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CLASSIFICATIONS OF BAIRE-1 FUNCTIONS 
AND c0-SPREADING MODELS 

V. FARMAKI 

ABSTRACT. We prove that if for a bounded function f defined on a compact 
space K there exists a bounded sequence (fn) of continuous functions, with 
spreading model of order , 1 < 4 < co , equivalent to the summing basis 
of co, converging pointwise to f, then rND(f) > co' (the index rND as 
defined by A. Kechris and A. Louveau). As a corollary of this result we have 
that the Banach spaces Ve,(K), 1 < , < to I, which previously defined by the 
author, consist of functions with rank greater than woE . For the case 4 = I 
we have the equality of these classes. For every countable ordinal number 4 

we construct a function S with rNDJ(S) > 4 . Defining the notion of null- 
coefficient sequences of order , 1 < 4 < coI, we prove that every bounded 
sequence (fn) of continuous functions converging pointwise to a function f 
with rND (f) < co$ is a null-coefficient sequence of order . As a corollary 
to this we have the following co-spreading model theorem: Every nontrivial, 
weak-Cauchy sequence in a Banach space either has a convex block subsequence 
generating a spreading model equivalent to the summing basis of co or is a null- 
coefficient sequence of order 1. 

INTRODUCTION 

In the last few years various classifications of the class B1(K) of bounded 
Baire-1 functions on a compact metric space K were given by many authors 
(see [1, 7, 8]). Recently in [5] the class B1 (K) was classified into a transfinite, 
decreasing hierarchy VJ(K), 1 < 4 < cowI, of Banach spaces. The first space 
coincides with B1/4(K) , which was first defined in [7]; and the intersection of all 
V< (K) is equal to the space DBSC(K) of differences of bounded semicontinuous 
functions on K. As proved in [7] and [5], f E B114(K) if and only if there 
exists a sequence (fn) of continuous functions on K converging pointwise to 
f and generating a spreading model equivalent to the summing basis of co. 
Extending the notion of spreading models in [5], it is proved that the functions 
in V (K) have a stronger property, namely, that there exists a sequence of 
continuous functions on K with spreading model of order 4 equivalent to the 
summing basis of co, converging pointwise to f . 

A. Kechris and A. Louveau in [8] defined a natural rank rND on every 
bounded function f defined on a compact metric space K not in DBSC(K), 
which has values of the form wj) for countable ordinals 4 [6] (by [8] all such 
ordinals are obtained). With a different terminology but equivalent formulation 
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this index is used by H. Rosenthal in [9] to prove the important result: that every 
bounded sequence (fn) of continuous functions on K converging pointwise to 
a function f not in DBSC(K) has a strongly summing subsequence. From this 
result and the characterization of functions in DBSC(K) given by C. Bessaga 
and A. Pelczynski [4], there follows the co-theorem of Rosenthal, namely, that 
every nontrivial, weak-Cauchy sequence in a Banach space has either a strongly 
summing subsequence or a convex block basis equivalent to the summing basis 
of co. 

In this paper we give a relation between the rank rND and the functions which 
are pointwise limits of sequences of continuous functions with spreading model 
of order I, 1 < 4 < oi, equivalent to the summing basis of co. Namely, 
we prove (Theorem 9) that if for a bounded function f defined on a compact 
metric space K there exists a bounded sequence (fJ) of continuous functions 
on K, with spreading model of order 4 (1 < 4 < wi), equivalent to the 
summing basis of co, converging pointwise to f, then rND(f) > cot. As a 
corollary of this result we have that for every 1 < 4 < o1 

V (K) C {f E B1(K): rND(f) > 0w}- 

For the case I = 1 we have the equality of these classes. Finally, for every 
countable ordinal number 4 we construct a linear, Baire-1 function S on a 
compact metric space K which is not in DBSC(K) and prove that rND(S) > 

using Theorem 9. 
Defining the notion of null-coefficient sequences of order I, 1 < 4 < w1, 

we prove a result similar to Rosenthal's for the case of functions with rank 
less or equal to wo . Namely, we prove that every bounded sequence (fn) of 
continuous functions converging pointwise to a function f with rND(f) < W4 
(I < 4 < c) is null-coefficient of order 4 (Theorem 14). In particular (case 
4 = 1) it is proved that f f B114(K) if and only if every bounded sequence of 
continuous functions converging pointwise to f is null-coefficient of order 1. 
As a corollary to this and the characterization of functions in B,14(K)\C(K) 
given in [5] we have the following co-spreading model theorem: Every non- 
trivial, weak-Cauchy sequence in a Banach space either has a convex block 
subsequence generating a spreading model equivalent to the summing basis of 
co or is a null-coefficient sequence of order 1 (Theorem 18). 

