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Abstract

We first introduce the generic versions of the fraction rules for monotonicity, i.e. the one that

involves integrals known as the Gromov theorem and the other that involves derivatives known

as L’Hôpital rule for monotonicity, which we then extend to high order antiderivatives and

derivatives, respectively.
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1 Introduction

Roughly speaking, the application of either the integral or the differential operation to both the
numerator and the denominator of a fraction, preserves the monotonicity of the fraction. The
integral case of such fact is known as the Gromov theorem (see, e.g., [5, 10]), while the differential
case is called the L’Hôpital rule for monotonicity (see, e.g., [14, 12, 2, 18, 10]). The Gromov
theorem first appeared in [6], i.e. about a decade before the introduction of the L’Hôpital rule for
monotonicity in [1].

These results have been proven to be quite useful analytical tools with many applications to
a plethora of mathematical areas, such as differential geometry (see, e.g., [6, 5]), quasiconformal
theory (see, e.g., [1]), information theory (see, e.g., [14]), probability theory (see, e.g., [13]), ap-
proximation theory (see, e.g., [15]), theory of special functions (see, e.g., [2, 18, 7]) and theory of
analytic functions (see, e.g., [10]).

Below follow the most generic versions of these fraction rules for monotonicity, for the statement
of which we remind that a real function, defined in an interval of the extended real line, [−∞,∞],
is locally characterized by a property when it is characterized by that property in every compact
subinterval of its domain (we remind that an unbounded interval of the form [−∞,∞], [−∞, a] or[a,∞], for some a ∈ R, is compact).

Theorem 1 (the Gromov theorem). Consider

1. an interval I ⊆ [−∞,∞],
2. a point c ∈ I and

3. two functions f, g ∶ I → R, such that
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i. f and g are both locally Lebesgue integrable and

ii. g preserves Lebesgue-almost everywhere a non zero sign.

If f
g
∶ I → [−∞,∞] is Lebesgue-almost everywhere (strictly) monotonic, then

⋅

∫
c

f(t)dt

⋅

∫
c

g(t)dt
∶ I ∖{c}→ R is

(strictly) monotonic of the same (strict) monotonicity.

Theorem 2 (the L’Hôpital rule for monotonicity). Consider

1. an interval I ⊆ [−∞,∞],
2. a point c ∈ I and

3. two functions f, g ∶ I → R, such that

i. f ∣I∩R and g∣I∩R are both differentiable and

ii. g′(x) ≠ 0, for all x ∈ I ∩R.
If f

′

g′
∶ I ∩R→ R is (strictly) monotonic, then f−f(c)

g−g(c) ∶ I ∖{c}→ R is (strictly) monotonic of the same

(strict) monotonicity.

It can be shown (see §3.2) that Theorem 1 is stronger than Theorem 2, a fact that has already
been observed in [10]. However, the latter one is an independent result of differential calculus, for
the proof of which no tools of the integration theory are needed (see §A).

The goal of the present manuscript is not only the proof of Theorem 1 and Theorem 2, but
also the introduction of their generalizations to higher antiderivatives and derivatives, respectively.
Our analysis is organized as follows. In §2 we review some necessary notions used for the compact
statement of the aforementioned generalizations. In §3, after the statement of the main results, we
examine the relation between them and we proceed to their proof. In §4 we employ our findings in
some novel applications. In §A we provide an alternative proof of the generalized L’Hôpital rule
for monotonicity with the exclusive utilization of the differential calculus toolbox.

2 Basic notions

For the statement of our results we make a short, necessary note on the notation used.

1. For every

i. n ∈ N,
ii. interval I ⊆ [−∞,∞] when n = 1 or I ⊆ R when n ≠ 1,

iii. c ∈ I and

iv. locally Lebesgue integrable f ∶ I → R,

An,f,c stands for the antiderivative of order n for f at c, i.e.

An,f,c∶ I → R

x↦ An,f,c(x) ∶= 1

(n − 1)!
x

∫
c

f(t)(x − t)n−1dt.

