwise to f is null-coefficient of order £&. We will
prove in the sequel that this property characterizes the functions in B; (K) \ S¢(K).

3.9. Definition ([F2]). A sequence (z,) in a Banach space is called null-coefficient
of order £ (£-n.c), where ¢ is an ordinal number, if whenever the scalars (c,) satisfy:

sup {

the sequence (c,,) converges to 0.

k
chZi(:ani — Ty )| : (N1, .. oK) € ]-'5} < o0
i=1
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3.10. Proposition. Let{ be an ordinal number, and (z,) a weak-Cauchy and non-
weakly convergent sequence in a Banach space. Then (x,,) is not null-coefficient of
order £ if and only if it has a subsequence with spreading model of order £ equivalent
to the summing basis of cg.

Proof. 1f (z,) is not null-coefficient of order £ then there exists a bounded sequence
of scalars (c,) such that (c,) is not null-converging and

(*)

k
Z Cng; (wn2i - xn2i-1)
i=1

for every (n1,...,ngk) € Fe.

So we can find € > 0 and a subsequence (cy,,) of (c,) such that ¢,, > € for every
t € N (otherwise replace ¢, by —c,).

Consider z,, n € N, as elements of C(K), where K is the unit ball of the
dual of X = [z,], the closed subspace generated by (z,), with respect to the
weak*-topology. Since (z,) converges with respect to the w*-topology to a function
z** € X* \ X (Remark 1.2) there exists a subsequence (&, ) of (z,,) and u >0
such that

k k
M Z )\isi Z /\i.’L‘nti
=1 i=1

for every k € N and scalars \q,... , ;. Set ys = Tn,, and ¢, = as for every
se€ N.

We will prove that the subsequence (ys) of (z,) has spreading model of order £
equivalent to the summing basis (s,) of co. Indeed, for every (s1,...,sx) € F¢ and
xz € K we have y;, = yo = 0 and

Z'yst ysz 1|(‘T Za51|y~51 ysz 1|( )

Z asl 531 (y51 ysz 1)

(z) (wherees, € {—1,1})

1,—1
1 1] &
< ;as1”ys1“ + E | Z as; (ysi - ysi—l) (.’E)
:'oaa
€s;=1
1] & 1| &
+ ; Z a'si(ysi - ysi—l) ((L') + E Z aSi(ySi - ysi—l) (:L‘)
iio=d2d iiﬁ:n
€s,=—1 €s;=
1] & 4 1
+ . ; as; (Ys; — Ysi_q) | () < P + P ll(en)lloo - I(llznl)lleo = C-
Esiie;ei

In the last inequality we used (x) and the fact that every subset H of a set F
belonging to ¢ is in F¢ as well and that (n;, ,... ,nt%) € F¢ for every (s1,... ,8k)
in .7‘-5.
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Finally, for every (si,...,8k) € F¢ and scalars Aq,...,\; we have
k k k
Z )‘iysi = Z(At +eet )\k)(ySi - ysi—l) <C Z)\isi s
i=1 i=1 i=1
which completes the proof. O

3.11. Theorem. Let K be a metric space and £ an ordinal number. Then

Bi(K)\ S¢(K) = { f € B1(K) : every bounded sequence (f,) in C(K) converging
pointwise to f is null-coefficient of order £

Proof. Let f € B1(K) \ S¢(K) and a bounded sequence (f,) in C(K) converging
pointwise to f. Then (f,) is null-coefficient of order £. Indeed, if (f,) is not &-n.c.,
then according to the proof of the previous proposition, we can find a subsequence
(gn) of (fn) and C > 0 such that

k
Z |fn1 - fni—1|
=1

for all (n1,...,nk) € F¢. Hence, it follows from Corollary 3.6 that f € S¢(K), a
contradiction.

On the other hand, if f € S¢(K) then there exists a sequence (f,) C C(K)
converging pointwise to f and C > 0 such that

k
Z |fnz - fni_1|
=1

for every (ni,...,ni) € F¢, according to Corollary 3.6. Thus, if ¢, = 1 for every
n € N, we have

<C

oo

<C

oo

k k

Z(fnzi -fnZi—l) < Zlfnzz _fnzi—ll

=1 00 i=1 (e’
2k

< Zlfm_fm_ll <C
i=1 0o
for every (n1,...,ng;) € F¢. Hence (fy) is not null-coefficient of order &.
This completes the proof. a

3.12. Corollary. Let K be a compact metric space. Then
Bi1(K)\ B1/4(K)= {f € B1(K) : every bounded sequence (f,) in C(K)

converging pointwise to f is null-coefficient of order 1 }
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