We will use standard terminology and notation. For completeness we will 
give some definitions and notation which we will use in the following. 

Let K be a compact, metrizable space. The class of continuous functions 
on K is denoted by C(K) and the class of Baire-l functions on K (i.e., the 
pointwise limits of uniformly bounded sequences of continuous functions on K) 
by B1 (K). DBSC(K) denotes the subclass of B1 (K) consisting of differences 
of bounded semicontinuous functions. It is easy to see that 

DBSC(K) = {f E B1(K): there exists (f,) c C(K) 

so that f = Z fn and f Ifn l is bounded}. 

The class DBSC(K) is a Banach space with respect to the norm 

lIfIID = inf { IfIn i |: (fn) C C(K) and E fn = f } 
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It is not hard to check that IfIloo < If IlID , but the two norms are not equivalent 
in general. The norm-closure of DBSC(K) is denoted by BI12(K) in [7]. In 
the same paper the authors define the subclass B114(K) by 

B1/4(K) = {f E B1 (K): there exists (fn) C DBSC(K) 

such that I If - filt0 -O0 and sup IfnIID < oo}D 
n 

The space B114(K) is complete with respect to the norm 

IIfIIl/4=inf{suPIIfnlID:(f,)CDBSC(K) and IIfn-fII,-o O} 

In [5] this definition was extended in the transfinite as follows: Let 

V1(K) = B114(K) and 11 III = 11 111/4. 

If the normed space (VJ'(K), 11 jji) has been defined, then 

J'+I (K) = {f E B1 (K): there exists (fn) C DBSC(K) 
with lIfn - fIjj -- 0 and sup lIfnlID < 001 

and 

IIfIIl+I = inf {suP lIfnllD: (fn) C DBSC(K) and llfn-fIl:- ?} 

Finally, for a limit ordinal 4 

IIfII, = sup{IIfl: 1 < /1 < } for every f e n Vf(K) 

f<'4 
and 

V~(K) = {f E B1(K): lifIjX < 01. 

The spaces (V:(K), 11 jl), 1 < 4 < c(1 , are complete, and their intersection 
coincides with DBSC(K) [5]. It is easy to see that V,:(K) C Vf(K) and 1lfIIoo < 

lIfIlfl < IIfIjX for every f E VJ(K) and ,8 < 4 < c,. According to [7] and 
[5], the functions in B114(K)\C(K) are characterized in terms of co-spreading 
models and the functions in VJ'(K)\C(K) have an analogous stronger property. 
As we will need these results, we include a precise statement: 

Let (xn) be a seminormalized basic sequence in a Banach space X. A basic 
sequence (en) is said to be a spreading model of (xn) if for every k E N and 
e > 0 there exists m E N so that if m < nI < n2 < < nk, then 

k k 

Zixn, - Ae < e for all scalars A, ...,k with max lAi < 1. 

i=1 i=1 1~~~~~~~~~~~~<i<k 
Every seminormalized basic sequence has a subsequence generating a spreading 
model. 

If H, F are two finite subsets of N, we denote H < F iff max H < minF. 
The summing basis (Sn) of co is characterized by 

ZAisi =sup Ai 
i=1 i=1n 
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Definition 1 [1]. For every limit ordinal X, let (cu) be a sequence of ordinal 
numbers strictly increasing to . We define: 

o = {{n}: n E N}, 
t+ = {F C N: F C F U .U Fn with {n} < Fi < < Fn and Fi E J 

and if g is a limit ordinal 
4 = {F C N: F E Jn and n < minF}. 

Definition 2. Let X be a Banach space and (xn) a sequence in X. We say 
that (xn) has a spreading model of order 4 equivalent (or 3-equivalent) to the 
summing basis of co if there exists 3 > 0 such that 

k k k 

(1/3) ZAisi < ZAixn < Z Aisi 

for every (n, ... nk) E and scalars A... Ak 
It is easy to see that a sequence (Yn) in X has a subsequence generating a 

spreading model equivalent to the summing basis of co if and only if it has a 
subsequence with spreading model of order 1 equivalent to the summing basis 
of cO. 