The name of this function is nothing but random. It comes from the Cauchy formula of
repeated integration,

An,f,c =

⋅

∫
c

t1

∫
c

⋯
tn−1

∫
c

f(tn)dtn . . .dt2dt1, when n ≠ 1.

This formula is introduced in [4, Trente-Cinquième Leçon in page 137] with the additional
assumption of f being continuous. The result is then derived from the density of continuous
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functions in the space of integrable ones (see, e.g., [8, Theorem 11.5.8 in page 391]). With
this equality at hand we can directly verify that

An,f,c = Ak,An−k,f,c,c, ∀k {1, . . . , n − 1} , when n ≠ 1. (1)

Moreover, by the use of the fundamental theorem of calculus (see, e.g., [8, Theorem B.4.3 in
page 497]) we obtain that, when n ≠ 1, the function An,f,c∣I∩R is (n − 1)-times differentiable
and n-times Lebesgue-almost everywhere differentiable, with

An,f,c
(k) = An−k,f,c, ∀k ∈ {1, . . . , n − 1}

and
An,f,c

(n) = f, Lebesgue-almost everywhere.

If, in addition, f is continuous, then An,f,c∣I∩R is n-times differentiable, with

An,f,c
(n) = f. (2)

2. For every

i. n ∈ N,

ii. interval I ⊆ R,

iii. c ∈ I and

iv. locally Lebesgue integrable f ∶ , I → R,

Mn,f,c stands for the mean of order n for f at c, i.e.

Mn,f,c∶ I ∖ {c}→ R

x↦Mn,f,c(x) ∶= n

(x − c)n
x

∫
c

f(t)(x − t)n−1dt.
The concept behind the above definition lies in the observation that

An,1,c(x) = (x − c)
n

n!
, ∀x ∈ R,

which confirms the expected equality

Mn,f,c =
An,f,c

An,1,c
.

3. For every

i. n ∈ N0,

ii. interval I ⊆ [−∞,∞] when n = 0 or I ⊆ R when n ≠ 0,

iii. c ∈ I and

iv. n-times differentiable in I ∩R f ∶ I → R,

Tn,f,c and Rn,f,c stand for the Taylor polynomial and remainder, respectively, of order n for
f at c, i.e.

Tn,f,c∶ I → R

x↦ Tn,f,c(x) ∶= n

∑
k=0

f (k)(c)
k!

(x − c)k,
and

Rn,f,c∶ I → R

x↦ Rn,f,c(x) ∶= f(x) − Tn,f,c(x).
If, in addition, n ∈ N and f (n)∶ I ∩ R → R is locally Lebesgue integrable, then the integral
form of the remainder (see, e.g., [3, §1.6 in page 62]) implies that

Rn−1,f,c = An,f(n),c. (3)
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3 Generalized fraction rules for monotonicity

3.1 Statement

For the proper statement of the main results, we need the following result.

Proposition 1. Consider

i. a natural number n ∈ N,

ii. an interval I ⊆ [−∞,∞] when n = 1 or I ⊆ R when n ≠ 1,

iii. a point c ∈ I and

iv. a function f ∶ I → R.

1. If f

a. is locally Lebesgue integrable and

b. preserves Lebesgue-almost everywhere a non zero sign,

then An,f,c
−1({0}) = {c}.

2. If

a. f ∣I∩R is n-times differentiable and

b. f (n)(x) ≠ 0, for all x ∈ I ∩R,
then Rn−1,f,c

−1({0}) = {c}.
Proof. 1. To begin with, we have that An,f,c(c) = 0.

Since f preserves Lebesgue-almost everywhere a non zero sign, we deduce that for every x ∈
I∖{c} the function (x − id)n−1 f ∶ (min{c, x},max{c, x})→ R also preserves Lebesgue-almost
everywhere a non zero sign, where id stands for the identity function. Thus An,f,c(x) ≠ 0
and the result then follows.