Theorem 3 [5, 7]. Let K be a compact metric space, f a real bounded function 
on K, and , a countable ordinal number. If f E V~(K)\C(K), then there 
exists a sequence (fn) c C(K), with spreading model of order 4 (for every 
choice of (J)) equivalent to the summing basis of co, converging pointwise to 
f. Moreover, f E B114(K)\C(K) if and only if there exists (fn) C C(K), with 
spreading model (or order 1) equivalent to the summing basis of co, converging 
pointwise to f . 

In [8] the authors define a natural rank rND on every bounded function 
defined on a compact metric space K, as follows: 

Let f be a bounded function on K. One defines the upper regularization 
of f, ur(f) (usually denoted by f), by 

ur(f) = inf{g: g E C(K) and g > f}. 

The function ur(f) is upper semicontinuous, and one has 

ur(f)(x) = lim f(y) = max{L E [-xc, oo]: 3xn -+ x, f(xn) -+ L} 

= inf {supf(y): U is a neighbourhood of x}. 
yEU 

In [8] the authors associate with each bounded function f an increasing 
sequence of upper semicontinuous functions. In a different for- 
mulation (but equivalently) in [9] the author defines an increasing sequence 
(u<:(f%<<Oj,< as 

u I(f) = ur(ur(f) - f). 

If u (f) is defined, 

u~+I(f) = ur(ur(u (f) + f) - f). 
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For a limit 4, ue(f) is defined if and only if ufl(f) is defined for all I.? < 
and sup< up (f) is bounded, and then 

u~() ur (sup ufl(f)) 

According to [8], f is in DBSC(K) if and only if u~(f) is defined for all 
4 < coI or, equivalently, if there exists a 4 < coI such that ux(f) is defined and 
ue+1 (f) = u (f) . Hence, to every bounded function f on K there corresponds 
a rank: 

rND(f) = inf{l <I < wI: u (f) is undefined}, if such a 4 exists 

and rND(f) = WI otherwise. 
Note that the values of this rank are always limit ordinals. It is proved in [6] 

that if f 0 DBSC(K), then rND(f) = cw) for some 1 < 4 < w, (by [8] all such 
ordinals are obtained) according to the following lemma. 

Lemma 4 [6]. Let f be a bounded function on K, and suppose that ue(f) is 
defined. Then u~.,(f) is defined and IIu .n(f)Ioo < nIIu(f) I1o for all n E N . 
Proof. Let M = 11Iu (f)I. By induction u~+ (f) is defined and M+ up(f) > 
ue+fl(f) for every 1. < (. Finally, u<.2(f) is defined and IIuA.2(f)AIJ < 

211u (f)II I. The result then follows by induction on n . 
In the proof of the main theorem we will use two lemmas which are proved 

in [9]. For completeness we give them below. 

Lemma 5 [9]. Let f be a bounded real function defined on a compact met- 
ric space K, 4 a countable ordinal number, and x E K. Assume that 0 < 
u (f)(x) < ue+I(f)(x) = M < ox. If U is an open neighborhood of x and 
0 < E < 1, then there exist positive numbers A, 3, and xi E U such that: 

(i) (1 -e61)M < A + 3 < (1 - e1)M, 
* (ii) xi E cl(L), where L = ly E K: A < u ( f )(y) < (I1 - e1 )M - 61, 

(iii) lim (f(y) - f(xi)) = . 
yEL ,y-xl 

Lemma 6 [9]. Let K be a compact metric space and (f,) C C(K) converging 
pointwise to a bounded function f . If xi E K, L is a subset of K with 
xi E cl(L), 3 = limyEL,y-xl(f(y) - f(xi)) > O, 0 < E < 1, and U is an open 
neighborhood of xl, then there exists a subsequence (f,,) of (fn) such that given 
t > 1 there exists an X2 E U n L satisfying: 

(i) f(X2) -f(XI) > (1 -E)3, 

(ii) E Ifni (X2) -f(XI ) I < 86, 
1<i<t 

(iii) E Ifni(X2) - (X2)I < E- 
i>t 

We will define for every countable ordinal number 4 a family s& of finite 
subsets of N such that s,# = for every 1 < ,B < co, . 
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Definition 7. Let (g) <, be a family of finite subsets of N as described in 
Definition 1. We define: 

= {F C N: #F =2 

M:+i = IF C N: F C F, U F2 where F, < F2, Fl E JV, and F2 E q}. 

If 4 is a limit ordinal, then 4 = Zi-> pifli , where m, m ..., Pm e N and 

Ih, ... , 1,m are ordinal numbers with BIh > > f3m > 0. We define 

pa l = {F C N: F C F1 U ... U Fp 
with F < ... < Fp and FEfl for i= , ...,p} 

and in general 

54 = {JF C N: F C F1 U F2 with F1 < F2, Fl E Vy, and F2 E 4 

m-l 
where y = pmcofl' /, = psi 

i=1 

The following theorem is inspired by Theorem 4.1 of Rosenthal in [9]. 

Theorem 8. Let f be a real function defined on a compact metric space K and 
(fn) a uniformly bounded sequence of continuous functions converging pointwise 
to f . Let also , be a countable ordinal and x E K with 0 < u (f)(x) < oo. 
For every open neighborhood U of x and 0 < e < 1 there exists a subsequence 
(f,t) of (fn) with the following properties: Given an infinite sequence of integers 
1 < tl < t2 < ... there exists F E where F = {nt, <... nt2k} (k e N), 
and y E U such that: 

(i) fnt2 - 
fnt2i_ (y) > 0 for i = 1,... ,k and 

(i) j=l nt - fnt2 (y) > (1- E)u4(Ax).X 

Proof. The argument is similar to the proof of Theorem 4.1 in [9], except that 
additional work is required to locate F in QX. 

Let 1 < e < 0 and U be an open neighborhood of x. 

Case 4 = 1 . Let 0 < e1 < 1 with (1 -6 1) (I - 3e1) > l - e and M = u1 (f)(x). 

According to the definition there exists xi e U with 

(1 - 81)M < ur(f)(xi) - f(xi) = 5 < (1 - e1)M. 

From Lemma 6 there exists a subsequence (fnt) of (fn) such that given t > 1 
there exists x2 E U satisfying (*) (i)-(iii): 

(i) (X2) - f(Xi) > ( - 1606, 

(ii) E Ifni(x2) -f(xI)I < c1 5, 

(*) <i<t 

(iii) E Ifn1(X2)- f(X2) < e1i- 
i>t 

Then given 1 < tI < t2 there exists x2 e U satisfying (*) for t = t2. Thus 
F = {nt, nt2 } E VI and 

,2 (X2) - 
fnt, (x2) > f(x2) - f(xl) -2e1 
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Case 4 + 1. Suppose the result is established for . Let 0 < u<+i(f)(x) = 
M < o and 0 < el < 1 with (I - e1)(l - 31) > I - e. We may assume 
that 0 < u (f)(x) < u+1(f)(x). Otherwise, if 0 < u< (f)(x) = u+ (f)(x) , the 
result follows by hypothesis and u~(f)(x) = 0 is impossible. 

According to Lemma 5 there exist A > 0, 3 > 0, and xi e U satisfying (**) 
(i)-(iii): 

(i) (1 - 1 )M < A + 3 < (1 - 81)M, 
**) (ii) X1 E cl(L), where L = {y E K: A < u( f)(y) < (I - ei)M - 6} 

(iii) lim (f(y) - f(xl)) = 3 
YEL, y-*x1 

From Lemma 6 there exists a subsequence (f,,) of (f,n) such that given t> 1 
there exists X2 E U n L satisfying (*) (i)-(iii). Without loss of generality we 
may assume that (fn) itself has this property. 

We will construct positive integers ns, s E N, and infinite subsets MsS 
s E N, of N satisfying (***) (i)-(viii): 

(i) n, < ... < nS < Ms, 

(ii) Ms cMS-, 
(iii) nS = min Ms_ -. 