2. We have that Rn−1,f,c(c) = 0.
Since f (n)(x) ≠ 0, for all x ∈ I ∩R, from the Darboux theorem (see, e.g., [8, Theorem 8.3.2 in
page 228]) we have that f (n) preserves a non zero sign, that is f (n−1)∶ I ∩R → R is strictly
monotonic, hence f (n) is locally Lebesgue integrable (see, e.g., [8, Theorem B.2.5 in 490]).

Now, we first apply point 1. for the function f (n) and we then employ (3), in order to get
the desired result.

With Proposition 1 at hand, we can now state the generalizations of Theorem 1 and Theorem 2
to higher antiderivatives and derivatives, respectively.

Theorem 3 (generalization to higher antiderivatives). Consider

1. a natural number n ∈ N,

2. an interval I ⊆ [−∞,∞] when n = 1 or I ⊆ R when n ≠ 1,

3. a point c ∈ I and

4. two functions f, g ∶ I → R, such that

i. f and g are both locally Lebesgue integrable and

ii. g preserves Lebesgue-almost everywhere a non zero sign.

If f

g
∶ I → [−∞,∞] is Lebesgue-almost everywhere (strictly) monotonic, then

An,f,c

An,g,c
∶ I ∖ {c} → R is

(strictly) monotonic of the same (strict) monotonicity.

Theorem 4 (generalization to higher derivatives). Consider
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1. a natural number n ∈ N,

2. an interval I ⊆ [−∞,∞] when n = 1 or I ⊆ R when n ≠ 1,

3. a point c ∈ I and

4. two functions f, g ∶ I → R, such that

i. f ∣I∩R and g∣I∩R are both n-times differentiable and

ii. g(n)(x) ≠ 0, for all x ∈ I ∩R.

If f(n)

g(n)
∶ I ∩R → R is (strictly) monotonic, then

Rn−1,f,c

Rn−1,g,c
∶ I ∖ {c} → R is (strictly) monotonic of the

same (strict) monotonicity.

3.2 Equivalence?

In general, Theorem 3 is stronger than Theorem 4.

Proposition 2. Theorem 3 implies Theorem 4.

Proof. Under the hypothesis of Theorem 4, we first deduce that both f (n), g(n)∶ I ∩ R → R are
locally Lebesgue integrable. Indeed, we can argue as in the proof of point 2. of Proposition 1, in

order to show that g(n) is locally Lebesgue integrable. Moreover, f
(n)

g(n)
is locally bounded since it

is (strictly) monotonic, hence we write

f (n) =
f (n)

g(n)
g(n)

and we conclude that f (n) is also locally Lebesgue integrable as a product of a locally bounded
function and a locally Lebesgue integrable one.

Now, we first apply Theorem 3 for the functions f (n) and g(n) and we then employ (3).

We can weaken Theorem 3 in a specific manner, in order to get the reverse implication of
Proposition 2.

Proposition 3. Theorem 4 implies Theorem 3, when the latter one is equipped with the hypothesis
that f and g are both continuous instead of being just locally Lebesgue integrable.

Proof. Under the hypothesis of the weakened Theorem 3, (2) implies that An,f,c∣I∩R and An,g,c∣I∩R
are both n-times differentiable.

Now, all we have to do is to apply Theorem 4 for the functions An,f,c and An,g,c.

3.3 Proof

In view of Proposition 2, we only need to prove the stronger of the main results, in particular,
Theorem 3.

Proof of Theorem 5. It suffices to show the result only for the case where g preserves Lebesgue-
almost everywhere the positive sign. Indeed, we can employ such a result for −f and −g instead of
f and g, respectively, in order to get the corresponding one for g that preserves Lebesgue-almost
everywhere the negative sign.

Moreover, it suffices to show Theorem 3 only for the case where f

g
is Lebesgue-almost every-

where (strictly) increasing. Indeed, we can employ such a result for −f instead of f , in order to
get the corresponding one for f

g
that is Lebesgue-almost everywhere (strictly) decreasing.

Hence, we assume, without loss of generality, that g preserves Lebesgue-almost everywhere the
positive sign and that f is Lebesgue-almost everywhere (strictly) increasing.