Given r e N with 1 < r < s there exist an open set V C U and x2 E V so 
that: 

(*** *) 
(iv) f(x2) - f(xI) > (1 - 81), 
(V) El<i<r Ifni(Y)-f(Xl)I <e13 foreveryy e V, 

(vi) Zr<i<s Ifni(Y) - f(X2)I < 81 for every y e V, 
(vii) A < u4(f)(x2) < (1 + 81)M - , 

(viii) given {mi, m2, ...} C Ms with 1 <?mM < m2 <. there exists y E V 
and F = {mi, M2, ..., M2k} E s (k E N) such that fm2i-f m2i_1(Y) >0, i= 

1,...,k, and 
k 

fm2i -fM2i- I (y) > ( 1- ) )U4(f) (X2)- 

i=l 

Let M1 = N\{1}, n1 = 1, and n2 = 2. We set s = 2 = r. As we assumed 
previously, there exists X2 E U n L such that 

f(X2) -f(XI) >(1 - 8I), jfi(X2) -f(X0jl< 616, j:jfi(X2) -f(X2)j <9I6- 
i>2 

Using the continuity of fi and f2 we can choose an open subset V of U with 
x2 E V such that Ifi(Y) - f(xl)l < e13 and jf2(Y) - f(x2)I < 916 for every 
y E V. Finally, using the induction hypothesis we choose an infinite subset M2 
of N with 2 < M2 satisfying the conclusion of the theorem for the case 4, 
E =e61, U = V, and x = x2. The proof for s= 2 =r is complete. 

Let s > 2, and suppose that nI, . .. , ns, M1, .. , Ms have been constructed. 
Then ns+i = min Ms. We will construct infinite subsets M1, M2, ... , Ms+l of 
N such that Ms\{ns+l I} = M1 D M2 D ... D MS+l and for every 1 < r < s + 
there is an open subset V of U and x2 E V satisfying (***) (iv)-(viii), where 
we replace " s " by "s + 1 " in (vi) and "Ms" by "M, in (viii). Once this is 
done we set Ms+, = Ms+l. 
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Let 1 < r < s + 1, and suppose Mr- I is defined. Using the property of (fn) 
we can find x2 E U n L satisfying (*) (i)-(iii) for t = nr. Hence we have 

A(X2) - f(XI) > (1 -80J,) 

Z Ifni(x2)-f(xl)I < 85J E Ifni(x2)-f(X2)1 < E1J. 
1<i<r r<i<s+1 

Using the continuity of fn ...fns we can find an open subset V of U with 
x2 e V satisfying (* * *) (v) and (* * *) (vi) with " s " replaced by " s + 1 ". At 
last by the induction hypothesis we choose Mr C Mr-I so that (***) (viii) 
holds with " Ms " replaced by " Mr ,,. 

The sequence (fn,) satisfies the conclusion of the theorem for the case 4 + 1 . 
Indeed, let 1 < r1 < r2 < t1 < t2 <..* be an infinite sequence of integers. We 
set mi = nt, for every i E N. Then ml < m2 <. and {mI, m2, ---} C 
Mt,-1. Hence from *** *) there exist an open subset V of U and x2 E V 
such that 

f(x2 )-f(XI) > ( -E16)3, 

Ifrj (Y) - f(X) < 61(, Ifnr2(Y) - f(x2) < E15 for every y E V, 
A <- ug(A)X2) < (1 + CO)M - 6 - 

Also there exist y E V and F2 - {ml, M2,..., M2k} e 5g such that 

k 

fm2in2-fM2in ,(y) > 0 for all 1 < i < k and E fm2i -fM2i (y) > (1 -ei)u(f)(x2). 
i=lI 

Set F = {nr, , nr2} U F2 E J,+1 . Then 

fnor -fnr2(Y) > f(x2) - f(XI) - 2e1 > (1 -e 1)5 - 2cE5 > (1 - 3e1) > 0 

and 
k 

fnr - fnr2(Y) + E fn,2i fnt2i- (y) > (1- 3e1) + (1 - Ei)U(f)(X2) 
i=1 

> (1-3e,)0 + (- ) > (1-31(+ ) 

> (1-3el)(1 -e)M > (1-E)M 

This finishes the proof of the theorem for the case 4 + 1. 

Case ,: limit ordinal. Suppose the theorem is proved for all ordinal numbers 
a with a < 4. By the definition of u:(f)(x) there exist xi E U and a < 

such that: 

(1 -e/2)u:(f)(x) < ua(A)(x,) < (1 + e/2)u~(f)(x). 

In particular, if 4 = E=1 picofli, where m, Pl, ..., Pm are positive natural 
numbers and ,Ih > 82 > *-- > f/m > 0 are countable ordinals numbers, then we 

can choose , E N such that a = f, + y, where fi = EZ=' pwl'ia (,B = 0 if 
m = 1) and y = (pm-l)woPm + , tow if m = 4 + 1 or y = (p m - )co-8 + Wo)y 
if flm is a limit ordinal and (4n) is the sequence of ordinal numbers strictly 
increasing to f f. 

Now, from the inductive hypothesis there exists a subsequence (fnt) of (fn) 
such that 2,u < nI and given t1 < t2 < ... an infinite sequence of integers 
there exists k E N and y E U such that F = {nt,, ..., n,t2k E Ja I 
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fnt2i -Jnt2i_1 ,(Y)> for i =1,v. .,k 

and 
k 

J nt2i 
- 

fnt2i- lI(Y) > (I 1-912)Ua(f)(X0 > ( 1- OU,:(f(X). 

We claim that F E 0. Indeed, we have that 2,u < F. If c = o, then 
F E V, and since #F < 2/u we have that F E F = .4. If 4 - coo+I, then 
F E 5rXc and since F C F, u. U F,, where F, < ... < Fa and Fi E 5 
for all i = 1, ...,u,we have that F E Y 1 = . If =c# and fi is a 
limit ordinal, then if (fin) is the sequence or ordinals increasing to ,6, we have 
F E 9 and finally F E fl= . Let = pwo#, where p E N, p > 1, and 

?< f < co i . Then F E Vy, where y= (p - 1) wfl + y, with y2' = u coW if 
,B= + I or y, = wofl if fi is a limit ordinal. Since F C F1 U U Fp, where 
F1 E -., and F2 < *. < Fp E .fl, it follows, analogously to the previous cases, 
that F1 E YF and finally that F E . In general, if p = Zm o pti with 
m > 1, pi, ..., pm > O, and Il > > fIm > O, then F E fl+y and since 
F C F1 U F2, where F1 E Wy, F2 E sV?, and F1 < F2, we have, analogously to 
the previous cases, that F1 E J, where 4 E pmWflm and finally that F E M,. 
This completes the proof of the theorem. 

From the previous theorem we have the main theorem: 
Theorem 9. Let f be a bounded function defined on a compact metric space 
K, let (fn) be a uniformly bounded sequence of continuous functions converging 
pointwise to f, and let 4 be a countable ordinal number. If (fn) has spreading 
model of order 4 equivalent to the summing basis of co, then us (f) is defined, 
equivalently rND(f) > 0 
Proof. Let (fn) have spreading model of order 6 d-equivalent (for some 5 > 
0) to the summing basis of co, and suppose u (f ) is undefined. Let rND(f) = 
jco, with 4 < ?, according to Lemma 4. Hence there exist x E K and a 

countable ordinal number a, with a < c , such that 25 < ua(f)(x) < xc. We 
can choose , E N such that a = yucof if 4 = fi + I or a = co# if 4 is a limit 
ordinal and (Cn) is the sequence of ordinal numbers strictly increasing to 4. 

From the definition of the families , 1 < 4 < oI, it is easy to see that 
for every 4 < 4 < coI there exists v(4, 4) E N such that if F E Y? and 
v(C, ,) < F, then F E,9 (see [2]). 

Let v = max(v(C , (), u) . According to Theorem 8 there exist F E 'Va with 
2v < F = {ni, .., n2k} (k E N) and y E K such that 

k 

fn2 - fN2 1(y) > (1/2)ua(f)(x) > 5. 
i-l 

Since 2,u < F, we have that F E Yc (see the proof of Theorem 8, case 4: 
limit ordinal). Consequently, since v(C', 4) < F, we have that F E Yt. This is 
a contradiction, because (fn) has spreading model of order 4 d-equivalent to 
the summing basis of co. Hence u, ( f) is defined. 

The following two corollaries are already proved in [6]. Here we give a proof 
using the previous theorem. 

Corollary 10. For every compact metric space K and countable ordinal number 
4 we have V (K) C {f e Bi(K): rND(f) > w0}I 



828 V. FARMAKI 

Proof. This is true according to the previous theorem and Theorem 3. 

For the case 4 = I the two classes are equal, according to the following: 

Corollary 11. Let K be a compact metric space and f a function on K which 
is not continuous. The following are equivalent: 

(i) f E B114(K), 
(ii) rND(f) > w, 

(iii) there exists a bounded sequence (f,) c C(K) converging pointwise to 
f and generating a spreading model equivalent to the summing basis of 
cO a 

Proof. The equivalence of (i) and (iii) is proved in [71 and [5]. According to 
the previous corollary (i) implies (ii). That (ii) implies (i) is proved in [6]. 