We will show the desired result by induction on n.
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1. The base case. The case where n = 1 is nothing but Theorem 1 itself.

Since g preserves Lebesgue-almost everywhere the positive sign, the function A1,g,c is strictly
increasing, which implies that its inverse A1,g,c

−1∶ A1,g,c(I) → I is not only well defined but
also strictly increasing. In addition, the continuity of A1,g,c guarantees that A1,g,c(I) is an
interval.

We then consider the function h ∶= A1,f,c ○A1,g,c
−1∶ A1,g,c(I)→ R and we claim that

h = A
1,

f

g
○A1,g,c

−1,0
,

that is
A1,g,c

−1(⋅)

∫
c

f(t)dt =
⋅

∫
0

f(A1,g,c
−1(t))

g(A1,g,c
−1(t))dt.

Indeed, observing that

A1,g,c
−1(⋅)

∫
c

f(t)dt =
A1,g,c

−1(⋅)

∫
c

f(t)
g(t) g(t)dt =

A1,g,c
−1(⋅)

∫
c

f(t)
g(t)A1,g,c

′(t)dt,

we get the desired equality by the use of the change of variable formula (see, e.g., [17, point
(i) of Corollary 6.97 in page 326]).

Moreover, f
g
○A1,g,c

−1∶ A1,g,c(I)→ [−∞,∞] is Lebesgue-almost everywhere (strictly) increas-
ing as a composition of a strictly increasing function and an Lebesgue-almost everywhere
(strictly) increasing function.

The combination of the above two facts implies that h is (strictly) convex (see, e.g., [16,
Theorem A in page 9 and Remark B in page 13] or [19, Theorem 14.14 in page 334]). Hence,
from the equality h(0) = 0 along with the Galvani lemma (see, e.g., [11, Theorem 1.3.1 in
page 20]) we deduce that the function

h

id
∶ A1,g,c(I) ∖ {0}→ R

is (strictly) increasing and so is

h ○A1,g,c

A1,g,c

∶ I ∖ {c}→ R,

since A1,g,c is strictly increasing. The result then follows from the fact that h○A1,g,c = A1,f,c.

2. The induction step. If n ≠ 1, we then fix a natural number k ∈ {1, . . . , n − 1}. In view of point

1. of Proposition 1, both
Ak,f,c

Ak,g,c
,
Ak+1,f,c

Ak+1,g,c
∶ I ∖ {c}→ R are well defined.

We assume that
Ak,f,c

Ak,g,c
is (strictly) increasing and we will show that

Ak+1,f,c

Ak+1,g,c
is (strictly)

increasing.

We consider the functions

f̃ ∶= (sgn ○ (id − c))kAk,f,c∶ I → R and g̃ ∶= (sgn ○ (id − c))kAk,g,c∶ I → R,

which are both locally Lebesgue integrable.

We claim that g̃ preserves Lebesgue-almost everywhere the positive sign. Indeed, we have
that

g̃(x) = sgn(x − c)
(k − 1)! ∫

x

c
g(t)∣x − t∣k−1dt, ∀x ∈ I,

since

sgn(x − c) = sgn(x − t), ∀t ∈ (min {c, x},max{c, x}) , ∀x ∈ I ∖ {c} ,
therefore g̃∣I∖{c} preserves the positive sign.
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In addition, f̃
g̃
∶ I ∖ {c}→ R is (strictly) increasing, since

f̃

g̃
=
Ak,f,c

Ak,g,c
.

With the above facts at hand, all we have to do is first to apply Theorem 1 for the functions
f̃ and g̃ and second to employ (1), in order to obtain the desired result.

4 Corollaries and examples

Below follow some applications of the generalized fraction rules for monotonicity.

1. Monotonicity of high order mean: We consider

i. a natural number n ∈ N,

ii. an interval I ⊆ R,

iii. a point c ∈ I and

iv. a locally Lebesgue integrable function f ∶ I → R.

If f is Lebesgue-almost everywhere (strictly) monotonic, then from Theorem 3 for g ≡ 1 we
deduce that Mn,f,c is (strictly) monotonic of the same (strict) monotonicity.

2. Convexity of high order mean: We consider

i. a natural number n ∈ N,

ii. an interval I ⊆ R,

iii. a point c ∈ I and

iv. a convex function f ∶ I → R.

From the Galvani lemma we have that the function f−f(c)
id−c ∶ I∖{c}→ R is (strictly) increasing.

Extending the above function as

(f − f(c)) sgn ○ (id − c)
∣id − c∣ ∶ I → [−∞,∞]

and remembering that every convex function is locally Lebesgue integrable, we employ
Theorem 3, in order to obtain that the function

An,(f−f(c))sgn○(id−c),c

(n + 1)An,∣id−c∣,c =
An,f−f(c),c

(n + 1)An,id−c,c =
Mn,f−f(c),c

(n + 1)Mn,id−c,c
=
Mn,f,c − f(c)

id − c ∶ I ∖ {c}→ R

is also (strictly) increasing. Hence, again from the Galvani lemma we deduce that Mn,f,c is
(strictly) convex.

3. An application in ordinary differential equations : We consider the classic nondimensionalized
epidemiological model of the single epidemic outbreak for non negative times t ∈ [0,∞),

S′(t) = −R0S(t)I(t)
I ′(t) = −I(t) +R0S(t)I(t)
R′(t) = I(t),

where R0 > 1 and we search for S, I,R ∶ [0,∞] → [0,1], when the initial values S(0), I(0)
and R(0) are given.

In the non trivial epidemiological situation of S(0), I(0) ∈ (0,1) and R(0) ∈ [0,1), there
exists such functions satisfying the following properties,

7



i. S(t), I(t) ∈ (0,1), for every t ∈ [0,∞), with
I(t) + S(t) − 1

R0

lnS(t) = I(0)+ S(0) − 1

R0

lnS(0), ∀t ∈ [0,∞)
and

ii. I(∞) = 0 and

S(∞) = − 1

R0

W (−R0S(0)e−R0(S(0)+I(0))) ∈ (0, 1

R0

) ,
where W stands for the Lambert function (see, e.g., [9]).

Hence, S′(t) < 0, for all t ∈ [0,∞), which implies that S is strictly decreasing. By the use of

Theorem 2 we deduce that I−I(c)
S−S(c) ∶ [0,∞] ∖ {c}→ R is strictly increasing for every c ∈ [0,∞],

since
I ′

S′
=

1

R0S
− 1

is strictly increasing. Thus,

lim
t→c

I(t) − I(c)
S(t) − S(c)

0

0= lim
t→c

I ′(t)
S′(t) =

1

R0S(c) − 1.
These facts imply that

I(t) < I(c) + ( 1

R0S(c) − 1)(S(t) − S(c)) , ∀t ∈ [0,∞] ∖ {c} ,
i.e. a useful a priori estimate when c = 0.

Moreover, by the use of Theorem 3 we deduce that
Mn,I,c−I(c)
Mn,S,c−S(c)

∶ [0,∞) ∖ {c} → R is strictly

increasing for every n ∈ N and c ∈ [0,∞). The corresponding inequality is

Mn,I,c(t) < I(c) + ( 1

R0S(c) − 1)(Mn,S,c(t) − S(c)) , ∀t ∈ [0,∞) ∖ {c} .
which can also be deduced directly from the previous one.

4. Multidimensional analogue for specific radial functions : We consider

i. a natural number n ∈ N and

ii. two functions f, g ∶ [0,∞)→ R, such that

a. f and g are both locally Lebesgue integrable and

b. g preserves Lebesgue-almost everywhere a non zero sign.

We then set

φ∶ ∐
r∈(0,∞)

B(0n, r) → R

(r, x) ↦ φ(r, x) ∶= f(r − ∣x∣) and
ψ∶ ∐

r∈(0,∞)
B(0n, r) → R

(r, x) ↦ ψ(r, x) ∶= g(r − ∣x∣),
where B(0n, r) stands for the n-dimensional ball of radius r > 0 centered at the origin 0n ∈ Rn

and ∣⋅∣ stands for the standard euclidean norm in R
n.