After these results the following interesting problem remains: 

Problem. Is it true that for every compact metric space K and every ordinal 
number ? < w1 we have VF(K) = {f E B1(K): rND(f) > wI ? 

For every countable ordinal number 4 we will construct a Baire- 1 function 
which is not a difference of bounded semicontinuous functions and has rank 
greater than w . 

Example 12. For every countable ordinal X, let T1 be the Tsirelson-like space 
which is defined by S. Argyros in [2]. For completeness we recall the definition 
of T . 

Let x: N -* R be a finitely supported function. For every m E N set 

IxIXI' = sup{Ix(p)I: p E N} and 

lxl =max { llc42sup Ellxlpi, .pi+, - I 14for all (pi, . Pk) e } 

where xlp, iqI (p < q) denotes the restriction of x on the set {p , p+ 1, .I , q} 
and = =tU{(n, p): 2 < n < p}U{0} for all 1 < ? < w, . Finally, define 

IixIIl= iim ? jXii 
,n-oo 

= max I 0ll, sup 2Elixlpi, pi+, - 11 jj4 for {lp, , ke}. 

The space TX is the completion of the linear space of all finitely supported 
functions with the norm 11 jj1. The usual basis (e") is an unconditional basis 
of T, and, as proved in [2], Te is reflexive. 

Let X, be the "Jamesification" of T: [3]. Let us recall the definition. 
For every finitely supported function x: N -- R define: 

11X4l = SUp (E(Snj -Sp,-,)(x)epj:: < p, < ni < .. < p< n } 

where S,(x) = En x(i) for every n E N, and SO(x) = 0. The space Xi is 
the completion of the linear space of all finitely supported functions with the 
norm 11jj 
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As shown in [3] the unit vectors en, n E N, form a boundedly complete 
normalized basis for X<. Thus, X: is isometric to the space Y*, where 
Yx = [e*]n?1 and (en) is the sequence of biorthogonal functionals of (en). 
Furthermore it was shown in [3] that Y< is quasi-reflexive (of order one) and 
Y,* has a basis given by {S, e*, e*, ... }, where S(Z=1 a1e1) = E'= ai. Of 
course Sn = En e' for every n E N and (Sn) converges to S in the w* 
topology. Hence S is a Baire- 1 function restricted on K = (Sy*, w*). 

Since co is not isomorphically embedding into Y, [3] we have that S f 
DBSC(K). We will prove that rND(S) > wc . Let x E K and F = (nI, ... 
n 2k) E t (k E N). From the definition of the norms and since (nI + 
1, ...,n2k-l + 1, r) E5t for r E N with r > n2k we have 

k k 
1? >xI ?lX Z (5n2, - Sn2i-I)(x)en2i-l+i > 2 2n2(X)- (x) 

i=1 i=1 

If rND(S) < wc , then we can find, analogously to the proof of Theorem 9 
(65=2),yEKandF={nl,...,n2k}E suchthat 

k 

E JSn2i (y) - Sn2i, (y)I > 2. 
i=l 

This is a contradiction; hence, rND(S) > o$. 

In [9] H. Rosenthal proved the fundamental result that if f ? DBSC(K), 
then every bounded sequence (fn) in C(K) converging pointwise to f has a 
strongly summing subsequence. In this article we obtain a result, in the same 
spirit as the above, concerning the classes: 

{f E BI(K): rND(f) < Owi} C B1(K)\DBSC(K), 1 < 4 < (1. 

This result requires the following new concept: 

Definition 13. A sequence (xn) in a Banach space is called null-coefficient (n.c.) 
of order (, where 4 is a countable ordinal number, if whenever the scalars (Cn) 

satisfy 

Sup{ E Cn2i(xn2i -xn2,-,): (n,**, n2k) E )J< X0 

the sequence (Ce) converges to 0. 

Remark. If a sequence (xn) has spreading model of order 4 equivalent to the 
summing basis of co, then it is not null-coefficient. Indeed, take cn = 1 for 
every n E N. 