Employing the change of variables formula, we can deduce that, for every fixed r > 0, the
functions φ(r, ⋅), ψ(r, ⋅)∶ B(0n, r) → R are both Lebesgue integrable. Indeed, we have

∫
B(0n,r)

φ(r, x)dx = 2π
n
2

Γ(n
2
)

r

∫
0

f(r − t)tn−1dt = 2π
n
2 (n − 1)!
Γ(n

2
) An,f,0(r),

8



where for the first equality we employed the polar coordinates change of variables formula for
the radial functions (see, e.g., [19, Theorem 26.20 in page 695]). Similarly follows the result
for the other function, ψ, for which we also note that, in view of Proposition 1, we have

∫
B(0n,r)

ψ(r, x)dx ≠ 0, ∀r > 0.

We now claim that if f

g
∶ [0,∞) → [−∞,∞] is Lebesgue-almost everywhere (strictly) mono-

tonic, then the well defined function
∫

B(0n,⋅)

φ(⋅,x)dx

∫
B(0n,⋅)

ψ(⋅,x)dx ∶ (0,∞) → R is (strictly) monotonic of the

same (strict) monotonicity. Indeed, from Theorem 3 we have that
An,f,0

An,g,0
∶ (0,∞) → R

n is

(strictly) monotonic of the same (strict) monotonicity as of f

g
and the result then follows

since

An,f,0

An,g,0
=

∫
B(0n,⋅)

φ(⋅, x)dx
∫

B(0n,⋅)
ψ(⋅, x)dx.

Appendix A The L’Hôpital rule for monotonicity via differ-

ential calculus

We need the following straightforward extension to unbounded intervals of a well known result
(see, e.g., [8, Theorem 8.3.3 in page 229]), the proof of which is omitted.

Theorem 5 (the Rolle theorem). Consider

1. a compact interval I ⊆ [−∞,∞] and
2. a function f ∶ I → R, such that

i. f is continuous and

ii. f ∣I○ is differentiable.

If f(∂I) is a singleton, then there exists a point ξ ∈ I○, such that f ′(ξ) = 0.
We also need the following extension of point 2. of Proposition 1.

Proposition 4. Consider

1. a natural number n ∈ N,

2. an interval I ⊆ [−∞,∞] when n = 1 or I ⊆ R when n ≠ 1,

3. a point c ∈ I and

4. a function f ∶ I → R, such that

i. f ∣I∩R is n-times differentiable and

ii. f (n)(x) ≠ 0, for all x ∈ I ∩R.

Then

(Rn−1,f,c(k))−1({0}) = {c} , ∀k ∈ {0, . . . , n − 1} .
Proof. To begin with, we have the equalities

Rn−1,f,c
(k)(c) = 0, ∀k ∈ {0, . . . , n − 1} .

We assume that there exists a natural number k ∈ {0, . . . , n − 1} and a point x ∈ I∖{c}, such that

Rn−1,f,c
(k)(x) = 0. In view of the above sequence of equalities, we inductively apply Theorem 5

n − k times, in order to deduce that there exists a point ξ ∈ (min {c, x},max {c, x}), such that
f (n)(ξ) = 0, which contradicts the assumption of the non vanishing f (n).
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With Proposition 4 at hand, Theorem 4 is properly stated in the context of differential calculus.
We now proceed to its proof.

Proof of Theorem 2. Since g′(x) ≠ 0, for all x ∈ I ∩R, from the Darboux theorem we have that g′

preserves a non zero sign, hence g is strictly monotonous. Hence inverse function of g, g−1∶ g(I)→ I

is well defined. Additionally, g−1 is differentiable with

(g−1)′ = 1

g′ ○ g−1
.

Arguing as in the proof of Theorem 3, it suffices to show the result for g being strictly in-
creasing and f being (strictly) increasing. Therefore, we make such assumptions. From the strict
monotonicity of g, the function g−1 is also strictly increasing.