Theorem 14. Let K be a compact metric space, f a bounded function on K, 
(fn) a bounded sequence of continuous functions on K converging pointwise 
to f, and 4 a countable ordinal number. If rND(f) < W$, then (fn) is null- 
coefficient of order 4. 

Proof. Let rND(f) < co$. Then rND(f) = co' for some ordinal ; with 4, 
according to Lemma 4. We assume that (fn) is not a null-coefficient sequence 
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of order g. Then there exists a sequence of scalars (Cn) and e > 0 such that 

sup { 
nCn2j(fn2i -fn2i 1) (n1, ... , n2k) E < 1 

and lcnl > e for infinite many n. Let (gt) be a subsequence of (fn) with 
gt = fn, and cn, > e for every t E N (otherwise set -Cn instead of Cn). 

Since rND(f) = co;, there exist x E K and a < wc such that 2/c < 

ua(f)(x) < 00. We can choose ,I E N such that a = ycfl if 4 = ,6 + 1 
or a = cwC# if 4 is a limit ordinal and (4C) is the sequence of ordinal numbers 
strictly increasing to 4 (according to Definition 1). 

Let v = max(,u, v (, 4)) (if F E 9 and v(, () < F , then F E 9) . From 
Theorem 8, there exist F E 5Wa with 2v < F = {nt1, ... , nt2k} (k E N) and 
y E K such that gt2i - gt2i I (y) >O for all i = 1,... ,k and 

k 

- t2i-gt2i- I (y) > (1/2)Ua(f)(X) > 1/8. 

Then F E Y (see the proof of Theorem 8, case 4: limit ordinal) and conse- 
quently F E S9. Also, 

k 

Cnet2i (fnt2i fnt2i l )(Y) > 

This is a contradiction, since (nt1, ... nt2,) E . Thus, (fn) is null-coefficient 
of order 4 . 

For the case I = 1, after Corollary 1 1, we have the following characterization 
of functions not in B114(K): 

Theorem 15. Let K be a compact metric space and f E B1 (K)\C(K) . Then f 
is not in B114(K) if and only if every uniformly bounded sequence of continuous 
functions on K converging pointwise to f is null-coefficient of order 1. 

Proof. If f E B1(K)\Bj14(K), then rND(f) = w according to Corollary 11. 
From Theorem 14 we have that every bounded sequence (fn) c C(K) converg- 
ing pointwise to f is null-coefficient of order 1. On the other hand, if every 
bounded sequence of continuous functions on K converging pointwise to f is 
null-coefficient of order 1, then according to the remark there is no bounded 
sequence (fn) in C(K) converging pointwise to f with spreading model (of 
order 1) equivalent to the summing basis of c0. From Corollary 1 1, it follows 
that f V B114(K). 

As a consequence of Theorems 3 and 15 we have the following dichotomy: 

Theorem 16. Let K be a compact metric space and f E B1 (K)\C(K). Then, 
either there exists a bounded sequence (fn) C C(K) converging pointwise to f 
and generating a spreading model equivalent to the summing basis of co or every 
uniformly bounded sequence of continuous functions converging pointwise to f 
is null-coefficient of order 1. 

Corollary 17. Let K be a compact metric space, f E BI(K)\C(K) , and (fn) a 
bounded sequence in C(K) converging pointwise to f . Then either there exists a 
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convex block subsequence of (fn) generating a spreading model equivalent to the 
summing basis of co or every convex block subsequence of (fn) is null-coefficient 
of order 1 . 
Proof. If f E B114(K)\C(K) , then, according to [7] and [5], (fn) has a convex 
block subsequence generating a spreading model equivalent to the summing 
basis of co. If f 0 B114(K), then Theorem 15 finishes the proof. 

Now we will give the co-spreading model theorem: 

Theorem 18. Every weak-Cauchy and non-weakly convergent sequence in a sepa- 
rable Banach space either has a convex block subsequence generating a spreading 
model equivalent to the summing basis of co or is null-coefficient of order 1 (in 
fact, every convex block subsequence is null-coefficient of order 1). 
Proof. Let X be a separable Banach space, and let K denote the unit ball of 
the dual space X* endowed with the weak*-topology. If (xn) is a weak-Cauchy 
and nonweakly convergent sequence in x, then let x** E X**\X be the weak*- 
limit of (xn). The restriction of x** to K is in B1(K)\C(K). Theorem 17 
finishes the proof. 
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