Now, we consider the function h ∶= f ○ g−1∶ g(I) → R, which is differentiable, due to the chain
rule, with

h′ = f ′ ○ g−1(g−1)′ = f ′
g′
○ g−1,

thus h′ is (strictly) increasing as a composition of a strictly increasing function and a (strictly)
increasing function. Hence h is (strictly) convex.

We then consider two arbitrary x1, x2 ∈ I ∖ {c}, such that x1 < x2. Since g(x1) < g(x2), from
the Galvani lemma we deduce that

h(g(x1)) − h(g(c))
g(x1) − g(c) ≤

h(g(x2)) − h(g(c))
g(x2) − g(c) (h(g(x1)) − h(g(c))

g(x1) − g(c) <
h(g(x2)) − h(g(c))

g(x2) − g(c) ) ,
or else

f(x1) − f(c)
g(x1) − g(c) ≤

f(x2) − f(c)
g(x2) − g(c) (

f(x1) − f(c)
g(x1) − g(c) <

f(x2) − f(c)
g(x2) − g(c) ) .

Proof of Theorem 4. It is only left to show the result for n > 1 (with I ⊆ R), thus we make such an
assumption.

To begin with, in view of Proposition 4 we have the following sequence of equalities

Rn−1,f,c
(k)

Rn−1,g,c
(k) =

Rn−1,f,c
(k)
−Rn−1,f,c

(k)(c)
Rn−1,g,c

(k)
−Rn−1,g,c

(k)(c) , ∀x ∈ I, ∀k ∈ {0,1, . . . , n − 1} .
Additionally, the following

Rn−1,f,c
(n)

Rn−1,g,c
(n) =

f (n)

g(n)

is true.
Now, we inductively apply Theorem 2 n times, in order to get that both

Rn−1,f,c

Rn−1,g,c
∣
I∩[−∞,c)

and
Rn−1,f,c

Rn−1,g,c
∣
I∩(c,∞]

are (strict) monotonic of the same (strict) monotonicity as of f(n)

g(n)
. If c ∈ ∂I, then the proof is

complete.
Next, we deal with the case where c ∈ I○. From the above (strict) monotonicity we deduce that

the one sided limits to c of these functions exist in [−∞,∞], i.e.
lim
x→c−

Rn−1,f,c(x)
Rn−1,g,c(x) ∈ [−∞,∞] ∋ lim

x→c+

Rn−1,f,c(x)
Rn−1,g,c(x) .

Moreover, by the use of the Lagrange form of the remainder (see, e.g., [8, Theorem 8.4.1 in page
235]) we have that

Rn−1,f,c(x) = f (n)(ξf,x)
n!

(x − c)n, for some ξf,x ∈ (min {x, c},max {x, c}) , ∀x ∈ I
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and

Rn−1,g,c(x) = g(n)(ξg,x)
n!

(x − c)n, for some ξg,x ∈ (min {x, c},max{x, c}) , ∀x ∈ I.
Therefore,

lim
x→c−

Rn−1,f,c(x)
Rn−1,g,c(x) = lim

x→c−

f (n)(ξf,x)
g(n)(ξg,x) ∈ R ∋ lim

x→c+

f (n)(ξf,x)
g(n)(ξg,x) = lim

x→c+

Rn−1,f,c(x)
Rn−1,g,c(x) ,

since the function f
(n)

g(n)
is (strictly) monotonous. By the same reason we deduce that

lim
x→c−

Rn−1,f,c(x)
Rn−1,g,c(x) {

≤ (<)
≥ (>)} lim

x→c+

Rn−1,f,c(x)
Rn−1,g,c(x) if

f (n)

g(n)
is { (stricty) increasing

(stricty) decreasing
} ,

thus
Rn−1,f,c(x1)
Rn−1,g,c(x1) {

≤ (<)
≥ (>)}

Rn−1,f,c(x2)
Rn−1,g,c(x2) if

f (n)

g(n)
is { (stricty) increasing

(stricty) decreasing
} ,

for every x1, x2 ∈ I, such that x1 < c < x2, which completes the proof.
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